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Abstract—A novel continuous time fluid flow model of the
dynamics of the interaction between ACK-clocking and the link
buffer is presented. A fundamental integral equation relating the
instantaneous flow rate and the window dynamics is derived.
Properties of the model, such as well-posedness and stability,
are investigated. Packet level experiments verify that this new
model is more accurate than existing models, correctly predicting
qualitatively different behaviors, for example when round trip
delays are heterogeneous.

I. INTRODUCTION

The Transmission Control Protocol (TCP) is the predomi-
nant transport protocol of the Internet today, carrying about
83% of the total traffic volume [1]. Since Jacobson’s work on
the Tahoe release of BSD Unix in 1988 [2], many modifica-
tions and replacements have been proposed [2–9] to meet the
demands of a modern Internet scaled up in size and capacity.

The research effort on congestion control has been con-
siderable after 1988. However, most proposed algorithms are
window based, meaning that a source explicitly controls a
window size, that is the number of packets that are sent before
the sender must wait for an acknowledgment packet. Research
has focused on how to determine that window size.

Today’s TCP NewReno [3] (with or without SACK [4])
is in principal similar to its predecessor TCP Tahoe, relying
on packet losses as a congestion indicator to trigger a rapid
decrease in the window size, and trusting that flows will see
appropriately matched loss rates to ensure fairness. Another
widely discussed source of congestion information is the delay
experienced by packets [7], [8]. There exist many experimental
TCP proposals ranging between purely loss-based versions like
CUBIC [5] and H-TCP [6], and purely delay based schemes
like TCP Vegas [7] and FAST TCP [8], with many algorithms
that use both delay and loss as congestion measures such as
TCP Africa [9] and TCP Illinois [10].

All of these rely on detailed dynamics of instantaneous
rates and network queue sizes, either to determine which
flow’s packet is being received at the exact time a packet
is dropped, or to determine the precise queuing delays. In
window based schemes, ACK-clocking governs these sub-
RTT phenomena. Despite its importance, the dynamics of the
window mechanism is still not well understood.

A. Window-based transmission control

A schematic picture of the control structure for window-
based transmission control is displayed in Figure 1. The
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Fig. 1. System view in window-based congestion control.

dynamics of the endpoint protocol are represented by the three
blocks: transmission control, window control, and congestion
estimator. The system consists of an inner loop and an outer
loop. In the outer loop, the window control adjusts the trans-
mission window size based on the estimated congestion level
of the network. This congestion level is estimated based on
the ACKs, which carry implicit (often corrupted) information
in the form of duplicate, missing and delayed ACKs.

B. ACK-clocking

The dynamics of the inner loop is given by so called ACK-
clocking. The transmission of new packets is controlled or
“clocked” by the stream of received ACKs by the transmission
control. A new packet is transmitted for each received ACK,
thereby keeping the number of outstanding packets, i.e. the
window, constant. More sophisticated traffic shaping could
also be considered, but we do not consider such dynamics
in this paper.

The design of the outer loop, i.e., the window adjustment
mechanism, has received ample attention in the literature [2–
9]. The properties of ACK-clocking are often ignored. For
example, ACK-clocking has stabilizing properties in itself.
Furthermore, ACK-clocking operates at a per-packet time-
scale. This makes it better suited to handle short-term queue
fluctuations than the outer-loop, that typically adjusts the
window on a round trip time basis.

C. Network fluid flow modeling

To ensure that the network will reach and maintain a
favorable equilibrium, it is important to assess its dynamical
properties such as stability and convergence. Instability means
that small fluctuations due to varying cross traffic are ampli-
fied, and manifests itself as severe oscillations in aggregate
traffic quantities, such as queue lengths. Following the seminal
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Fig. 2. The new model presented in this paper is able to capture a dynamic
step response much better than traditional models in the literature. The graph
shows the queue size. Two window based flows with propagation delays d 1 =
10 ms and d2 = 190 ms are sharing the bottleneck link. The window of the
first source is subject to a step after 25 s.

work by Kelly [11] there have been numerous studies on
network stability. Network fluid flow models, where packet
level information is discarded and traffic flows are assumed
to be smooth in space and time, have shown to be useful
in such analysis, for example in [8,12–16]. The validity of
results concerning dynamical properties, however, rely heavily
on the accuracy of the models. Models with fundamentally
different dynamical properties have been used to model ACK-
clocking in window-based schemes (often referred to as “the
link”), i.e., the inner loop in Fig. 1. In [12–15] an “integrator”
link model is used, integrating the approximate excess rate
on the link. On the other hand, in [17] transients are ignored
and a “static” link model is proposed. Furthermore, in [18]
a “joint” link model combining the immediate and long term
integrating effect is proposed and used for stability analysis
in [16]. The motivating example in Section II illustrates the
limited accuracy of these models. This is further elaborated
on in a companion paper [19], which highlights the need
for incorporating important microscopic sub-RTT effects in
macroscopic fluid flow models.

A new link model which captures these sub-RTT effects
is derived in Section III. Properties of this model are found
in Section IV, and it is rigorously validated in Section V.
Conclusions are drawn in Section VI.

II. A MOTIVATING EXAMPLE

Consider a system of two window based flows sending
over a single bottleneck link with capacity 100 Mbit/s, with
1040 byte packets, where the sources’ window sizes are kept
constant, i.e., the outer loop in Fig. 1 is disabled. The round
trip delays excluding the queuing delay are d1 = 10 ms and
d2 = 190ms. The window sizes are initially w1 = 210
and w2 = 1500 packets respectively. After convergence,
at 25 seconds, w1 is increased step-wise from 210 to 300
packets. The solid pink line in Fig. 2 shows the bottleneck
queue size (in seconds) when this scenario is simulated in
NS-2, exhibiting significant oscillation in the queue. This is
in contrast to the dash-dotted, solid and dotted blue lines in
Fig. 1, showing predictions made by existing models of the

inner loop dynamics (see [16] for a discussion). They all
predict smooth convergence similar to first order filter step
responses (with varying time constants), the reasons for which
will be discussed in Section IV-F. The dashed black line shows
the continuous time fluid model derived in this paper, it shows
almost perfect agreement with the packet level simulation,
even at sub-RTT time scales.

The analysis of the dynamic properties of a window based
system based upon any of the previous models may yield qual-
itatively different results than those from the more accurate
model proposed here, especially for TCPs responding in part
to queuing delay [7]–[9]. This is also confirmed in [19].

III. MODELLING

A. Preliminaries

A network is modeled as consisting of L links with capac-
ities cl and time varying queuing delays pl(t), l = 1, . . . , L.
Traffic consists of N flows, with wn(t) the time varying
number of packets “in flight” (sent but not acknowledged).
The instantaneous rate at which traffic from flow n enters link
l is xl,n(t), or xn(t) in the single-link case. The round trip
time between the time a packet of flow n enters link l and
the time that the “resulting” packet transmitted in response
to the acknowledgment of that packet enters link l is denoted
τl,n(t). It consists of a fixed component dn and a time varying
component due to queuing delays. In the single-link case,
τn(t) = dn + p(t).

Link l carries cross traffic xl,c(t) which is not window
controlled. Cross traffic is assumed for simplicity to not use
more than one link and is not included in the routing.

Packets are assumed to be transmitted greedily and in FIFO
order at links, which reflects the reality of the current Internet.

B. The Single Source Single Bottleneck Case

Consider first the simplest case of a single window flow
control source sharing a single link with non-window cross
traffic of known rate. In this section, the subscripts will be
dropped for clarity, and forward propagation delay is assumed
without loss of generality to be zero.

1) Instantaneous rate: To discover what can be known
about the instantaneous transmission rate based on knowledge
of the window size, consider an arbitrary time t. Packets trans-
mitted up to time t will be acknowledged by time t+τ(t), and
thus the number of packets “in flight” at time t+τ(t), namely
w(t + τ(t)), will exactly equal those packets transmitted in
the interval (t, t + τ(t)]. That is,

∫ t+τ(t)

t

x(T )dT = w(t + τ(t)). (1)

(This equation was introduced in passing in [20], but not
pursued.) Most models approximate the integral in (1) by a
product, yielding x(t) ≈ w(t)/τ(t); one exception is [18]
which instead considered an embedded discrete time sequence
tk+1 = tk + τ(tk), yielding an exact mean rate of xk =
wk/τ(tk−1) over the interval (tk−1, tk]. Fig. 3 shows how
(1) can be interpreted as a sliding window of such averages.
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Fig. 3. The input rate of the source into the queue. The sequences
xk, xk′ , . . . which represents averages over an interval (tk , tk + d + p(tk)],
(tk′ , tk′ + d + p(tk′ )], . . . are known; we seek the function x(t).

Differentiating (1) with respect to time gives

(1 + τ̇(t))x(t + τ(t)) − x(t) = (1 + τ̇ (t))ẇ(t + τ(t)). (2)

Rearranging, and shifting the time point, gives

x(t) =
x(t − τ(t̃))

1 + τ̇ (t − τ(t̃))
+ ẇ(t) (3)

where t̃ solves t = t̃ + τ(t̃) = t̃ + d + p(t̃). Note that the rate
at time t is not determined solely by the window and RTT,
but depends on the rate one RTT previously; that is the origin
of the sub-RTT rate dynamics studied in [19].

2) ACK-clocking model: In terms of rates, a link buffer is
simply an integrator, integrating the excess rate at the link
(modulo static non-linearities present in the system, such as
non-negativity constraints and packet drops). Thus, having
defined the instantaneous rate x(t), the buffer dynamics are
naturally given by

ṗ(t) =
1

c
(xn(t) + xc(t) − c) . (4)

The whole system is described by the delay Differential
Algebraic Equation (DAE) defined by (1) and (4).

C. Multiple Sources, One Bottleneck

When multiple flows share the bottleneck, there are N
constraints analogous to (1), expressing the rate xn(t) for each
flow; which is combined with an integration similar to (4).
Without loss of generality, assume zero forward propagation
delay and we have the DAE model

ṗ(t) −
1

c

(

N
∑

n=1

xn(t) + xc(t) − c

)

= 0, (5a)

∫ t+τn(t)

t

xn(T ) dT − wn(t + τn(t)) = 0, (5b)

for n = 1, . . . , N . The model is supported by numerical results
in Section V.

D. The Multiple Sources Multiple Bottlenecks Case

Consider now a network with multiple bottlenecks. The
objective is to find a highly accurate model, perhaps at the
expense of simplicity. The result is a reference model, which

can be a starting point for tractable approximations (c.f.
Section IV-F).

Let R = (rln) be the N ×L routing matrix, with rln = 1 if
link l is used by flow n, and 0 otherwise. Bidirectional links
are modeled as distinct unidirectional links.

The first row of (5) then becomes

clṗl(t) =

N
∑

n=1

Rl,nxl,n(t) + xc;l(t) − cl. (6a)

It remains to determine xl,n(t) analogously to (1). This case
is significantly more complex since packets experience delays
at different instants of time at each link.

Let τl,n(t) be the round trip time from when a packet
from source n arrives at link l to the arrival at link l of
the “resulting” packet—the packet sent as a result of the
acknowledgment of the first. Similarly, let τ f

l,n(t) be the time
from when a packet released from source n reaches link l and

wl,n(t + τf
l,n(t)) = wn(t). (6b)

The instantaneous rate xl,n(t) then satisfies
∫ t+τl,n(t)

t

xl,n(T ) dT = wl,n(t + τl,n(t)). (6c)

It remains to calculate τl,n(t) and τf
l,n(t). To do this, it is

necessary to keep track of the order of the links along each
source’s path. Let ~pl,n(t) be a column vector of the same
dimension as the number of links in the nth sources path,
say Ln. The elements of ~pl,n(t) are the queue sizes in the
path of source n, ordered from the point of view of source
n and of link l. Thus the first element corresponds to the
queue size of link l, the second element the queue size of
the link downstream of link l in the nth source’s path, and
so on, and finally the last element corresponds to the link
queue upstream of link l. The ith element in a vector ~pl,n(t)
is denoted ~pl,n,i(t).

The ordered propagation delay ~dl,n can be defined similarly
as for the queuing delays. So ~dl,n,i represents the propagation
delay between link l and the link i − 1 hops after l on
path n, and where by convention ~dl,n,Ln+1 = dn. Note that
~dl,n,1 = 0, and, if l is the kth and l′ is the k′th link on
path n where k′ > k (link l′ is downstream link l), then
~dl,n,1+k′−k + ~dl′,n,Ln+1−(k′−k) = dn by definition.

Let l be the m(l, n)th link on path n and let τ̂l,n,i(t) be the
delay such that a packet which arrives at link l at time t arrives
at the link i − 1 hops after l on path n at time t + τ̂l,n,i(t).
(Strictly, the packet which arrives may be an acknowledgment
or a “resulting” packet.) The total delay, including the queuing
at each link, is then

τ̂l,n,i(t) = ~dl,n,i +
i−1
∑

k=1

~pl,n,k(t + τ̂l,n,k(t)). (6d)

The interval of integration in (6c) is then simply

τl,n(t) = dn +

Ln
∑

i=1

~pl,n,i(t + τ̂l,n,i(t)) = τ̂l,n,Ln+1(t). (6e)
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Similarly, the forward delay linking wl,n(t) with wn(t) is

τf
l,n(t) = τ̂`(n),n,m(l,n)+1(t), (6f)

where `(n) is a “link” located at the source of flow n,
introduced to model propagation delay between the source and
the first (bottleneck) link included in the routing.

In summary, the model of ACK-clocking dynamics for a
system of N window based sources utilizing a network of L
links is given by (6). The accuracy of the model is investigated
in Section V-B.

IV. ANALYSIS

This section shows the uniqueness of the equilibrium of the
general model (6), and then for the single link case proves
that the queuing delays are locally asymptotically stable but
the rates may possibly have sustained oscillations.

A. Equilibrium

ACK-clocking can be interpreted as a congestion control
algorithm applied at the source, with queuing delay as price
signal fed back from the network, and with tuning parameter
w (window size). In this context, we are able to apply the
utility optimization framework to characterize the equilibria
in the following theorem.

Theorem 1: For given positive vectors w, d and c, the
equilibrium rates x∗ of the ACK-clocking model (6) are
unique, and if R is full rank, then the queuing delays p∗ are
also unique.

Proof: A feasible equilibrium point (x∗, p∗) satisfies
∑N

n=1 Rl,nx∗
n ≤ cl for all l, n and

x∗
n := wn/(dn + q∗n), q∗n =

L
∑

l=1

Rl,np∗l , p∗l ≥ 0.

The parameters wn, dn, cl are fixed.1 The equilibrium point
can be expressed as

L
∑

l=1

Rl,np∗l = q∗n =
wn

x∗
n

− dn. (7)

Let

Un(x∗
n) = wn log(x∗

n) − dnx∗
n (8)

which is strictly concave. Note that (7) is the Karush-Kuhn-
Tucker condition to the convex program

max
x≥0

N
∑

n=1

Un(xn), s.t. Rx ≤ c (9)

with compact feasible set. Thus there exists a unique optimal
solution x∗, see [11,22], and by (7), a unique q∗. Assume there
exist two optimal queuing delay vectors p∗ and p̃∗, then

RT (p∗ − p̃∗) = q∗ − q∗ = 0. (10)

If R has full row rank, then the columns of RT are linearly
independent and thus p∗ = p̃∗. Therefore, if R has full row
rank then the equilibrium (x∗, p∗) is unique.

1c.f. a similar proof in e.g. [8]

B. Linearization around equilibrium

In order to study the stability, let us linearize (5) around
its equilibrium (p, w, x, xc). Following the convention that
time delays in variables’ arguments are modeled by their
equilibrium values yields, for n = 1, . . . , N ,

ṗ(t) −

N
∑

n=1

xn(t)/c − xc(t)/c = 0, (11a)

xnṗ(t) − ẇ(t + τn) + xn(t + τn) − xn(t) = 0. (11b)

Here variables now denote small perturbations. Taking the
Laplace transform gives an explicit expression of the sources’
queue input rates

xn(s) =
s

e−sτn − 1

(

xne−sτnp(s) − wn(s)
)

. (12)

Thus the linear ACK-clocking dynamics are described by
(

c +

N
∑

n=1

xn
e−sτn

1 − e−sτn

)

p(s) =

N
∑

n=1

wn(s)

1 − e−sτn
+

1

s
xc(s).

(13)
Modeling non-zero forward propagation delay, τ f

n , is achieved
simply by multiplying wn(s) by e−sτf

n in (13). The linear
model is validated in Section V-A2 and used for analysis
below.

C. Stability

As pointed out in [2], window flow control is stable in
the sense that signals remain bounded. The following theorem
shows the stronger result that the linearized single bottleneck
dynamics (13) relating the windows w to the queue p are
asymptotically stable, ruling out persistent oscillations in these
quantities, at least locally. Let C+ be the open right half plane,
{z : Re(z) > 0}, and C̄+ be its closure, {z : Re(z) ≥ 0}.

Theorem 2: For all 0 < xn ≤ c, τn > 0, n = 1, . . . , N , the
function Gpw : C̄+ → C1×N whose ith element is given by

Gpwi
(s) =

1

(1 − e−sτi)
(

c +
∑N

n=1 xn
exp(−sτn)

1−exp(−sτn)

) , (14)

is stable.
Proof: It is sufficient to confirm that [21]:

(a) Gpw(s) is analytic in C+;
(b) for almost every real number ω,

lim
σ→0+

Gpw(σ + jω) = Gpw(jω);

(c) sups∈C̄+ σ̄(Gpw(s)) < ∞

where σ̄ denotes the largest singular value.
Conditions (a) and (b) are satisfied if they hold element-

wise. Furthermore

sup
s∈C̄+

σ̄(Gpw(s)) = sup
s∈C̄+

√

λ̄(Gpw(s)G∗
pw(s))

= sup
s∈C̄+

√

√

√

√

N
∑

i=1

Gpwi
(s)Gpwi

(s) ≤

N
∑

i=1

sup
s∈C̄+

|Gpwi
(s)|. (15)
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Thus, condition (c) holds if

inf
s∈C̄+

|1/Gpwi
(s)| > 0. (16)

It is therefore sufficient to establish (a), (b) and (c) for the ith
transfer function element Gpwi

(s).
Start with the boundedness condition (c). It is sufficient to

show that there is no sequence sl = σl + jωl ∈ C̄+ with
liml→∞ |1/Gpwi

(sl)| = 0. This will be established by show-
ing that the limit evaluated on any convergent subsequence is
greater than 0. Consider a subsequence with σl → σ, ωl → ω.
Case 1, σ = ∞: 1/Gpwi(sl) → c > 0.
Case 2, σ ∈ (0,∞): By the triangle inequality,

|1 − e−slτi | ≥
∣

∣1 − |e−slτi |
∣

∣→ 1 − e−στi > 0. (17)

Furthermore, 1/(eslτn − 1) lies on the circle with center
1/(A2

l − 1) + j0 and radius Al/(A2
l − 1), where Al = |eslτn |.

Thus liml→∞ Re(1/(eslτn − 1)) ≥ −1/(eστn + 1), hence

lim
l→∞

Re

(

c +

N
∑

n=1

xn

eslτn − 1

)

≥ c −

N
∑

n=1

xn

eστn + 1
=

c−

N
∑

n=1

xn+

N
∑

n=1

xneτnσ

eτnσ + 1
≥

N
∑

n=1

xn

1 + e−τnσ
≥

N
∑

n=1

xn

2
> 0.

(18)

Multiplying (17) and (18) gives liml→∞ |1/Gpwi
(sl)| > 0.

Case 3, σ = 0: Note that Re(1/(ejωlτn − 1)) = −1/2, so

lim
l→∞

Re

(

c +

N
∑

n=1

xn

e(σl+jωl)τn − 1

)

= c −

N
∑

n=1

xn

2

≥ c −
c

2
> 0. (19)

Thus liml→∞ |1/Gpwi
(sl)| 6= 0 except possibly when the first

factor of (14) 1−e−slτi → 0, which occurs when ωτi = 2πm,
m ∈ Z. Let

In =

{

1 if mτn/τi ∈ Z,

0 otherwise.
(20)

Now

lim
s→j2πm/τi

|1/Gpwi
(s)|

= lim
s→j2πm/τi

∣

∣

∣

∣

c(1 − e−sτi) + xi +

N
∑

n=1
n6=i

xne−sτn
1 − e−sτi

1 − e−sτn

∣

∣

∣

∣

= xi +
N
∑

n=1
n6=i

xn
τi

τn
In > 0, (21)

using L’Hôpital’s rule in the second step when In = 1. Thus
liml→∞ |1/Gpwi

(sl)| > 0 for all sequences sl in C̄+ for which
the limit exists, whence (16) holds, and thus (c).

Furthermore, since 1/Gpwi
(s) 6= 0, Gpwi

(s) is also non-
singular in C̄+, and therefore analytic as its components are
analytic. (Constants as well as the exponential function are
entire, i.e., analytic in C; also note that sums, differences,

and products of analytic functions are analytic; quotients of
analytic functions are analytic except where the denominator
equals zero.) This establishes (a). Condition (b) holds since
Gpwi

(s) is analytic in C̄
+.

D. Uniqueness of rates

The results presented until now hold for any x(t) satisfying
(11), leaving open the question of uniqueness. It is possible
for the windows not to define unique rates, due to sub-RTT
burstiness. Consider a network in which two flows with equal
RTTs τ share a bottleneck link of capacity C, and each has
window Cτ/2. If the flows alternate between sending at rate
C for time τ/2 and sending at rate 0 for τ/2, and if the “on”
periods of flow 1 coincide exactly with the “off” periods of
flow 2, then the total rate flowing into the bottleneck link is
constant, and (11) is satisfied. It is also satisfied if both sources
send constantly at rate C/2.

For a single bottleneck, the rates will be unique unless one
flow has a RTT which is a rational multiple of another flow’s
RTT. (Note that if RTTs are drawn randomly, then this will
occur with probability 0.)

To see this, note that sustained oscillations in the rate
for a constant window correspond to marginally stable (pure
imaginary) poles of (11). Taking the Laplace transform of (11)
and eliminating p, gives

diag(sesτk)w(s) =

(

1

c
diag(xk)E + diag(esτk − 1)

)

x(s),

(22)
where Ek,l = 1 for all k, l = 1, . . . , N . Since diag(sesτk )
is never singular for s 6= 0, the poles of (22) are the non-
zero values of s for which the coefficient of x(s) is singular.
The only imaginary values for which this occurs are when
sτi = j2πb and sτk = j2πa for some i, k = 1, . . . , N and
integers a and b.

For N = 2 flows with equal mean rates x1 = x2 = C/2,
the linearized rates are given by

x1(s)

w1(s)
=

s(2 − e−sτ2)

2 − e−sτ1 − e−sτ2
(23a)

x2(s)

w1(s)
=

−se−sτ2

2 − e−sτ1 − e−sτ2
. (23b)

Note that x1(s) = −x2(s) for s = j2πb/τi. This highlights
the fact that the sustained oscillations maintain a constant rate
flowing into the bottleneck link. Conversely, for any periodic
function x1(t) with period τi/b, perturbations about the mean
with x2(t) = −x1(t) will satisfy (11).

Since any ratio of round trip times can be approximated
arbitrarily closely by a rational number, it might seem that this
sustained oscillation would be common. Several factors may
contribute to it not having been reported regularly. Firstly, the
periodicity would be interrupted by changes in the window due
to congestion control. Secondly, many studies report window
sizes, queue sizes or rates estimated as the ratio of window
over RTT. Thus, this effect may have occurred in many
experiments in which it was not reported. Thirdly, although
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Fig. 4. Single-sided amplitude spectrum for the rate of source 1 (left) and
bottleneck queue (right). Upper plots: a = 2, b = 1. Lower plots: a =
2079, b = 1352.

any rational ratio of RTTs will lead to sustained oscillations,
those oscillations may be at a high frequency and attributed to
“packet level noise”. Oscillation occurs at min(a, b) times per
RTT for the smaller RTT flow. Even if τ1/τ2 is not exactly
rational, or is a ratio of large integers, slowly decaying oscil-
lations may exist corresponding to an approximation τ1/τ2 ≈
b/a for smaller a and b. For ε = bτ2 − aτ1, there is a pole
with σ + jω ≈ −(2πε)2/(τ1 + τ2)

3 + j2π(a + b)(τ1 + τ2).
Example 1: Consider two window based flows sharing a

bottleneck link with capacity c = 100 Mbit/s, with 1040 byte
packets, and an equilibrium queuing delay of p = 8.16 ms.
First, a scenario with w1 = 650 packets, w2 = 2w1, d1 =
100ms, d2 = 208.16ms is simulated in NS-2. For this case
τ2 = 2τ1 = 216.32ms. This rational ratio a = 2, b = 1
suggests sustained oscillations at frequencies f = kb/τ1 ≈
(9.25k) Hz where k ∈ Z+. The upper left plot in Fig. 4 shows
the single-sided amplitude spectrum (computed by the FFT)
of the sending rate of source 1, sampled every 5 ms. The
spikes in the plot agree with our prediction. The upper right
hand plot of the amplitude spectrum of the queue size lacks
such sustained oscillations; it is stable in line with Theorem 2.
(While the individual sending rates oscillate, their sum does
not, yielding a stable link buffer.)

The two lower plots are for a similar scenario, with instead
d2 = 158.16ms. Since τ1/τ2 = 1352/2079, the sustained
oscillations will be at f = kb/τ1 = (12500k)Hz. The approxi-
mations b/a = 2/3 has a decay time constant of approximately
1/8 s, while higher order approximations give frequencies off
the scale of this graph. Accordingly, the amplitude spectrum
of the source rate lacks spikes except at the zero mode. Again
the queue is non-oscillatory.

E. Relation between network window and congestion window

Throughout this paper, the term “window” has referred to
the network window, the number of packets outstanding in
the network. This need not be the same as the window flow

control’s desired congestion window, because a reduction in
the desired window size cannot immediately withdraw packets
from the network.

Recall that the network window w is defined from the
equality

∫ t+d+p(t)

t

x(T ) dT = w(t + d + p(t)), t ≥ 0,

where x is the instantaneous sending rate, p the queuing delay,
and d the propagation delay. Let 0 < t1 < t2 < . . . be the
time instances when an ACK arrives at the sender. Denote the
sequence of consecutive instances a round-trip time apart as
0 < t1 < t2 < . . . , and suppose that t1 = t1, i.e., the first
packet was sent at t = 0. Note that the set of round-trip times
{t`} is a subset of the ACK times {tk}.

Given the congestion window w̄, the corresponding sending
rate x is not uniquely defined. The congestion window only
determines what the average rate over a round-trip time should
be. It is common that if w̄ is increased by a certain number of
packets these packets are instantaneously put on the network,
while if w̄ is decreased the decrease on the network depends
on when the next few ACKs arrive to the sender. Many
other implementations of the congestion window changes are
possible, e.g., smoothing a window increase over a certain time
interval. Obviously, the relation between the actual sending
rate and the congestion window depends on the protocol
implementation. Next, we derive some fundamental bounds
on the difference between w̄ and w.

In general, it is hard to obtain a better bound on the point-
wise difference between w̄ and w than

sup
t≥0

|w̄(t) − w(t)| ≤ sup
t≥0

w̄(t) = w̄max,

where w̄max denotes the largest congestion window over a
session. (Note that The inequality follows simply from the
previous argument: if w̄ is decreased, then w is not instanta-
neously decreased but decreases only as the next ACKs arrive
to the sender.

Let us next consider the L1 norm of the difference between
w̄ and w:

‖w̄ − w‖L1
= sup

T>0

1

T

∫ T

0

|w̄(t) − w(t)|dt.

It is thus a measure of how close w̄ and w are in average.
Let us first assume that w̄ is updated only at the round-trip
times t`, ` = 1, 2, . . . . Note that for t ∈ (t`, t`+1), it holds
that w(t) = w(t`) + (t − t`)w

′(ξ) for some ξ ∈ (t`, t`+1).
Hence, |w(t`) − w(t)| ≤ (t`+1 − t`)w

′(ξ). With w′
max =

sup`=1,2,... w
′(ξ(`)) and RTTmax = sup`=1,2,...(t`+1 − t`),

we have thus |w(t`) − w(t)| ≤ RTTmaxw
′
max. Then,

‖w̄ − w‖L1
= sup

T>0

1

T

∫ T

0

|w(t`(t)) − w(t)dt

≤ sup
T>0

1

T

∫ T

0

RTTmaxw
′
maxdt

≤ RTTmaxw
′
max.
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The approximation error between w̄ and w is thus of the order
of the round-trip time.

If on the other hand, w̄ is updated at each ACK arrival tk,
k = 1, 2, . . . , then for t ∈ (tk, tk+1), it holds that w(t) =
w(tk) + (t − tk)w′(ξ) for some ξ ∈ (tk, tk+1). Similar to
above we obtain

‖w̄ − w‖L1
= sup

T>0

1

T

∫ T

0

|w(tk(t)) − w(t)dt

≤ sup
T>0

1

T

∫ T

0

ACKmaxw
′
maxdt

≤ ACKmaxw
′
max,

where ACKmax = supk=1,2,...(tk+1 − tk). In this case, the
approximation error between w̄ and w is thus of the order
inter-arrival time of the ACKs, which is often much smaller
than the round-trip time.

To summarize, we have proven the following theorem.
Theorem 3: The following relations between the congestion

window w̄ and the network window w hold:
• if w̄(t) is updated at t ∈ {t`}`=1,2,..., then w̄(t`) = w(t`)

and ‖w̄ − w‖L1
≤ RTTmaxw

′
max;

• if w̄(t) is updated at t ∈ {tk}k=1,2,..., then w̄(tk) =
w(tk) and ‖w̄ − w‖L1

≤ ACKmaxw
′
max.

F. Relation to existing models

The model may be simplified by approximating the integral
equation (1) defining the instantaneous rate, and the N integral
constraints in (5). Let Ht(z) =

∫ z

t
x(T )dT − w(z). By (1),

Ht(t + τ(t)) = 0. Standard approximations to Ht(z) yield
several popular models. Intuitively, better approximations of
the constraint should lead to greater model accuracy. Note
however that, due to coupling between the constraints (1)
and the integration (4), even though we are able to quantify
the accuracy of the approximation of Ht(z), more rigorous
analysis is needed to formalize the resulting accuracy in the
queuing delay p for the different models. This is left for future
work, and thus the discussion here is heuristic.

1) Ratio models: Most common models take xn(t) ≈
w(t−∆a)/τ(t−∆b), for some choice of ∆a and ∆b [12–16].
Applying the right-side rectangle rule to Ht(t + τ(t)) gives
xn(t + τ(t)) ≈ wn(t + τ(t))/τn(t) + O(τ) whence

xn(t) ≈ wn(t)/τn(t − τn(t̃)) (24)

where t̃ satisfies t̃+τn(t̃) = t. This is similar to the integrator
model shown in [17] to be overly pessimistic for large RTTs.
More accurate numerical quadrature rules can also be applied.
For example, the trapezoidal rule gives a recursive rule

xn(t + τn(t)) ≈ 2wn(t + τn(t))/τn(t) − xn(t). (25)

Note that rules such as the midpoint rule which do not evaluate
the end point of the interval, x(t+τn(t)), will yield non-causal
models, with x(t) dependent on a future value of w(t + . . . ).

By further assuming in (24) that the deviation from the
equilibrium rates are negligible, xn(t) = xn + δxn(t) ≈ xn,
we get a static update of the queue in terms of window updates
as suggested in [17].

2) “Joint” models: Taylor expansion of Ht around t yields

0 = Ht(t + τ(t)) = Ht(t) + H ′
t(t)τ(t) + O(τ2)

= −w(t) + (x(t) − ẇ(t))τ(t) + O(τ 2). (26)

Dividing by τn(t) gives the rate used by the “joint link model”
[18] as an O(τ) approximation

xn(t) ≈ wn(t)/τn(t) + ẇn(t). (27)

Ignoring the ẇn(t) in (26) gives xn(t) ≈ wn(t)/τn(t). If
ẇn = O(τn) then this is again an O(τn) approximation, albeit
less accurate than (27); otherwise it is O(ẇn).

Taking higher order terms in the Taylor expansion of H(t+
τ(t)) gives more accurate models. However, this leads to high
order ODE models.

3) Models by Padé approximations: An alternative is to
study the linearized model in the Laplace domain (13), and
use, for example, different orders of Padé approximations
to e−sτn . In this context a (0,0) Padé approximation (i.e.
e−sτn ≈ 1) gives the “static link model” introduced in
[17], while the “joint link model” [18] corresponds to a
(0,1) approximation. By a (1,0) approximation, a time-scaled
ratio model is achieved, c.f. [12–16]. A suitable order of
approximation can be chosen, and a nonlinear ODE may then
be “reverse engineered” to approximate the DAE model. This
approach is used with good accuracy in the linear validation
example in Section V-A2.

All of the above models are based on small τ approxima-
tions. However, τ(t) need not be small; in particular τ(t) does
not approach zero in the fluid limit of many packets. Thus,
(1) should be used whenever it results in a tractable problem
formulation, such as the analysis of loss synchronization and
stability of delay based protocols in [19].

V. MODEL VALIDATION

In this section the model derived in Section III is validated.
The model is simulated in Simulink, and the simulation output
is compared with packet level data achieved using NS-2. Note
that in all experiments we only execute positive changes of
the window w(t) (remember it represents the packets “in
flight” here). This is to decouple the dynamics of the studied
mechanism from the dynamics of the inherited traffic shaping.
Recall that a negative change is dependent on the rate of
received ACKs.

A. Single link network

1) Nonlinear model: For the single link case we refer to
the motivating example in Section II due to limited space. The
solid pink line in Fig. 2 shows the queue size when the system
is simulated in NS-2, the dashed black line the DAE model
(5). The model fits almost perfectly.

2) Linearized model: Two window based flows are sending
over a bottleneck link with capacity c = 100 Mbit/s. There
is no non-window based cross traffic, so xc = 0. Initially,
w1 = 60 packets and w2 = 2000packets, with packet size
ρ = 1040byte. Furthermore, d1 = 10 ms and d2 = 190ms,
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Fig. 5. Validation example. Solid line: NS-2 simulation. Dashed line:
Continuous time DAE model (5).
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xc;1 xc;2

Fig. 6. Network configuration validation example

with no forward delay. The system is started in equilibrium,
and w1 is increased by 10 at t = 10 s, and 300 ms later it is
decreased back to 60. The solid line in Fig. 5 shows the queue
size when the system is simulated in NS-2, the dashed line the
linear approximation (13). The model is good, so the linear
approximation seems valid. (In the simulation of (13), a Padé
approximation of order (17,17) of the exponential functions
has been used.)

B. Multiple link network

The multi flow multi link ACK-clocking model (6) is
validated using a scenario with two flows sending over a
network of two bottleneck links (indexed 1 and 2). The
configuration is according to Figure 6. The first flow utilizes
both links, and in the view of this source, the first link is
upstream the second link. The second flow is sending over the
second link only. Furthermore, there may exist non window
based cross traffic sending over the individual links. For all
simulations c1 = 80 Mbit/s, c2 = 200 Mbit/s, d1 = 100 ms,
d2 = 200ms, and packet size ρ = 1040byte. Furthermore,
the first source is located at the first link and thus `(1) = 1,
while the second flow is located at a non-bottleneck “link”
`(2) upstream the second link (modeling forward propagation
delay). Configuration is such ~d1,1,2 = ~d2,1,2 = 50 ms and
~d`(2),2,2 = 50 ms. The system is perturbed from equilibrium
at t = 15 s by a positive step change in one of the sources
window of magnitude 50 packets. The queue sizes of the
simulated DAE model (simulated in Simulink) is compared
with NS-2 data.

1) Case 1: no cross traffic: No traffic except the two
window based sources are present, so xc;1 = xc;2 = 0.
Furthermore w0

1 = 2100 and w0
2 = 3900 packets. In Fig. 7

the system is perturbed from equilibrium by a step change in
the window of the first source. We observe that it is only, in the
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Fig. 7. Simulation example. No cross traffic. Step change in window 1. Solid
line: NS-2. Dashed line: DAE model.
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Fig. 8. Simulation example. No cross traffic. Step change in window 2. Solid
line: NS-2. Dashed line: DAE model.

view of the first source, the upstream queue that is affected.
This is due to that the traffic travelling from link 1 to link 2
is saturated by the capacity of link 1. This blocking property
is captured by the model.

On the other hand, from Fig. 8, which corresponds to a
scenario when the window of the second source is changed,
both queues are affected even though link 2 is downstream
link 1 from the first source point of view. This is because that
each source actually is operating in closed loop, and that the
ACK rate of the first source is affected by the change in the
queue size of link 2. Moreover we observe that the model fit
is very good, the discrepancies are of the magnitude ρ/cl and
hence seem to be due to quantization. The burstiness in the
link buffer is captured.

2) Case 2: cross traffic on link 1: In this scenario UDP
cross traffic is sending over link 1 utilizing half the capacity,
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Fig. 9. Simulation example. Cross traffic on link 1. Step change in window
1. Solid line: NS-2. Dashed line: DAE model.
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Fig. 10. Simulation example. Cross traffic on link 1. Step change in window
2. Solid line: NS-2. Dashed line: DAE model.

i.e., xc;1(t) = c1/2; and initially w0
1 = 2100 and w0

2 = 3900
packets. The plot in Fig. 9 displays the queue sizes when
the congestion window of the first source is changed. While
Fig. 10 shows when a step is applied to the second sources
window. Note that the change of the first source affects the
second buffer size for this case since the flow between the
links are not saturated anymore on a shorter time scale.

3) Case 3: cross traffic on link 2: In this scenario UDP
cross traffic is sending over link 2 and utilizes half the capacity,
i.e., xc;2(t) = c2/2; and initially w0

1 = 2500 and w0
2 = 600

packets. The plot in Fig. 11 displays the queue sizes when
the congestion window of the first source is increased step
wise. As in the first simulation case, the second queue is not
affected. The explanation is analogous. The plot in Fig. 12
corresponds to the case when the second source is perturbed.
Here both queues are affected by the window perturbation,
and the transient is significant for this case.
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Fig. 11. Simulation example. Cross traffic on link 2. Step change in window
1. Solid line: NS-2. Dashed line: DAE model.
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Fig. 12. Simulation example. Cross traffic on link 2. Step change in window
2. Solid line: NS-2. Dashed line: DAE model.

4) Case 4: cross traffic on both links: In this scenario, UDP
sources are sending over both links independently, each of
them utilizing half the capacity of the link, i.e., xc;1(t) =
c1/2 and xc;2(t) = c2/2. We also initially have w0

1 = 1000
and w0

2 = 1500 packets. The plot in Fig. 13 displays the
queue sizes when the congestion window of the first source is
increased. While Fig. 14 shows when a step is applied to the
second sources window.

In summary, the model shows very good agreement with
the packet level data. It captures sub-RTT effects such as
burstiness besides those more long term behaviors.

VI. CONCLUSION

We have rigorously analysed the dynamics of ACK-clocking
in window-based congestion control, deriving a new fluid flow
model. The model is shown in packet level simulations to be
very accurate and qualitatively different from its predecessors.
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Fig. 13. Simulation example. Cross traffic on both links. Step change in
window 1. Solid line: NS-2. Dashed line: DAE model.
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Fig. 14. Simulation example. Cross traffic on both links. Step change in
window 2. Solid line: NS-2. Dashed line: DAE model.

We define the instantaneous rate each window based source
inputs to the individual links by a fundamental integral
equation. This is in contrast to the customary approach for
approximating the window based sources’ sending rates, and is
the key in the modeling. We prove that the system has a unique
equilibrium. Furthermore we show that a linear approximation
of the model around the equilibrium is asymptotically stable
from window to the queue. All existing models in the literature
are shown to be certain approximations to this exact new
model. This procedure also provided us with insight how to
derive other simplified models.

A natural application of the model is stability analysis of
window based congestion control algorithms. Since the model
captures sub-RTT burstiness it can be used to analyze, e.g.,
loss synchronization. Analyzing how such microscopic effects
influences macroscopic properties is future work, although

exciting initial steps are given in a companion paper [19].
It also remains to explore the implications of the model for
general networks.
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