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The Case for Additive Increase in Slow Start
Lachlan L. H. Andrew

Abstract— In cases where a TCP flow knows approximately
what window it will have when slow start finishes, additive
increase is less disruptive to other flows and reduces the transfer
time of short bursts.

This document is a work-in-
progress.

I. INTRODUCTION

When a TCP connection starts, it transmits slowly by using a
congestion window of around 1 to 4 packets, which is doubled
each round trip time (RTT) until congestion is encountered.
This process is called slow start. The process of increasing the
window by a constant factor each RTT is called multiplicative
increase (MI); specifically, let MI-2 refer to doubling the
window each RTT.

Note that the bitrate achieved by a flow is proportional to
its window size; this paper focuses on changes in window size
rather than bitrate to avoid confusion between the bitrate and
rate of increase of window or bitrate. Time will be measured
in multiples of the RTT.

This MI is suitable if the sender has no idea of what window
to target, because the “rise time” only increases logarithmically
with the final window size and the maximum rate of increase
in the window is also proportional to the final window size,
whatever the capacity of the network is.

However, exponential increase is very fast when the fair
window is reached, causing interruption to other flows, while
being very slow initially, causing unnecessarily long start up
for short flows.

Vegas [1] was originally proposed to use additive increase
for slow start to avoid packet loss. Since a new connection does
not know the final window size, it used a very conservative rate
of additive increase, causing connections to start very slowly.
The Vegas implementation in Linux uses regular exponential
slow start.

However, in several cases, the sender already has some
information about the window size at which slow start should
stop. For example,

• explicit signalling schemes like MaxNet [2], [3], RCP [4]
and Quick Start [5]

• after an idle period in TCP friendly rate control (TFRC)
[6].

It is recognised in[7] that slow start is unnecessarily conserva-
tive in those cases, and a faster exponential increase has been
proposed, until the estimated capacity is reached.

These cases allow exponential increase to be replaced by
an increase which is both less disruptive for competing flows
and also faster for short transfers.

MI-2 AI
Maximum rate of change W/2 (W − 1)/ log2(W )
Time to send W/4 log2(W )− 2 log2(W )/2

TABLE I
COMPARISON OF TRADITIONAL DOUBLING AND ADDITIVE INCREASE FOR

SLOW START.

II. CONSERVATIVE ADDITIVE INCREASE

The harm caused to other flows when a flow increases its
window is approximately proportional to the absolute rate of
increase. In practice, it may even depend on the fractional rate
of decrease of remaining capacity; for a given absolute rate
of increase, this quantity increases faster for larger windows.
These are both in contrast to the assumption that the harm
is proportional to the relative rate of increase of window, as
implicitly assumed by MI; for a given absolute rate of increase,
this quantity increases slower for larger windows.

This section addresses the optimisation problem: Minimise
the maximum rate of change of window size during slow start
subject to the constraint that the time to reach the final window
is given. The converse optimisation of minimising the time to
reach the final window given a constraint on hte maximum
rate of change of window size is addressed in Section III.

The above optimisation is solved by increasing the window
at a constant rate throughout slow start. The duration of slow
start using MI-2 starting from a window of 1 is log2(W ). The
optimal solution is thus to use additive increase (AI), with the
window increasing by (W − 1)/ log2(W ) each RTT. Call this
approach AI-2.

As well as minimising the maximum rate of change of
window, this AI reduces the time taken to transmit a burst
which finishes before slow start is complete. This may be
either a short flow in the context of explicit signalling [2],
[3], [4], [5], or a short burst after an idle period in TFRC.

To illustrate this, Table I shows both the maximum rate
of increase in window, and the time taken for a burst of
W/4 packets to be transmitted. These metrics are improved
by factors of approximately log2(W )/2 and 2, respectively.
In general, a flow of length W/k is improved by a factor of√

k.
This is illstrated in Figure 1

III. MORE AGGRESSIVE OPTIONS

This work was motivated by the proposal [7] to quadruple
the window every RTT after an idle period in TRFC, up until
a certain threshold. This results in halving the total time. Call
this algorithm MI-4, and let AI-4 be the additive increase
algorithm which finishes at the same time, after log4(W )
RTTs.
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Fig. 1. Window size as a function of time, for a slow start up to W = 1024
packets. Solid line shows traditional MI-2, dashed line shows proposed AI,
and dot-dashed line demonstrates the maximum rate of increase arising from
MI-2.
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Fig. 2. Ratio of maximum rate of window increase using MI to maximum
rate using AI

Figure 2 shows how much more disruptive the MI schemes
are than AI, measured as the ratio of the maximum change
in window over a RTT during slow start. The first two curves
compare AI and MI schemes which finish at the same time;
in this case, MI always has a higher peak rate of increase.
For W ≤ 4, both MI-4 and AI-4 increase to W directly after
one RTT, causing the flat start to the curve for MI-4:AI-4.
The final curve compares AI-4 with the traditional MI-2; even
though AI-4 finishes twice as soon as MI-2, it has a lower
peak rate of increase for windows above 20 packets, which is
very small for modern networks.

This shows that AI can be both faster and less disruptive
than MI.

A. Very rapid increase

A more aggressive approach is to maintain the maximum
rate of change, and simply reduce the time taken to increase.
This results in increasing to the full fair window over a mere
two RTTs, as done by MaxNet [3]. This corresponds to the
dot-dashed line in Figure 1. Although less aggressive than RCP
and QuickStart, which both increase to full window in a single
RTT, this is too aggressive for schemes which merely guess

the target window based on out-of-date information, such as
after a TFRC idle period. The dangers include

• If the window is over-estimated, there is very little time
to get feedback to indicate that.

• Although the maximum rate of increase is unchanged
from straight doubling, it applies for longer. Thus, a
competing long-RTT flow experiences a greater reduction
in available bandwidth over one of its own RTTs.

IV. INACCURACY IN TARGET WINDOW

It is common for the target window W to be either above
or below the actual fair window Wf , for example as a result
of changes in cross-traffic during the TFRC idle time.

Assume that the sender will receive a congestion notification
one RTT after its window reaches the actual fair size. If W >
Wf , then the window will overshoot. Assuming AI or MD is
continued until the notification arrives, the overshoot will be
proportional to the rate of change when the fair window is
reached.

The proposed modification to TFRC [7] guards against
overshoot by setting W less than the window size at the start
of the idle period. By making overshoot less severe, a less
conservative value of W can be used, potentially improving
overall efficiency.

If the target window has been reached without receiving a
congestion notification, the source must choose whether and
how fast to continue increasing its window. For TFRC, a
natural response is to continue with MI-2 as it does on its
initial slow start. If QuickStart were modified to increase its
window over a small number of RTTs instead of 1, a natural
response would be to enter congestion avoidance once the
window is reached.
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