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Abstract— This paper is concerned with problem of signalling
congestion link price information to a receiver using single bit
marks. An efficient method was presented in [1] which exploits
side information in the IPid field of the IP header to allow the
maximum price on a flow’s path to be estimated. In this paper
we provide analysis to support the claim that the scheme can
track a changing price. We consider a random walk model for
the price, and provide a weak convergence result showing that
the squared error (normalized by the drift) is asymptotically
exponentially distributed, as the drift tends to zero.

Index Terms— congestion price, ECN, Explicit Congestion
Notification, TCP, Transmission Control Protocol, flow control.

I. I NTRODUCTION

Many congestion control algorithms have been proposed
for the Internet which require explicit feedback of congestion
(“price”) information from routers [2],[3] amongst many oth-
ers. RFC 3168 [4] provides two “ECN” bits in the IP header
for this purpose. Pricing information can be transmitted by
randomly marking packets with these bits [2],[3],[5].

It has recently been proposed [6] that the process of setting
these bits take into account “side information” contained in
the IP header. This idea has been applied in a number of
recent works, notably by Thommes and Coates [7], who
provided an efficient, deterministic marking algorithm, using
the 16-bit IP packet identifier (“IPid ”) to assist in conveying
the base-two representation of the price. Based on that work,
[8] and [9] proposed a similar scheme for estimating the
maximum price, appropriate for max-min flow control.

As shown in [7]–[9], the deterministic marking schemes
provide estimators that potentially have a much lower mean
squared error (MSE) than the random marking schemes.
However, these schemes suffer from the disadvantage that
they must specifya priori how to trade resolution for agility.
The fixed quantization of the range of possible prices means
that the MSE is poor until a sufficient number of packets have
been processed [1]. Further, the fixed quantization implies
a square error floor for these schemes [1]. In contrast, the
random marking schemes are adaptive, in that for a fixed
price, the MSE consistently improves with the number of
packets processed, allowing the estimator to track a changing
price.
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In recent work, [1] we provided an “adaptive” version
of deterministic packet marking, ADPM, for estimating the
maximum price seen by a flow along its path. This implicitly
adapts its effective quantization resolution depending on the
dynamics of the price. As for random marking of packets,
numerical results in [1] show that the MSE consistently
improves with the number of packets processed, for a fixed
price. Numerical results show that static values can be
estimated precisely, whilst rapidly changing values can be
tracked quickly. These results also show that ADPM provides
a MSE that is several orders of magnitude smaller than the
estimators based on random marking of packets [2], [3], [5],
or deterministic marking with static quantization [7]–[9].

The purpose of the present paper is to investigate in more
detail the price tracking ability of ADPM. ADPM provides
the receiver with information about the price every time that
a packet is received. We use a discrete time model, where
each discrete time unit represents the arrival of a packet
at the receiver. If the arriving packet provides useful new
information about the price, the receiver estimate is updated.
Our interest is the MSE of this estimator, for a statistical
model in which the price at the bottleneck router is executing
a random walk. Routers have to estimate their price based
on the random process of packet arrivals; it is for this reason
that we use a random walk model for the price. The drift of
the random walk models the average change in price between
one received packet and the next: it is positive if congestion
is building up, and negative when congestion is decreasing.
We show that the error process is stationary, and we compute
exact limiting distributions for the MSE, as the step size of
the random walk tends to zero.

II. ADPM

The basic idea of ADPM is to transmit theunary rep-
resentation of themaximumprice seen by a packet as it
traverses the network, appropriate for max-min flow control.
Each packet that arrives at a router contains a threshold value,
as provided by theIPid field. Each packet asks each router
it encounters the same question: is your price greater than
my threshold? The router answers “yes” or “no”, providing
a unary encoding of the price that is robust to packet loss,
or to a reordering of the packet arrivals at the receiver.

In what follows, it is convenient to assume that prices have
been mapped to lie in the unit interval[0, 1]; from now on,
we will use the term “price” to refer to the mapped value.



Similarly, a mappingf is assumed, that mapsIPid values to
threshold values in[0, 1]. Following the terminology of [7],
i ≡ f(v) will be called the probe type of the packet.
Implementation details behind the above assumptions are
explained in Section V.

When a router with link pricep forwards a packet of probe
type i, it marks the packet ifp > i, and leaves the mark
unchanged otherwise. At the receiver, the mark of a packet
of probe typei will be set if any router on the path had a price
exceedingi. Decoding is simple. The receiver maintains a
current estimate of the price,̂p. If it sees a marked packet
of probe typei with i > p̂ or an unmarked packet of probe
type i with i < p̂, then it setŝp to i.

In this algorithm, the interpretation of each mark is inde-
pendent of the values of other marks. In contrast, with binary
signalling [7], a price change from 3 (011) to 4 (100) could
yield any price estimate from 000 to 111, depending on the
order in which bits are signalled.

III. PERFORMANCEANALYSIS

We will assume in this section that the probe types gener-
ated at the sender are independent and uniformly distributed
on [0, 1]. We are interested in the estimation error afterk
packets have been received. The case of a fixed price is very
simple to analyze, since for largek, the points picked out
by the probe types are approximately a Poisson process of
rate k on the interval[0, 1]. We can therefore easily show
that the error is within a factor of4 of the mean absolute
quantization error of ak-level quantizer. More interesting is
the analysis of a changing price.

A. Random walk model for price

A simple model is a discrete time random walk, in which
the timeslots represent the times that packets arrive at the
receiver. During each time-slot, the price at the bottleneck
may change, and we use a random walk model. Letp(n) be
the price at timen. Then

p(n + 1) = p(n) + δJ(n) (1)

whereJ(n) are ani.i.d. sequence of±1 random variables,
each taking the value1 with probability q, and −1 with
probability 1− q. Thus, the drift of the random walk isµδ,
whereµ = (2q − 1), and the variance of a jump isσ2δ2,
whereσ2 = 4q(1− q).

Let p̂(n) be the estimate of the price at the receiver
immediately after thenth arriving packet has been processed.
We assume that̂p(0) takes an arbitrary value in the interval
[0, 1].

To describe the error process, we begin with a definition
that states precisely what we want to mean by the error,
namely,ε(n) := p(n)− p̂(n), although we will modify this
definition slightly below. We note that when a packet arrives
at the receiver, it may fail to cause an update in the receiver’s
estimate. In fact, there is an update of the estimate at timen
in precisely two situations: either̂p(n−1) < i and the packet
is marked, or̂p(n−1) > i and the packet is unmarked, where
i is the probe type of the arriving packet at timen. In both

these cases, we get the assignmentp̂(n) := i. In all other
cases,̂p(n) := p̂(n − 1). Let H(n), termed a “hit”, be the
event consisting of the two cases when the estimate changes
occur, namely when the probei falls into the interval between
p̂(n− 1) andp(n). The complement ofH(n) is denoted by
Hc(n). Since probes are uniformly distributed on[0, 1], the
probability of a hit at timen is |p̂(n− 1)− p(n)|, and this
hit will affect the estimate at timen.

We remark that we are using the very simple estimator that
we described in Section II, and it is certainly not intended
to be a maximum likelihood estimator. If the receiver knew
the price drift it could do better than the scheme described
here, but we do not wish to assume that the receiver has
this information, and nor that it wishes to do significant
computation on each received packet.

At time n, a packet arrives at the receiver, and may or
may not cause an update in the price estimate at that instant.
In any case, we denote bỹε(n) the error in the estimate just
prior to the processing of the packet received at timen, and
by ε(n) the error immediately after the processing of that
packet. These will be identical unless a hit occurs at timen,
and if so,ε(n) will be the smaller of the two. Letting

[x]1−1 :=




−1 x < −1
x −1 ≤ x ≤ 1
1 x > 1,

(2)

the price update relationship betweenε(n) and ε̃(n) is
expressed by

ε̃(n) = [ε(n− 1) + δJ(n)]1−1. (3a)

Also, the estimate update rule yields

ε(n) =
{

ε̃(n) if H(n)c

ε̃(n)− U(n) if H(n) (3b)

where, conditional oñε(n),

U(n) ∼ U [0, ε̃(n)] (3c)

H(n) ∼ B(|ε̃(n)|), (3d)

whereU denotes a uniform random variable, andB denotes
a Bernoulli random variable.

Note that we are assuming that the estimate at timen,
p̂(n), is calculated immediatelyafter the probe arrives at time
n. Using induction, we can see thatε(n) is always the error
in this case. If instead̂p(n) is calculated immediatelybefore
the probe arrives at timen then it is ε̃(n) that represents the
error. We will have use for both definitions of error process
in this paper.

The above definition of a hit time involves a slight trick;
strictly speaking, a hit should occur if a uniformly distributed
probe lies in the interval between the estimated price (prior
to processing the probe) and the true price. However, such
a definition couples the hit events with the price process,
which is itself nonstationary (whenµ 6= 0), and subject to the
boundary conditionsp ≤ 1 and p ≥ 0. However, provided
the boundary constraints are slack, the above definition is
equivalent. The benefit of the above definition is that it avoids



boundary conditions, and allows the error processes to be
stationary, as we will show. The definition is self contained,
and from now on we can ignore the price process altogether.

To help visualize the error process,ε(n), consider the
special case in whichq = 1. The error process,ε increases
at constant rateδ, until the random event of a “hit”, and at
this time, it makes a random-sized jump back towards zero.
This process is illustrated in Figure 1.
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Fig. 1. Evolution of error process

Clearly, this particularε(n) undergoes a zig-zag evolution,
with steady increase at rateδ, followed by a jump in the
slot when an update (hit) is detected. More generally, when
0 < q < 1, ε(n) will undergo a more wiggly evolution due
to random fluctuations in the price.

The caseq = 1 is the special case in which the drift is
µδ = δ. In general, if1 > µ > 0, then the price tends
to increase, modelling a scenario in which congestion is
building up at the bottleneck. However, the increase is not in
general deterministic, allowing for stochastic fluctuations in
the price. If−1 < µ < 0, then the price tends to decrease,
modelling a scenario in which congestion is decreasing
at the bottleneck. Oscillations in price are an inevitable
consequence of two factors:

1) On a slow time-scale, the price can tend to increase,
or tend to decrease, as a result of flows arriving and
departing.

2) On a fast timescale, the price is affected by stochastic
fluctuations in the packet arrival process at the bottle-
neck resource.

We capture both effects in our random walk model. The
random steps of the walk model the stochastic effects, and
the drift captures the slow timescale effect of flows arriving
and departing. Note that if the flow control manages to reach
equilibrium, thenµ = 0 at equilibrium.

The main result of this paper is as follows.

Theorem 1:The error process defined by (3) has an equi-
librium distribution for anyδ > 0. Let Fδ be the equilibrium
distribution of ε̃/

√
δ. Let (δn), n = 1, 2, . . . be any positive

monotonic sequence tending to zero asn →∞, with δ1 < 1.
Let Xδn be a random variable with distributionFδn . Then

for µ 6= 0,
Xδn

dÃ R(
√
|µ|)µ/|µ| (4)

where
dÃ denotes weak convergence, andR(

√
|µ|) is a

Rayleigh random variable with parameter
√
|µ|. If µ = 0,

then the sequence(Fδn) converges weakly to the distribution

FX(x) =
{

1 x ≥ 0
0 x < 0 (5)

An immediate consequence of Theorem 1 is that the MSE
of the estimate is asymptotically2|µ|δ for small δ. Indeed,
if there is no randomness in the walk (|µ| = 1) then 2δ
is an upper bound on the MSE for allδ. These results are
expressed in the following corollary:

Corollary 2: 1) For all −1 ≤ µ ≤ 1,

E[ε̃2] = 2|µ|δ + o(δ), (6)

2) If |µ| = 1, then

E[ε̃2] ∈
[

2δ

1 + (2δ)3/2/(1− δ)2)
, 2δ

]
. (7)

B. Stationarity of the error processes

In this section, we show that the processε̃(n) can be
stationary, which establishes the first part of Theorem 1. The
stationarity of the processε(n) is an immediate consequence
of this fact.

Note that we can rewrite (3b) as

ε̃(n + 1) =
{

[ε̃(n) + δJ(n + 1)]1−1 if H(n)c

[ε̃(n) + δJ(n + 1)− U(n)]1−1 if H(n)
(8)

where again, conditional oñε(n), U(n) ∼ U [0, ε̃(n)].
Let the temporally homogeneous transition function for

this Markov chain beP (x,A) ≡ P(ε̃(2) ∈ A|ε̃(1) = x) for
−1 < x < 1 and A a Borel-measurable set contained in
[−1, 1]. It follows from (3) and (8) that for−1 + δ < x <
1− δ,

P (x, A) = (1− |x|)(qI[x + δ] ∈ A] + (1− q)I[x− δ ∈ A])

+ |x| (q ||A ∩ [δ, x + δ]||+ (1− q) ||A ∩ [−δ, x− δ]||).
(For x close to the boundary, we get similar expressions, but
need to invoke the clipping operator[·]1−1.)

It is simple to calculate the drift function

γx ≡ E[ε̃(2)− x|ε̃(1) = x].

For example, if0 < x < 1− δ, then

γx = x3/2− x2 + (1− x)µδ + x2µδ

Thus, in the limit asδ ↓ 0, and forx close to1, we haveγx

close to−1/2. Similarly, it can be shown that in the limit
asδ ↓ 0, and forx close to−1, we haveγx close to1/2.

Stationarity follows from the compactness of the state-
space,[−1, 1], and the fact that the drift points inward from



the boundary. Technically, the conditions stated in Corollary
5.2 in [10] seem to require in addition thatP (x,A) is
strongly continuous [10] for any Borel measurable setA,
to conclude that̃ε is stationary, and this condition does not
hold for our transition probability function. However, from
the note added in proof in [10], it is in fact sufficient in our
case to verify instead that the functionP (x, A) is weakly
continuous for any Borel measurable setA, to conclude that
ε̃ is stationary. This weaker condition holds because our state-
space is a Banach space. Weak continuity is the requirement
that

∫
g(y)P (x, dy) is a continuous bounded function ofx,

for any continuous, bounded functiong(y). This is the case
for our transition functionP (x,A), and hencẽε(n) can be
stationary.

C. Asymptotic analysis of estimator mean square error

In this section, we derive the asymptotic form for the
stationary distribution of the error process,ε.

Let F̃n and Fn denote the conditional distribution func-
tions of ε̃(n) andε(n), respectively. Clearly, for anyx such
that−1 + δ < x < 1− δ, the mapping fromF to F̃ is

F̃n(x) = qFn(x− δ) + (1− q)Fn(x + δ). (9)

A corresponding mapping from̃F to F is obtained by
conditioning (3b) oñε(n) and taking expectations. Forx ≥ 0,

Fn+1(x) =
∫ 1

−1

P(ε(n + 1) ≤ x|ε̃(n)) dF̃ (ε̃(n))

=
∫ x

−1

1 dF̃ (ε̃(n)) +
∫ 1

x

ε̃(n)P(U(0, ε̃(n)) ≤ x|ε̃(n)) dF̃ (ε̃(n))

= F̃n(x) +
∫ 1

x

x dF̃ (ε̃(n)).

Similar manipulations forx < 0 yield

Fn+1(x) =
{

F̃n(x) + x(1− F̃n(x)) x ≥ 0
(1 + x)F̃n(x) x < 0

(10)

The stationary distribution,F , must then satisfy the fixed
point equation

F (x) =
{

x + (1− x)(qF (x− δ) + (1− q)F (x + δ)) x ≥ 0
(1 + x)(qF (x− δ) + (1− q)F (x + δ)) x < 0.

wherex ∈ [−1 + δ, 1− δ]. This is the stationary distribution
of the error of our estimator,i.e. the error that is obtained
after processing the incoming probe packet. Re-arranging,
we obtain that forx ∈ [0, 1− δ),

q(F (x)− F (x− δ)) + (1− q)(F (x)− F (x + δ))
= x(1− qF (x− δ)− (1− q)F (x + δ)) (11)

and forx ∈ (−1 + δ, 0):

q(F (x)− F (x− δ)) + (1− q)(F (x)− F (x + δ))
= x(qF (x− δ) + (1− q)F (x + δ)). (12)

Let ε be a random variable with distribution function
F , and defineXδ to be the random variableε/

√
δ, with

distribution functionFδ. Then we obtain equivalent fixed
point equation forFδ. Let

Gδ(x) := qFδ(x−
√

δ) + (1− q)Fδ(x +
√

δ))

Then forx ∈ [0, 1/
√

δ −
√

δ):

q(Fδ(x)− Fδ(x−
√

δ)) + (1− q)(Fδ(x)− Fδ(x +
√

δ))

= x
√

δ(1−Gδ(x)) (13)

and forx ∈ (−1/
√

δ +
√

δ, 0):

q(Fδ(x)− Fδ(x−
√

δ)) + (1− q)(Fδ(x)− Fδ(x +
√

δ))

= x
√

δGδ(x). (14)

Note that whileF is the distribution function of a random
variable taking values in an interval approximately[−1, 1],
Fδ is the distribution function of a random variable taking
values in an interval approximately[−1/

√
δ, 1/

√
δ]. As δ

tends to zero, the support becomes unbounded, and The-
orem 1 confirms weak convergence to a distribution with
unbounded support.

Before we prove the theorem, note that if such a con-
vergence takes place to a limiting distributionG(x), then
taking formal limits asδ ↓ 0 in (13) and (14) suggest that
G should satisfy the differential equations (15) given in the
statement of Lemma 1 below. The following lemmas make
this argument rigorous. Those proofs which are not here are
in the appendix.

Lemma 1:Let (δn), n = 1, 2, . . . be any positive mono-
tonic sequence tending to zero asn → ∞, with δ1 < 1.
The sequence(Fδn) has a weakly convergent subsequence.
Moreover, the limit of any weakly convergent subsequence
satisfies the differential equations:

µĠ(x) =
{

x(1−G(x)) x > 0
xG(x) x < 0 (15)

If µ = 0, then the sequence(Fδn) converges weakly to

G(x) =
{

1 x ≥ 0
0 x < 0 (16)

Lemma 2: If ε̃(k) is stationary, and the drift of the random
walk (8) is µδ then in equilibrium,

E[ε̃2I[ε̃>0]]− E[ε̃2I[ε̃<0]] ≈ 2µδ,

in the sense that

|E[ε̃2I[ε̃>0]]− E[ε̃2I[ε̃<0]]− 2µδ| ≤ 2δP(|ε̃| > 1− δ)E[|ε̃|],
(17)

whereI[·] denotes the indicator function.
Proof: If µ = 0, the result hold by symmetry about the

origin. Consider now the caseµ 6= 0. Let P(H) be the equi-
librium probability of a hit, averaged over the equilibrium
statistics of̃ε. Let P(H|x) denote the conditional probability
of a hit, givenε̃ = x, which is given byP(H|x) = |x|, since



the probe types areU [0, 1]. Averaging over the statistics of
|ε̃|, we obtain

E[|ε̃|] = P(H) (18)

Now consider two randomly chosen adjacent hit times,T1

andT2, and letX = T2 − T1 > 0 denote the time between
these two hits. Clearly,

P(H) = 1/E[X] (19)

If ε̃ is in equilibrium, then so is the embedded chain obtained
by sampling at the hit times. Thus,

E[ε̃(T1)] = E[ε̃(T2)] (20)

and we denote the common value byE[ε̃|H]. However,
consideration of the drift of the embedded chain (8) provides
that

E[ε̃(T2)− ε̃(T1)|ε̃(T1)] = µδE[X|ε̃(T1)]− ε̃(T1)
2

+ ∆ (21)

where
∆ ∈ [−δI[ε̃(T1)<1−δ], δI[ε̃(T1)>−(1−δ)]] (22)

accounts for the clipping operation[·]1−1. Taking expectations
in (21) and applying (20) yields

E[ε̃|H] = 2µδE[X] + 2E[∆]. (23)

Putting (18), (19) and (23) together, we obtain

E[ε̃|H]E[|ε̃|] = 2µδ + 2E[∆]E[|ε̃|] (24)

But by Bayes’ Theorem,

E[ε̃|H] =
∫ 1

−1

εfε̃(ε|H) dε

=
∫ 1

−1

ε
fε̃(ε)
P (H)

P (H|ε) dε

=
∫ 1

0

ε2 fε̃(ε)
P (H)

dε−
∫ 0

−1

ε2 fε̃(ε)
P (H)

dε

=
(E[ε̃2I[ε̃>0]]− E[ε̃2I[ε̃<0]])

E[|ε̃|] . (25)

Combining (24) and (25) with

|E[∆]| ≤ δP(|ε̃| > 1− δ) (26)

gives the stated result.

Corollary 3:

lim sup
δ↓0

E

[(
ε̃√
δ

)2
]

+ P(|ε̃| > 1− δ)E[|ε̃|] ≥ 2|µ| (27)

Proof: Follows immediately from Lemma 2.

We are now ready to prove Theorem 1.
Proof: It follows from Lemma 1 that(Fδn) has a

weakly convergent subsequence, converging to a limiting dis-
tribution functionG, which satisfies the differential equations
(15). It remains to be shown thatG is uniquely defined by
these equations, and that there is no discontinuity atx = 0.

Consider the regionx ≥ 0. SettingH(x) := 1 − G(x),
the equivalent ODE is

Ḣ(x) = −x

µ
H(x)

which has solutionsH(x) = A1 exp(−x2/(2µ)). Hence,
G(x) = 1 − A1 exp(−x2/(2µ)), where A1 is a constant
satisfying0 ≤ A1 ≤ 1.

For the regionx < 0, (15) can be rewritten

Ġ(x) = − x

−µ
G(x)

which has solutionsG(x) = A2 exp(−x2/(−2µ)), for 0 ≤
A2 ≤ 1. Thus,

G(x) =
{

1−A1 exp(−x2/(2µ)) x ≥ 0
A2 exp(−x2/(−2µ)) x < 0 (28)

It remains to find the constantsA1, andA2, using the fact
that G(x) is a distribution. Ifµ > 0 then exp(−x2/(−2µ))
is unbounded asx ↓ −∞, and soA2 = 0 in that case.
Conversely, ifµ < 0 thenA1 = 0 in that case by the same
reasoning.

Consider first the case thatµ > 0, whenceA2 = 0, andG
is the distribution of a random variableY = BR, whereB
is a Bernoulli random variable with meanA1, andR is an
independent Rayleigh random variable, with parameter

√
µ.

Note that
E[Y 2] = A12µ. (29)

Weak convergence ofFδ implies that for anyx 6= 0 (where
G is continuous),Fδ(x) → G(x) along the subsequence
S. Continuity of G at x also implies (see Lemma 3 in the
appendix) that

qFδ(x− δ−1/2) + (1− q)Fδ(x + δ1/2) → G(x).

Defining

F̃δ(x) := P
(

ε̃√
δ
≤ x

)

we obtain thatF̃δ converges weakly toG along the subse-
quence also. Together with (29) we obtain that

E

[(
ε̃√
δ

)2
]
→ A12µ (30)

and that
P(|ε̃| > 1− δ)E[|ε̃|] → 0. (31)

But Corollary 3 then implies thatA1 = 1, and henceG is
Rayleigh with parameter

√
µ.

A very similar argument applies in the caseµ < 0 to
show thatA2 = 1 in that case. In either case, let us label the
unique solutionFX . If µ > 0, then

FX(x) =
{

1− exp(−x2/|2µ|) x > 0
0 x < 0 (32)

which is a Rayleigh distribution with parameter
√

µ. If µ <
0, then

FX(x) =
{

1 x > 0
exp(−x2/|2µ|) x < 0.

(33)



Note that in both these cases, there is a density function,
valid for all x.

The caseµ = 0 is just a restatement of the corresponding
result in Lemma 1. (IdentifyG in (16) with FX in (5).)

Since the limiting distribution is in all cases unique, it
follows that all convergent subsequences must converge to
FX , and hence(Fδn

), n = 1, 2, . . . converges weakly toFX .
Note that ifµ < 0, then(−Xδn

), n = 1, 2, . . . converges in
distribution to a Rayleigh distribution with parameter

√−µ.

We can now prove Corollary 2
Proof: Part (i) of Corollary 2 follows immediately from

the definition of weak convergence. For part (ii), note that the
equilibrium values are independent of the initial valueε̃(0).
Consider now the caseµ = 1. In this case,̃ε(0) > 0 implies
ε̃(n) > 0 for all n. Thus the support of the equilibrium
distribution for ε̃ is the positive reals and the clipping in (8)
is always down, giving∆ ≤ 0.

Note also thatP(|ε̃| > 1− δ) ≤ E[ε̃2]/(1− δ)2. Together,
∆ ≤ 0, (24), (25) and (26) imply

E[ε̃2]− 2δ ∈
[
−2δ

E[|ε̃|]E(ε̃2)
(1− δ)2

, 0
]

.

HenceE[|ε̃|] ≤
√

2δ and

E[ε̃2]

(
1 +

2δ
√

2δ

(1− δ)2

)
≥ 2δ

giving the result. Theµ = −1 case follows similarly.

Clearly, Theorem 1 provides precise asymptotics for the
square error whenµ 6= 0. Let X be a random variable with
the distributionFX , which represents the estimator error on
the scaleO(

√
δ) as δ tends to zero. It follows that on a

scale ofO(δ), the squared error of the estimator converges
in distribution to an exponential distribution with mean2µ,
providedµ 6= 0. Whenµ = 0, Corollary 2 implies that the
squared error iso(δ), but the corollary does not characterize
the precise order in this case. Part (ii) of Corollary 2 provides
a special case in which a pre-asymptotic result is available,
namely when the walk is not random, and|µ| = 1. In this
intuitively worst case, the upper bound

E[ε̃2] ≤ 2δ (34)

holds for allδ.
Finally, we can strengthen the statement of Lemma 2 as

follows. From (31) and Lemma 2, it follows that

E

[
ε̃2

δ
I[ε̃>0]

]
− E

[
ε̃2

δ
I[ε̃<0]

]
→ 2µ (35)

But by Corollary 2 we have that

E

[
ε̃2

δ
I[ε̃>0]

]
+ E

[
ε̃2

δ
I[ε̃<0]

]
→ 2|µ| (36)

Hence, ifµ > 0,

E[ε̃2I[ε̃>0]] = 2µδ + o(δ), E[ε̃2I[ε̃<0]] = o(δ)

and, if µ < 0,

E[ε̃2I[ε̃<0]] = −2µδ + o(δ), E[ε̃2I[ε̃>0]] = o(δ).

IV. B IT REVERSED COUNTING

The analysis we have provided in the present paper ap-
plies directly to ADPM whenIPid values provide random
thresholds. It is certainly the case that some operating sys-
tems use uniformly distributed pseudo-random values for the
IPid (e.g.NetBSD) making our analysis directly applicable.
However, many operating systems assign sequentialIPid
values to packets. This allows the sequence of probes types
to form a sequence of “bit-reversed counting” (BRC) values,
that is, 100. . . , 010. . . , 110. . . , . . . , preceded by a “binary
point”. That is, using the sequenceR(1), R(2), R(3),. . . ,
where R(

∑∞
i=0 ai2i) =

∑∞
i=0 ai2−i for any sequence of

bits {ai}.
If the probe type sequence is bit-reversed counting, (R(1),

R(2), R(3),. . . ) then afterk = 2j − 1 probe packets, probes
2−j , 2 × 2−j , . . . , 1 − 2−j will have been received. This
divides the possible values forp into uniformly spaced
“uncertainty intervals” of width2−j . The ADPM receiver
knows which interval the price is in, but not where within
that interval. Thus the estimation error afterk packets is
bounded above by

|p̂− p| < 2−blog2 kc ∈ [1/k, 2/k). (37)

Thus, BRC bounds the error without increasing its mean.
Numerical results in [1] show that for a fixed price, it
provides better performance than that predicted by the model
of uniformly distributed probes.

It is likely that BRC provides a better sequence of probes
for tracking a changing price, although we conjecture that
the asymptotics for the random walk model, asδ tends to
zero, will be the same as for random probes. However, we
have done no numerical or analytical work to study this case:
a topic for future work.

V. I MPLEMENTATION DETAILS

IP has two ECN bits (RFC 3168), which a source sets to 00
to indicate that it does not understand ECN, or to either 01
or 10 to indicate an unmarked packet, while routers mark
packets with 11 to indicate congestion, which the source
must treat like a packet loss. Sending 11 frequently [5]–
[7],[9] will cripple standards-compliant flows. To prevent
this, ADPM uses 01 to indicate no mark, and 10 to indicate
a mark due to pricing. As such, ADPM is “ECN-friendly”.

The functionf that mapsIPid values into probe types
can be implemented either at the source or in the routers. If
it is to be implemented at the routers, we must verify that it
will be compatible with differentIPid sequences produced
by different operating systems. For operating systems which
assign sequentialIPid values to packets, thef correspond-
ing to bit reverse counting can be implemented in the routers
in a simple and scalable way by simply reversing the order
of the IPid bits and comparing this with the price. For
operating systems which use uniformly distributed pseudo-
random values (e.g.NetBSD), the routers can reverse the bits



before the comparison with the price, without affecting the
uniform distribution for the resulting probe type.

Using pseudo-randomIPid values provides worse perfor-
mance than that obtained by bit reversed counting; however,
our analysis of this case (above) shows that performance is
still very good. If necessary,IPid values can be replaced
at the source without changing their primary function, pro-
viding nearby packets have unique identifiers.

Note that the mapping of prices andIPid to [0, 1] is
purely a mathematical convenience, and does not limit the
actual range of prices. Either mapping may be nonlinear.
In particular, the mapping of prices can be selected to get
better quantization and faster estimation of the true price at
the receiver.

VI. CONCLUSION

We have provided an analysis of the error of an estimator
based on the recently proposed scheme ADPM [1]. The task
is to estimate the maximum congestion price seen along
a path in the Internet, as required by a congestion control
algorithm for a flow using that path. The constraint is that the
routers can only mark packets with a single bit. In this paper,
we model the price at the bottleneck router as a random
walk with drift. We show that as the step size,δ, of the
random walk tends to zero, and provided the drift is nonzero,
the distribution of the squared error converges weakly to an
Exponential distribution with mean2|µ|δ, whereµδ is the
drift of the random walk. Thus, the MSE is of the same order
as the step size of the random walk. If the drift is zero, we
show that the MSE iso(δ), but do not characterize its precise
order in this case.

Since ADPM is a signalling technique, not a flow control
technique, its usefulness will depend on the flow control
control technique it is applied to. Currently, ADPM is being
integrated with the MaxNet flow control algorithm [11] using
the WAN-in-Lab infrastructure [12].

APPENDIX I
PROOFS OFLEMMAS

The proof of Lemma 1 will make use of the following two
lemmas.

Lemma 3:Let (Gn) be a sequence of distribution func-
tions converging weakly toG. If G is continuous on an open
interval I and(xn) is a sequence inI converging to a point
x in I, thenGn(xn) → G(x).

Proof: Let ε > 0 be sufficiently small that bothx− ε
andx + ε lie in I. For n sufficiently large, we havex− ε <
xn < x+ε, and thusGn(x−ε) ≤ Gn(xn) ≤ Gn(x+ε). By
continuity ofG onI, and the Portmanteau theorem, it follows
that Gn(x − ε) → G(x − ε), andGn(x + ε) → G(x + ε).
But by continuity ofG at x, the difference betweenG(x−ε)
andG(x + ε) can be made arbitrarily small. It follows that
Gn(xn) → G(x).

Lemma 4:For all x>1 and0<δ<min(1/x2, 1/4),
1) F (−x

√
δ) < 2/x and

2) F (x
√

δ) > 1− 2/x.

Proof: The proof divides a sub-interval of[−x
√

δ, 0]
(respectively[0, x

√
δ]) into strips of width

Kδ := b1/
√

δc. (38)

A bound is found concerning the change inF over each of
these strips. By summing these bounds, it is shown that if
the lemma were false thenF would exceed 1 at some point,
and could not be a distribution function.

To prove part 1), assume for the sake of argument that
F (−x

√
δ) ≥ 2/x. For any1 ≤ k ≤ Kδ it follows from (12)

that(
F (−x

√
δ + kδ)− F (−x

√
δ + (k − 1)δ)

)
q+

(
F (−x

√
δ + kδ)− F (−x

√
δ + (k + 1)δ)

)
(1− q)

=
(
−x
√

δ + kδ
)(

q(F (−x
√

δ + (k − 1)δ)) +

(1− q)(F (−x
√

δ + (k + 1)δ))
)
. (39)

By the monotonicity ofF and the fact thatk ≥ 1, the
contradiction hypothesis implies

F (−x
√

δ + (k + 1)δ) ≥ F (−x
√

δ + (k − 1)δ) ≥ 2/x,

whence the second factor of the right hand side of (39) is at
least2/x. Since−x

√
δ + kδ ≤ 0, (39) implies

(
F (−x

√
δ + kδ)− F (−x

√
δ + (k − 1)δ)

)
q +

(
F (−x

√
δ + kδ)− F (−x

√
δ + (k + 1)δ)

)
(1− q)

≤ −2
√

δ + 2kδ/x. (40)

Summing (40) overk = 1, 2, . . . , Kδ, gives

(F (−x
√

δ + Kδδ)− F (−x
√

δ))q +

(F (−x
√

δ + δ)− F (−x
√

δ + (Kδ + 1)δ))(1− q)

≤ −2Kδ

√
δ + Kδ(Kδ + 1)δ/x (41)

< −1 + 2/x, (42)

as 2b1/
√

δc
√

δ > 1 and b1/
√

δc(b1/
√

δc + 1)δ < 2 for
δ < 1/4. But by assumption,

F (−x
√

δ + Kδδ) ≥ F (−x
√

δ + δ) ≥ 2/x. (43)

Together with the monotonicity ofF , (42) and (43) imply
that F (−x

√
δ + (Kδ + 1)δ) > 1, a contradiction. Thus

F (−x
√

δ) ≤ 2/x.
The proof of part 2) is analogous, applying (11) around

the point
F (x

√
δ − kδ)

and reversing the inequalities in (40)-(42).

We can now prove Lemma 1.
Proof: In the following, we will use the same symbol to

denote both the distribution function and the probability mea-
sure induced by it. ThusG(x) is equivalent toG((−∞, x]).

To show that the sequence of distribution functionsFδn

is tight [13], let γ > 0, and consider the compact set
Kγ = [−2/γ, 2/γ]. Lemma 4 implies that for alln,



P(Xδn
∈ Kc

γ) < 2γ. This implies that the sequence(Fδn
)n

is tight, and hence has a weakly convergent subsequence,
S, converging to a limiting distribution function,G, by
Prokhorov’s theorem.

We now rule out the possibility thatG(x) jumps at any
x > 0. Denote the jump ofG at x by 4G(x). Let ε > 0 be
sufficiently small thatx − ε > 0. Considerδ small enough
that K := b> ε/

√
δc > 1, and note that from (13), for any

integerk from −(K − 1) to K − 1, we have that:

q(Fδ(x + k
√

δ)− Fδ(x + (k − 1)
√

δ)) +
(1− q)(Fδ(x + k

√
δ)− Fδ(x + (k + 1)

√
δ))

= (x + k
√

δ)
√

δ(1−Gδ(x + k
√

δ)) (44)

Adding up these2K + 1 equations we obtain the following
upper bounds:

Lδ := (Fδ(x + (K − 1)
√

δ)− Fδ(x−K
√

δ))q +

(Fδ(x− (K − 1)
√

δ)− Fδ(x + K
√

δ))(1− q) (45)

< (x + (K − 1)
√

δ)
√

δ

K−1∑

k=−(K−1)

(1−Gδ(x + k
√

δ))

≤ (x + ε)
√

δ


1 +

K−1∑

k=−(K−2)

1− Fδ(x + (k − 1)
√

δ)




≤ (x + ε)
√

δ(1 + (2K − 2)(1− Fδ(x− (K − 1)
√

δ)))

≤ (x + ε)(2ε− (2ε− 4
√

δ)Fδ(x− (K − 1)
√

δ))

≤ (x + ε)(2ε− (2ε− 4
√

δ)Fδ((−∞, x− ε))) (46)

where the second inequality usesGδ(x) ≥ Fδ(x−
√

δ), and
the fourth usesε−

√
δ ≤

√
δK ≤ ε. Using the Portmanteau

theorem [13] applied to open sets, we can take the limsup
of the right hand side of this bound, asδ ↓ 0, to obtain the
asymptotic upper bound of

(x + ε)2ε(1−G((−∞, x− ε))). (47)

This term will upper bound thelim inf of Lδ as δ tends to
zero.

Note that

(x−K
√

δ, x + (K − 1)
√

δ) ⊆ (x− ε +
√

δ, x + ε− 2
√

δ)

and

(x− (K − 1)
√

δ, x + K
√

δ) ⊇ (x− ε +
√

δ, x + ε).

Thus for anyξ > 0,

lim inf
δ↓0

Lδ ≥ lim inf
δ↓0

[
qFδ((x− ε +

√
δ, x + ε− 2

√
δ))

−(1− q)Fδ([x− ε +
√

δ, x + ε])
]

≥ lim inf
δ↓0

[
qFδ((x− ε + ξ, x + ε− ξ))

−(1− q)Fδ([x− ε, x + ε])
]

≥ qG((x− ε + ξ, x + ε− ξ))
−(1− q)G([x− ε, x + ε]) (48)

where the third inequality follows from the Portmanteau
theorem applied to open and closed sets. By takingξ to zero,

and applying both this asymptotic lower bound (48), and the
asymptotic upper bound (47), we obtain the inequality:

qG((x− ε, x + ε))− (1− q)G([x− ε, x + ε])

≤ (x + ε)(2ε)(1−G(−∞, x− ε)) (49)

By takingε to zero, we see that2µ∆G(x) ≤ 0 which, when
µ 6= 0, implies that∆G(x) = 0. The same argument can be
applied whenx < 0. We conclude thatG is continuous atx
for all nonzerox whenµ 6= 0.

Using the fact thatG is continuous for positivex, and the
assumption thatx− ε > 0, we can replace (49) with:

µG((x− ε, x + ε)) ≤ 2ε(x + ε)(1−G(x− ε)) (50)

We now wish to obtain a similar inequality, but a lower
bound, rather than upper bound, to the left hand side of (50).
Returning to (44), adding up the2K−1 equations, but lower
bounding the result, we obtain that for anyξ > 0, and forδ
sufficiently small,

Lδ > (x− (K − 1)
√

δ)
√

δ

K−1∑

k=−(K−1)

(1−Gδ(x + k
√

δ))

≥ (x− (K − 1)
√

δ)
√

δ
(2K − 1)− ξ√

δ
−

K−1∑

k=−(K−2)

Fδ(x + k
√

δ)




≥ (x− (K − 1)
√

δ)
√

δ(
(2K− 1)− ξ√

δ
− (2K− 1)Fδ(x + (K− 1)

√
δ)

)

≥ (x− ε)(2ε−
√

δ − ξ − (2ε +
√

δ)Fδ(x + ε)) (51)

Using the continuity ofG, and the Portmanteau theorem, we
obtain that an asymptotic lower bound (asδ ↓ 0) to Lδ is
given by

(x− ε)(2ε− ξ − 2εG(x + ε)). (52)

But

lim sup
δ↓0

Lδ (53)

≤ lim sup
δ↓0

[
qFδ([x− ε−

√
δ, x + ε]))

−(1− q)Fδ((x− ε +
√

δ, x + ε−
√

δ))
]

≤ qG([x− ε− ξ, x + ε])−
(1− q)G((x− ε + ξ, x + ε− ξ)) (54)

= qG((x− ε− ξ, x + ε))−
(1− q)G((x− ε + ξ, x + ε− ξ)) (55)

where the second last equality follows from the Portmanteau
theorem, and the last inequality follows from the continuity
of G. By applying both this asymptotic upper bound (55),
and the asymptotic lower bound (52), and takingξ to zero,
we obtain the inequality, valid forx− ε > 0:

µG((x− ε, x + ε)) ≥ 2ε(x− ε)(1−G(x + ε)) (56)



Identical reasoning forx + ε < 0 provides the following
two bounds, analogous to (50) and (56) respectively:

µG((x− ε, x + ε)) ≤ 2ε(x + ε)G(x− ε) (57)

µG((x− ε, x + ε)) ≥ 2ε(x− ε)G(x + ε) (58)

Whenµ 6= 0, taking limits asε tends to zero in (50), (56),
(55) and (58) we obtain thatG is differentiable at anyx 6= 0,
and satisfies the differential equations (15).

Whenµ = 0, the proof of continuity forx 6= 0 no longer
applies. However, (50), (54) still apply. For anyε > 0, there
exists aε̂ ∈ (0, ε] such that

G((x− ε̂, x + ε̂)) = G([x− ε̂, x + ε̂]),

since G has at most countably many jumps. Thus, by the
limit of (54) asξ → 0, and by (52)

0 = µG((x− ε̂, x + ε̂))
≥ 2µε̂(x− ε̂)(1−G(x + ε̂))

which implies thatG(x + ε̂) = 1. Since ε > 0 can be
arbitrarily small, this proves thatG(x) = 1 for all x > 0.
The same reasoning forx + ε < 0, using (49) implies that
G(x) = 0 for all x < 0. Thus,G is uniquely characterized
by (16), since a distribution function is right continuous.
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