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Abstract— This paper is concerned with problem of signalling In recent work, [1] we provided an “adaptive” version

congestion link price information to a receiver using single bit  of deterministic packet marking, ADPM, for estimating the
marks. An efficient method was presented in [1] which exploits maximum price seen by a flow along its path. This implicitly

side information in the IPid field of the IP header to allow the dants its effect; tizati lution d di th
maximum price on a flow’s path to be estimated. In this paper 20@P!S IS eliective quantization resoiution depending on the

we provide analysis to support the claim that the scheme can dynamics of the price. As for random marking of packets,

track a changing price. We consider a random walk model for numerical results in [1] show that the MSE consistently

the price, and provide a weak convergence result showing that jmproves with the number of packets processed, for a fixed

the squared error (normalized by the drift) is asymptotically  rjce. Numerical results show that static values can be
exponentially distributed, as the drift tends to zero. . . ) . .

Index Terms— congestion price, ECN, Explicit Congestion estimated _premsely, whilst rapidly changing values can be

Notification, TCP, Transmission Control Protocol, flow control. ~ tracked quickly. These results also show that ADPM provides

a MSE that is several orders of magnitude smaller than the

estimators based on random marking of packets [2], [3], [5],

|. INTRODUCTION or deterministic marking with static quantization [7]-[9].

The purpose of the present paper is to investigate in more

Many congestion control algorithms have been prODOSquetail the price tracking ability of ADPM. ADPM provides

for t_he In_ternet W_hiCh require explicit feedback of congestiogy,, recejver with information about the price every time that
(“price”) information from routers [2],[3] amongst many Oth'a packet is received. We use a discrete time model, where

ers. RFC 3168 [4] provides two "ECN” bits in the IP headereach discrete time unit represents the arrival of a packet

for this purpose. Pricing information can be transmitted b&t the receiver. If the arriving packet provides useful new

randomly marking packets with these bits [2],[3],[5]- _information about the price, the receiver estimate is updated.
It has recently been proposed [6] that the process of setlig interest is the MSE of this estimator, for a statistical
these bits take into account “side information” i

recent works, notably by Thommes and Coates [7], Wh@ the random process of packet arrivals: it is for this reason
provided an efficient, deterministic marking algorithm, usingy, 5t we use a random walk model for the price. The drift of
the 16-bit IP packet identifier (Pid ") to assistin conveying  yhe random walk models the average change in price between
the base-two representation of the price. Based on that WOl received packet and the next: it is positive if congestion
[8] and [9] proposed a similar scheme for estimating thes 1iiging up, and negative when congestion is decreasing.
maximum price, appropriate for max-min flow control. We show that the error process is stationary, and we compute

As shown in [7]-[9], the deterministic marking schemesyy .t Jimiting distributions for the MSE, as the step size of
provide estimators that potentially have a much lower meafe random walk tends to zero.

squared error (MSE) than the random marking schemes.
However, these schemes suffer from the disadvantage that Il. ADPM

they must specify priori how to trade resolution for agility.  The basic idea of ADPM is to transmit thenary rep-
The fixed qua_ntization qf the range of possible prices meapssentation of themaximumprice seen by a packet as it
that the MSE is poor until a sufficient number of packets havg,yerses the network, appropriate for max-min flow control.
been processed [1]. Further, the fixed quantization impligSach packet that arrives at a router contains a threshold value,
a square error floor for these schemes [1]. In contrast, th provided by théPid field. Each packet asks each router
random marking schemes are adaptive, in that for a fixgg encounters the same question: is your price greater than
price, the MSE consistently improves with the number of,y threshold? The router answers “yes” or “no”, providing
pqckets processed, allowing the estimator to track a Chang'ﬁgunary encoding of the price that is robust to packet loss,
price. or to a reordering of the packet arrivals at the receiver.

) ) In what follows, it is convenient to assume that prices have
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University of lllinois at Urbana-Champaign. we will use the term “price” to refer to the mapped value.



Similarly, a mappingf is assumed, that mapBid valuesto these cases, we get the assignmgnt) := <. In all other

threshold values if0, 1]. Following the terminology of [7], casesp(n) := p(n — 1). Let H(n), termed a “hit", be the

i = f(v) will be called the probe type of the packet.event consisting of the two cases when the estimate changes

Implementation details behind the above assumptions apecur, namely when the prokdalls into the interval between

explained in Section V. p(n —1) andp(n). The complement off (n) is denoted by
When a router with link price forwards a packet of probe H¢(n). Since probes are uniformly distributed @ 1], the

type 4, it marks the packet ifp > 4, and leaves the mark probability of a hit at timen is |p(n — 1) — p(n)|, and this

unchanged otherwise. At the receiver, the mark of a packbit will affect the estimate at time.

of probe type will be set if any router on the path had a price We remark that we are using the very simple estimator that

exceeding:. Decoding is simple. The receiver maintains ave described in Section II, and it is certainly not intended

current estimate of the price, If it sees a marked packet to be a maximum likelihood estimator. If the receiver knew

of probe typei with i > p or an unmarked packet of probethe price drift it could do better than the scheme described

type i with i < p, then it setsp to s. here, but we do not wish to assume that the receiver has
In this algorithm, the interpretation of each mark is indethis information, and nor that it wishes to do significant

pendent of the values of other marks. In contrast, with binargomputation on each received packet.

signalling [7], a price change from 3 (011) to 4 (100) could At time n, a packet arrives at the receiver, and may or

yield any price estimate from 000 to 111, depending on theay not cause an update in the price estimate at that instant.

order in which bits are signalled. In any case, we denote l&yn) the error in the estimate just

prior to the processing of the packet received at timeand

by e(n) the error immediately after the processing of that
We will assume in this section that the probe types genepacket. These will be identical unless a hit occurs at time

ated at the sender are independent and uniformly distribute@d if so,e(n) will be the smaller of the two. Letting

on [0,1]. We are interested in the estimation error after

IIl. PERFORMANCEANALYSIS

packets have been received. The case of a fixed price is very -1 r<-l
; ; ; ; [x]t, = x —-1<z<1 2
simple to analyze, since for large the points picked out -1 | 1
‘/L‘ b

by the probe types are approximately a Poisson process of
rate  on the interval[0,1]. We can therefore easily show the price update relationship betweefv) and é(n) is
that the error is within a factor of of the mean absolute expressed by

guantization error of &-level quantizer. More interesting is

the analysis of a changing price. é(n) = [e(n—1) +6J(n)]L,. (3a)
A. Random walk model for price Also, the estimate update rule yields

A simple model is a discrete time random walk, in which B é(n) if H(n)e 3b
the timeslots represent the times that packets arrive at the e(n) = émn)—U(n) if H(n) (3b)

receiver. During each time-slot, the price at the bottleneck

may change, and we use a random walk model.ji(e} be Where, conditional or(n),
the price at timen. Then Un) ~ U[0,&n)] (3c)
p(n+1) =p(n)+4J(n) @ H(n) ~ B(|é(n)]), (3d)

where J(n) are ani.i.d. sequence oft1 random variables, wherel{ denotes a uniform random variable, aiddenotes
each taking the valua with probability ¢, and —1 with  a Bernoulli random variable.

probability 1 — ¢. Thus, the drift of the random walk igd, Note that we are assuming that the estimate at time
where i = (2¢g — 1), and the variance of a jump 8?02, p(n), is calculated immediatelgfter the probe arrives at time
whereo? = 4q(1 — q). n. Using induction, we can see thédt) is always the error

Let p(n) be the estimate of the price at the receiven this case. If insteag(n) is calculated immediatelgefore
immediately after thexth arriving packet has been processedthe probe arrives at time then it isé(n) that represents the
We assume thai(0) takes an arbitrary value in the interval error. We will have use for both definitions of error process
[0, 1]. in this paper.

To describe the error process, we begin with a definition The above definition of a hit time involves a slight trick;
that states precisely what we want to mean by the errasirictly speaking, a hit should occur if a uniformly distributed
namely,e(n) := p(n) — p(n), although we will modify this probe lies in the interval between the estimated price (prior
definition slightly below. We note that when a packet arriveso processing the probe) and the true price. However, such
at the receiver, it may fail to cause an update in the receiverss definition couples the hit events with the price process,
estimate. In fact, there is an update of the estimate at#timewhich is itself nonstationary (whem # 0), and subject to the
in precisely two situations: eithgi{n—1) < i and the packet boundary conditiony < 1 andp > 0. However, provided
is marked, op(n—1) > ¢ and the packet is unmarked, wherethe boundary constraints are slack, the above definition is
1 is the probe type of the arriving packet at timeln both  equivalent. The benefit of the above definition is that it avoids



boundary conditions, and allows the error processes to e n # 0,
stationary, as we will show. The definition is self contained, X, 4, R(\/W)M/M 4)
and from now on we can ignore the price process altogether.

To help visualize the error process(n), consider the Where <~ denotes weak convergence, ai/[u|) is a
special case in which = 1. The error process; increases Rayleigh random variable with parametef|u|. If u = 0,
at constant raté, until the random event of a “hit”, and at then the sequendé, ) converges weakly to the distribution
this time, it makes a random-sized jump back towards zero. 1 2>0
This process is illustrated in Figure 1. Fx(x) = { 0 2<0

®)

- An immediate consequence of Theorem 1 is that the MSE
hit © of the estimate is asymptoticalBjy|d for small 6. Indeed,

if there is no randomness in the walk:[( = 1) then 2§

is an upper bound on the MSE for all These results are

% expressed in the following corollary:
Corollary 2: 1) Forall -1 < pu <1,
-
/ P B[] = 2Juls + o(6), (6)
0 =
0 2) If |u| =1, then
Ti - 20
Iime E[é?] , 201 . @)

S lTF@02/1=0)?)

Fig. 1. Evolution of error process

Clearly, this particulat(n) undergoes a zig-zag evolution, B. Stationarity of the error processes

with steady increase at ratg followed by a jump in the  In this section, we show that the proce#s:) can be
slot when an update (hit) is detected. More generally, whestationary, which establishes the first part of Theorem 1. The

0 < g <1, ¢(n) will undergo a more wiggly evolution due stationarity of the procesgn) is an immediate consequence
to random fluctuations in the price. of this fact.

The caseg = 1 is the special case in which the drift is  Note that we can rewrite (3b) as
ué = 6. In general, ifl > p > 0, then the price tends . 1 . .
to increase, modelling a scenario in which congestion ig(n + 1) = { [E(") +g§(”+ 1)]71(] . !; g(n)
building up at the bottleneck. However, the increase is not in [En) +8J(n+1) = U], if H(n) ®)
general deterministic, allowing for stochastic fluctuations i@vhere again, conditional 0&(n), U (n) ~ U[0, (n)]

the price. If—1 < < 0, then the price tends to decrease, Let the temporally homogeneous transition function for

modelling a scenario in which congestion is decreasinﬁ;“s Markov chain beP(z, A) = P(¢(2) € Alé(1) = ) for

at the bottleneck. Oscillations in price are an inevitable ; < 2 < 1and A a Borel-measurable set contained in
consequence of two factors:

. ) ) [—1, 1]. It follows from (3) and (8) that for-1 + ¢ < z <
1) On a slow time-scale, the price can tend to increasg,_ ;.

or tend to decrease, as a result of flows arriving and
departing. Pz, A) = (1—|z[)(¢l[z + 6] € A|+ (1 —g)I[z — 6 € A])
2) Ona fgst t|rr_1escale, the price is affected by stochastic | (AN 6,2 + 6] + (1 — q) || AN [=6, 2 — 6]|]).
fluctuations in the packet arrival process at the bottle-
neck resource. (For x close to the boundary, we get similar expressions, but
We capture both effects in our random walk model. Thé€ed to invoke the clipping operatpt’ ,.)
random steps of the walk model the stochastic effects, and!t is simple to calculate the drift function

the drift captures the slow timescale effect of flows arriving ve = E[6(2) — z[e(1) = .
and departing. Note that if the flow control manages to reach ’
equilibrium, theny = 0 at equilibrium. For example, ifo <z <1 -4, then

The main result of this paper is as follows. oy = x3/2 - (1— 2)ud + 2210
Theorem 1:The error process defined by (3) has an equithus, in the limit ag) | 0, and forx close tol, we havey,
librium distribution for anys > 0. Let F5 be the equilibrium close to—1/2. Similarly, it can be shown that in the limit
distribution ofé/+/5. Let (5,,),n = 1,2, ... be any positive asd | 0, and forz close to—1, we havey, close tol/2.
monotonic sequence tending to zeraas> oo, with 6; < 1. Stationarity follows from the compactness of the state-
Let X, be a random variable with distributioRs, . Then space[—1, 1], and the fact that the drift points inward from



the boundary. Technically, the conditions stated in Corollary Let ¢ be a random variable with distribution function
5.2 in [10] seem to require in addition tha®(z,A) is F, and defineX; to be the random variable/v/s, with
strongly continuous [10] for any Borel measurable get distribution function F5. Then we obtain equivalent fixed
to conclude thak is stationary, and this condition does notpoint equation forFs. Let

hold for our transition probability function. However, from

the note added in proof in [10], it is in fact sufficient in our Gs(x) = qFs(z — V6) + (1 — q) F5(x + V0))

case to verify instead that the functidh(z, A) is weakly Then forz € [0,1/v3 — V3):

continuous for any Borel measurable gktto conclude that ’

& is stationary. This weaker condition holds because our statey(Fj(x) — Fs(x — V4)) + (1 — q)(Fs(z) — Fs(x 4+ V3))
space is a Banach space. Weak continuity is the requirement _ x\/g(l — Gs(2)) (13)
that [ g(y)P(z,dy) is a continuous bounded function of

for any continuous, bounded functigity). This is the case and forz € (—1/v/4 4+ /4,0):

for our transition functionP(z, A), and hence(n) can be

stationary. q(Fs(x) = Fs(x = V3)) + (1 = q)(F5(x) — Fs(x + V)

C. Asymptotic analysis of estimator mean square error = 2V6Gs(x). (14)
In this section, we derive the asymptotic form for the Note that whileF is the distribution function of a random

stationary distribution of the error process, variable taking values in an interval approximatélyl, 1],

Let F;, and F;, denote the conditional distribution func- r is the distribution function of a random variable taking
tions of é(n) ande(n), respectively. Clearly, for any such  yajues in an interval approximately-1/v/3,1/V/3]. As &
that—1+ 6 <z <1 -4, the mapping fromi" to I is tends to zero, the support becomes unbounded, and The-

- _ _ _ orem 1 confirms weak convergence to a distribution with
Fo(z) = qFu(z = 6) + (1 = q) Fu(x + 9). ©®)  nbounded support,
A corresponding mapping fronf’ to F is obtained by Before we prove the theorem, note that if such a con-
conditioning (3b) oré(n) and taking expectations. For> 0, vergence takes place to a limiting distributidi(x), then

1 taking formal limits asd | 0 in (13) and (14) suggest that
Foii(z) = / P(e(n + 1) < z|é(n)) dﬁ(g(n)) G should satisfy the differential equations (15) given in the

-1 statement of Lemma 1 below. The following lemmas make
_ /w 1 dF(€(n)) T Fhis argument_rigorous. Those proofs which are not here are

1 in the appendix.

1 .

- - . ~ Lemma 1:Let (§,),n = 1,2,... be any positive mono-
<
/L, EmPU(0,é(n)) < z[é(n)) dF (&(n)) tonic sequence tending to zero as— oo, with 6; < 1.

. r The sequencéFs, ) has a weakly convergent subsequence.
= Fu(2) +/ zdF(é(n)). Moreover, the limit of any weakly convergent subsequence

o ) ) ) satisfies the differential equations:
Similar manipulations forr < 0 yield

. . . 1-G(z)) >0
_ G(z) = { o (15)
By = B@ 2= Fu@) 220 0 He/ () 1G(z) <0
(14 z)F,(z) x <0
) o _ i If =0, then the sequenads, ) converges weakly to
The stationary distributionF’, must then satisfy the fixed '
point equation 1 x>0
F(x) = @) = { 0 <0 (16)
t+ (1 —2)(qF(x—08)+(1—q)F(z+4)) x>0 Lemma 2:If é(k) is stationary, and the drift of the random
(1+2)(qF(x —86)+ (1 —q)F(z+96)) = <O0. walk (8) is pd then in equilibrium,
wherez € [-1+4,1—4]. This is the stationary distribution E[@Izsq)] — E[Ijz<o)) = 2p6,
of the error of our estimatoi,e. the error that is obtained
after processing the incoming probe packet. Re-arrangintj, the sense that
we obtain that forz [0, 1-— (5), |E[€21[E>O]] _ E[€2I[€<0]] _ 2,U/5| < 25]P(|€‘ >1— (5)E[|€|],
¢(F(x) = Pz — ) + (1 - g)(F(z) — F(z +4)) (7

Wherel[_] denotes the indicator function.

=21l —qF@—0) - (1-g)F@+09) (11) Proof: If ;= 0, the result hold by symmetry about the

and forz € (=1 +6,0): origin. Consider now the cage# 0. Let P(H) be the equi-
librium probability of a hit, averaged over the equilibrium
q(F(z) = F(z = 0)) + (1 = ¢)(F(z) — F(z +9)) statistics ofe. Let P(H|z) denote the conditional probability

=z(¢gF(x—0)+(1—q)F(x+4)). (12) of ahit, givené = z, which is given byP(H|z) = |z|, since



the probe types ar&[0, 1]. Averaging over the statistics of

|€|, we obtain
E[le]] = P(H) (18)

Now consider two randomly chosen adjacent hit tinigs,

andTs, and letX = Ty, — 77 > 0 denote the time between which has solutionsd (z) = A; exp(—

these two hits. Clearly,

P(H

) = 1/E[X] (19)

If € is in equilibrium, then so is the embedded chain obtained

by sampling at the hit times. Thus,
E[E(Th)] = E[e(T3)]

and we denote the common value MBfe|H].

(20)

However,

consideration of the drift of the embedded chain (8) provides

that
N i . €(Ty)
E[E(Ty) — €(Th)|E(T1)] = poE[X|&(T)] - 5 T A (21)
where
A€ [0y <1—-6), 01y >—(1-5Y]] (22)

accounts for the clipping operatidi! ,. Taking expectations
in (21) and applying (20) yields

E[¢|H] = 2udE[X] 4 2E[A]. (23)
Putting (18), (19) and (23) together, we obtain
E[¢| HIE(|¢l] = 216 + 2E[AJE[|e]] (24)
But by Bayes’ Theorem,
1
BieH) = [ cfielma:
-1
1
_ / . f‘(( )> (H|e) de
2 fele) /O 2 fe(e)
= € € de
/0 P(H ) 1 P(H)
(Bl es0) — ElIz<q)))
= = . 25
BIE) =
Combining (24) and (25) with
[E[A]] < 6P(Jé] > 1 —6) (26)
gives the stated result. [ ]
Corollary 3:
~ 2
€
li Ell— +P(lg| > 1 —0)E][|€]] > 2 27
msue | () |+ P(d > 1 0)Elel] > 2l @)
Proof: Follows immediately from Lemma 2. |

We are now ready to prove Theorem 1.
Proof: It follows from Lemma 1 that(Fs ) has a

Consider the regior > 0. Setting H (z) := 1 — G(x),
the equivalent ODE is
: X
H(zx)=——H(z
(z) . (z)
x?/(2p)). Hence,

G(z) = 1 — Ajexp(—
satisfying0 < A; < 1.
For the regionr < 0, (15) can be rewritten

Gz) = ——G(x)

x?/(2u)), where A; is a constant

—p
which has solution€?(z) = As exp(—z?/(—2p)), for 0 <
A2 < 1. Thus,
_ [ 1= Avexp(—2?/(2p)) x>0
G(@) = { Asexp(—a?/(-2p)  w<0 28

It remains to find the constant$,, and A,, using the fact
that G(z) is a distribution. If > 0 thenexp(—z%/(—2u))
is unbounded ag | —oo, and soAd, = 0 in that case.
Conversely, ifu < 0 then A; = 0 in that case by the same
reasoning.

Consider first the case that> 0, whenceA; = 0, andG
is the distribution of a random variablé = BR, where B
is a Bernoulli random variable with mea#);, and R is an
independent Rayleigh random variable, with paramegtgr
Note that

E[Y?]

= A2 (29)

Weak convergence dfs implies that for any: # 0 (where
G is continuous),Fs(x) — G(z) along the subsequence
S. Continuity of G at 2 also implies (see Lemma 3 in the
appendix) that

qFs(z —6712) +
Defining

(1 —q)Fs(z + 6% — G(x).

Fy(z) =P (\% < x)

we obtain thatFs; converges weakly t@ along the subse-
guence also. Together with (29) we obtain that

~ 2
E l(\%) — A2 (30)
and that
P(¢| > 1 — 8)E[|¢]] — 0. (31)

But Corollary 3 then implies thatl; = 1, and hence> is
Rayleigh with parametey/j:.

A very similar argument applies in the cage< 0 to
show that4,; = 1 in that case. In either case, let us label the
unique solutionF'x. If x> 0, then

Fx(z) = { 1 —exp(~a?/j2ul) @ >0

0 z <0 (32)

weakly convergent subsequence, converging to a limiting digZNich is a Rayleigh distribution with parametefu. If 1 <

tribution functionG, which satisfies the differential equatlonso'

(15). It remains to be shown that is uniquely defined by
these equations, and that there is no discontinuity &at0.

then

x>0

z < 0. (33)

1
() = { exp(—22/|2u))



Note that in both these cases, there is a density functioand, if 4 < 0,

valid for all x. o) _ 9 _
The case: = 0 is just a restatement of the corresponding Bl e<o]) = —2p0 + 0(9), B[ e>0)) = 0(0).
result in Lemma 1. (IdentifyG in (16) with Fx in (5).) IV. BIT REVERSED COUNTING

Since the limiting distribution is in all cases unique, it Tpe analysis we have provided in the present paper ap-
follows that all convergent subsequences must converge ySﬂes directly to ADPM wherlPid values provide random
Fx, and hencéFs,),n =1,2,... converges weakly td’x.  thresholds. It is certainly the case that some operating sys-
Note that if 1 < 0, then(—Xs,),n =1,2,... converges in tems use uniformly distributed pseudo-random values for the
distribution to a Rayleigh distribution with parametg¥-/..  |pig (e.g.NetBSD) making our analysis directly applicable.

B However, many operating systems assign sequelRial
values to packets. This allows the sequence of probes types

We can now prove Corollary 2 to form a sequence of “bit-reversed counting” (BRC) values,

Proof. Part (i) of Corollary 2 follows immediately from nat is; 100..., 010..., 110..., ..., preceded by a “binary
the definition of weak convergence. For part (ii), note that thgsint". That is, using the sequend@(1), R(2), R(3)....,
equilibrium values are independent of the initial vaki8). \yhere R(>%,a:2") = 3.2°,a;27" for any sequence of
Consider now the case = 1. In this case¢(0) > 0 implies  pjts {4,}. i= i=
€(n) > 0 for all n. Thus the support of the equilibrium | the probe type sequence is bit-reversed countifigj ,
distribution foré is the positive reals and the clipping in (8) r(2), R(3),...) then after: = 2/ — 1 probe packets, probes

is always down, givingA < 0. 277,2 x 279, ..., 1 — 277 will have been received. This
Note also that?(|é[ > 1 —d) < E[¢’]/(1 —6)*. Together, ivides the possible values fas into uniformly spaced
A <0, (24), (25) and (26) imply “uncertainty intervals” of width2—7. The ADPM receiver
- E[|¢||E(e2) knows which interval the price is in, but not where within
E[€"] —20 € [—25(1_5)2,0] : that interval. Thus the estimation error afterpackets is
bounded above by
HencefE[Je] < v25 and p—p| < 27 lee2kl ¢ [1/k 2/k). (37)
o 26V/26 . . o
E[e?] (1 + 2) > 24 Thus, BRC bounds the error without increasing its mean.
(1-9) Numerical results in [1] show that for a fixed price, it

giving the result. The: = —1 case follows similarly.  m provides better performance than that predicted by the model
of uniformly distributed probes.

Clearly, Theorem 1 provides precise asymptotics for the It is likely that BRC provides a better sequence of probes
square error whep # 0. Let X be a random variable with for tracking a changing price, although we conjecture that
the distributionFx, which represents the estimator error orf"® asymptotics for the random walk model, @gends to
the scaleO(v/3) as § tends to zero. It follows that on a Z€ro, will be the same as for random probes. However, we
scale ofO(4), the squared error of the estimator convergeEave .done no numerical or analytical work to study this case:
in distribution to an exponential distribution with meap, & topic for future work.
providedy # 0. Wheny = 0, Corollary 2 implies that the V. IMPLEMENTATION DETAILS

squared error is(d), but the corollary does not characterize IP has two ECN bits (RFC 3168), which a source sets to 00

the precise order in this case. Part (ii) of Corollary 2 providefo indicate that it does not understand ECN, or to either 01

a special case in WhICh.a pre-asymptofic result is avaglablgr 10 to indicate an unmarked packet, while routers mark
namely when the walk is not random, afid = 1. In this

intuitively worst case, the upper bound packets with 11 to indicate congestion, which the source
' must treat like a packet loss. Sending 11 frequently [5]-
E[?] <26 (34) [71,[9] will cripple standards-compliant flows. To prevent
this, ADPM uses 01 to indicate no mark, and 10 to indicate
a mark due to pricing. As such, ADPM is “ECN-friendly”.
8S The function f that mapslPid values into probe types
can be implemented either at the source or in the routers. If
& € it is to be implemented at the routers, we must verify that it
E {51[90]} -k {5I[€<01] =2 (35)  will be compatible with differentPid sequences produced
by different operating systems. For operating systems which
assign sequentidPid values to packets, thg correspond-
ing to bit reverse counting can be implemented in the routers
in a simple and scalable way by simply reversing the order
of the IPid bits and comparing this with the price. For
operating systems which use uniformly distributed pseudo-
E[€21[5>0]] = 2ud + o(9), E[€2I[g<0]] = 0(0) random valuesg.g.NetBSD), the routers can reverse the bits

holds for allJ.
Finally, we can strengthen the statement of Lemma 2
follows. From (31) and Lemma 2, it follows that
~2

But by Corollary 2 we have that
=2
€

62
E {5I[€>o]] +E {5 I[e<0]} — 2|yl (36)

Hence, ifu > 0,



before the comparison with the price, without affecting the  Proof: The proof divides a sub-interval df-z+/3, 0]
uniform distribution for the resulting probe type. (respectively[0, z+/§)) into strips of width

Using pseudo-randotiid values provides worse perfor-
mance than that obtained by bit reversed counting; however, = Ll/\/gj‘ (38)
our analysis of this case (above) shows that performance Ashound is found concerning the changeZinover each of
still very good. If necessaryPid values can be replaced these strips. By summing these bounds, it is shown that if
at the source without changing their primary function, prothe lemma were false thefi would exceed 1 at some point,
viding nearby packets have unique identifiers. and could not be a distribution function.

Note that the mapping of prices anid to [0,1] is To prove part 1), assume for the sake of argument that
purely a mathematical convenience, and does not limit thp(_x\/g) > 2/z. For anyl < k < Kj it follows from (12)
actual range of prices. Either mapping may be nonlineagat
In particular, the mapping of prices can be selected to get
better quantization and faster estimation of the true price at (F(—x\/§+ ko) — F(=av/o + (k — 1)5)) q+

the receiver. (F(fxﬁ+ k&) — F(—zVo + (k + 1)5)) (1—-q)

VI. CONCLUSION _ ( \/54-1@5) ( (F(—zV3 + (k—1)8)) +
We have provided an analysis of the error of an estimator - U7 e

based on the recently proposed scheme ADPM [1]. The task (1—q)(F(— V8 + (k+1)8 ))) (39)
is to estimate the maximum congestion price seen along
a path in the Internet, as required by a congestion contrBly the monotonicity ofF" and the fact thatc > 1, the
algorithm for a flow using that path. The constraint is that th€ontradiction hypothesis implies
routers can only mark packets with a single bit. In this paper, F(—2V5+ (k+1)8) > F(—zVb + (k — 1)6) > 2/,
we model the price at the bottleneck router as a random
walk with drift. We show that as the step siz&, of the whence the second factor of the right hand side of (39) is at
random walk tends to zero, and provided the drift is nonzerdgast2/x. Since—xzv/6 + ké < 0, (39) implies
the distribution of the squared error converges weakly to an
Exponential distribution with meag|u|s, where ud is the (F(_f‘/g+ ko) = F(=aVo + (k — 1)5)) q+
drift of the random walk. Thus, the MSE is of the same order
as the step size of the random walk. If the drift is zero, we ( I\[+ ko) = F(= Vs + (k+ 1)5)) (1=
show that the MSE is(d), but do not characterize its precise <
order in this case.
Since ADPM is a signalling technique, not a flow control

—2V/6 + 2kd /. (40)
Summing (40) ovek = 1,2,..., K, gives

technique, its usefulness will depend on the flow control (F(—:c\/5+K§6) — F(_Ng))qu
control technique it is applied to. Currently, ADPM is being FleaVE48) — Fleavs + (Ks + 1éN(1 —
integrated with the MaxNet flow control algorithm [11] using (F(-avi+9) (=aVd + (K5 +1)9)(1 - q)
the WAN-in-Lab infrastructure [12]. < —2Ks5V0+ Ks(Ks +1)3/x (41)
< —142/z, 42
APPENDIX | +2/e (42)
PROOFS OFLEMMAS as2[1/V5|v6 > 1 and [1/v5](|1/V5] +1)§ < 2 for
The proof of Lemma 1 will make use of the following two ¢ < 1/4. But by assumption,
lemmas. F(—aV6 + K30) > F(—2V3 +6) > 2/, (43)

Lemma 3:Let (G,) be a sequence of distribution func-
tions converging weakly t6. If G is continuous on an open Together with the monotonicity of’, (42) and (43) imply
interval I and (z,,) is a sequence ifi converging to a point that F(—zv/§ + (K5 + 1)6) > 1, a contradiction. Thus

zin I, thenG,,(z,) — G(z). F(—zV$) <2/x.

Proof: Lete > 0 be sufficiently small that both — ¢ The proof of part 2) is analogous, applying (11) around
andz + ¢ lie in I. Forn sufficiently large, we have —e < the point
Ty < x+4¢e, and thusG, (z —¢) < Gp(2,) < Gn(z+¢). By F(zV6 — kd)

continuity of G on I, and the Portmanteau theorem, it follows
that G, (x —¢) — G(z —¢), and G, (x + ¢) — G(z + ¢).
But by continuity ofG atz, the difference betwee@(z—¢)
and G(x + ¢) can be made arbitrarily small. It follows that
Gn(zn) — G(x). [ |

and reversing the inequalities in (40)-(42). |

We can now prove Lemma 1.

Proof: In the following, we will use the same symbol to
denote both the distribution function and the probability mea-
_ . ) sure induced by it. Thu&/(x) is equivalent toG((—oo, x]).
Lemma 4:For allz>1 and0<§ <min(1/2*,1/4), To show that the sequence of distribution functiais
1) F(—zv/$) < 2/z and is tight [13], let v > 0, and consider the compact set
2) F(zV3) >1-2/z. K, = [-2/7,2/7]. Lemma 4 implies that for alln,



P(X;s, € K) < 2v. This implies that the sequen¢és, ), and applying both this asymptotic lower bound (48), and the
is tight, and hence has a weakly convergent subsequenasymptotic upper bound (47), we obtain the inequality:
S, converging to a limiting distribution function, b
Prokhorovg’gs t?leorem. ’ Y 4G((x — e,z +¢)) = (1 = ¢)G([r — &,z +¢])

We now rule out the possibility tha®(x) jumps at any < (z+€)(26)(1 — G(—00,z — €)) (49)
x > 0. Denote the jump of7 atx by AG(x). Lete > 0 be o
sufficiently small thatr — e > 0. Considers small enough By takinge to zero, we see thauAG(x) < 0 which, when
that K := |> ¢/v/§] > 1, and note that from (13), for any x # 0, implies thatAG(z) = 0. The same argument can be
integerk from —(K — 1) to K — 1, we have that: applied whemr < 0. We conclude thafs is continuous at:

for all nonzerox whenp # 0.
q(Fs(z + kvVs) — Fs(z + (k — 1)V0)) + Using the fact thats is continuous for positive:, and the

(1 - q)(Fs(z + kv/3) — Fs(z + (k+1)v/3)) assumption that — ¢ > 0, we can replace (49) with:

= (x4 kV0)Vo(1 — Gs(x + kV/3)) (44)

Adding up these€K + 1 equations we obtain the following
upper bounds:

G((x — e,z +¢)) <2e(z+¢e)(1 -Gz —¢)) (50)

We now wish to obtain a similar inequality, but a lower
bound, rather than upper bound, to the left hand side of (50).

Ls == (Fs(x+ (K —1)V8) — Fs(z — KV0))q + Returning to (44), adding up ti# — 1 equations, but lower
(Fs(z — (K — 1)\/3) — Fs(z + K\/S))(l —q) (45) bounding the result, we obtain that for afiy> 0, and ford
K1 sufficiently small,
< (@+HE-1DVOVE > (1-Gsla+kVD)) K1
k=—(K~1) Ly > (= (E-DVo)Vs > (1-Gsz+kVo))
K-1 k=—(K-1)
< (z+e)Ve (1+ 3 1—F5<x+(k—1>\/5)) > (¢— (K -1)Vo)Vs
k=—(K—-2) K1
< (z+e)Vo(14 (2K —2)(1 — Fs(z — (K — 1)V9))) ((2[( —-1) - % - Z Fs(xz + k:\/g))
< (z4e)(2 — (26 — 4V Fs(x — (K — 1)V0)) k=—(K~2)
< (z+e)(2 — (26 — 4V F5((—c0,x —2)))  (46) > (z—(K-1)Vo)Vs
where the second inequality usés(z) > Fs(z —v/d), and <(2K 1) — \% - 2K - 1)Fs(z + (K- 1)\6))

the fourth uses — v/d < V6K < . Using the Portmanteau
theorem [13] applied to open sets, we can take the limsup = (# —¢€)(2e — Vo — & — (26 + Vo) Fs(x +¢)) (B1)

of the right hand side of this bound, &s, 0, to obtain the  gjng the continuity of7, and the Portmanteau theorem, we
asymptotic upper bound of obtain that an asymptotic lower bound (&g 0) to Ls is

(z +€)2e(1 — G((—00, z — €))). (47) given by
) ) (x —e)(2e — & — 2eG(z +€)). (52)
This term will upper bound thém inf of Ls asé tends to
zero. But
Note that limsup Lg (53)
(. — KVo,x+ (K —1)V3) C (x — e+ Vo,2 +e—2V0) 540
< limsup [¢Fs([z —e — Vo, x +¢]))
and 510
(x— (K —=1)V6,2+KVb) D (x—e+Vi,z+e). ~(1=q)Fs((x—c+ Vo, +e— \/S))]
< G —— _
Thus for any¢ > 0, < aG(p—e—&wte])
o o 1-9G(z—e+&x+e—¢)) (54)
hrgll})nf Ls > llrgllglf [qFs((x — e+ Vd,2 + ¢ —2V5)) = Gz —c—Eate))—
~(1 - q)Fs([x — e+ Vd,2 +¢])] (1-9)G((z —e+&a+e—9)) (55)
> 11%11%Hf [qF5((x —et+&rt+e—¢)) where the second last equality follows from the Portmanteau
] P theorem, and the last inequality follows from the continuity
~(1-@)Fs(le — ez +e])] of G. By applying both this asymptotic upper bound (55),
> ¢G((z—e+&a+e—Y)) and the asymptotic lower bound (52), and takintp zero,

—(1-q)G([z — e,z +¢]) (48) we obtain the inequality, valid far — ¢ > 0:

where the third inequality follows from the Portmanteau
theorem applied to open and closed sets. By takitmzero, pG((x —e,x4¢€)) >2(x—e)(1 -Gz +¢)) (56)



Identical reasoning for + ¢ < 0 provides the following
two bounds, analogous to (50) and (56) respectively:

pG((x —e,x+¢)) <2e(x+¢)G(x —e) (57)
puG(x —e,x+¢)) > 2e(x —e)G(z + ¢) (58)

Whenp # 0, taking limits as: tends to zero in (50), (56),
(55) and (58) we obtain that is differentiable at any: # 0,
and satisfies the differential equations (15).

Whenp = 0, the proof of continuity forz # 0 no longer
applies. However, (50), (54) still apply. For aay> 0, there
exists aZ € (0,¢] such that

Gl(zx—¢,x+4+8) =G([x — &z +4)]),

since G has at most countably many jumps. Thus, by the
limit of (54) as¢ — 0, and by (52)

0 = uG((z—é,z+¢))
> 2ué(z —&)(1 - Gz +€))

which implies thatG(z + ¢) = 1. Sincee > 0 can be
arbitrarily small, this proves tha®(z) = 1 for all z > 0.
The same reasoning far+ ¢ < 0, using (49) implies that
G(z) = 0 for all x < 0. Thus,G is uniquely characterized
by (16), since a distribution function is right continuoum.
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