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Abstract. The purpose of much computer science research is to invent algorithms,
and generate evidence to convince others that the new methods are worthwhile.
All too often, however, the work has no impact, because the supporting evidence
does not meet basic standards of rigor or persuasiveness. Here the notion of “ex-
periment” is explored, with reference to our current investigation into distributed
text query processing on a cluster of computers. We describe some of the issues
that we encountered, and lessons that can be applied by researchers designing
experiments in other areas of computing.

1 Introduction

Research into practical systems is often intended to yield what the investigators believe
to be new structures and algorithms. Having established via the research literature that an
invention is indeed novel, the investigators seek to establish its worth. In most papers, the
demonstration of worth is by some combination of experiment, simulation, or analysis.
Sometimes the demonstration is entirely absent.

For the great majority of practical algorithms the most reliable form of demonstration
is by experiment. The alternatives are interesting, but not compelling. In some papers,
the “proof” of validity or superiority rests entirely on rhetoric – known in less intellectual
circles as “hand-waving”. Such papers have little impact in either an academic or practical
sense.

In other papers, the demonstration is by mathematical analysis, or simulation using a
model, or a combination of both. But such approaches typically involve simplifications
such as representing data by statistical distributions, and can fail to capture the complexity
of a realistic computing environment. Asymptotic superiority can also be illusory. The
difference between a log n factor and a log log n factor in an analysis can be completely
swamped by constant factors, and many algorithms that appear strong analytically have
not survived the test of a practical implementation.

In the traditional sciences, theories are working hypotheses whose applicability is
validated by experiments designed to distinguish between competing proposals. An
experiment that confirms a theory does not prove that theory to be true – it merely adds
weight to the likelihood that it is true. This “accepted until demonstrated incorrect”
methodology has evolved over hundreds of years, and has itself stood the test of time.

The same scientific method underlies algorithmic computer science [Tichy, 1998].
The algorithms that are regarded as significant are those that have been shown to work
in practice, with evidence strong enough to convince skeptics. And because computing
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is a discipline in which innovations are valued as much for their economic merits as for
their intrinsic elegance, new techniques tend to be regarded as of only curiosity value
until they have been carefully evaluated in realistic settings.

After inventing a new indexing structure or query processing algorithm, we should,
therefore, seek to implement it and measure its behavior. First, we form a hypothesis,
that is, make a statement of belief about the algorithm, such as identifying what it is
expected to be superior to and in what circumstances it is expected to be superior.
Such hypotheses are often highly general. Rather than make claims about behavior on
specific hardware, for example, we might claim that one algorithm is always faster than
another for sufficiently large volumes of input data. Second, we design an experiment to
distinguish between our hypothesis and previous ones. Third, we impartially carry out
the experiment. The final step is to communicate the structure of the experiment, the
outcomes of the experiment, and the conclusions we draw from those outcomes, usually
as a written paper or report. Importantly, that description should allow an independent
expert to undertake similar experiments and validate our claims.

In the long term, this scientific model is effective, and only the most successful
algorithms are remembered and used. The work in individual computer science papers,
however, is often remote from the ideal. In the specific areas of indexing and searching
– used in this paper to illustrate the difficulties of experimentation – testing an algorithm
often consists of implementing the simplest baseline that the investigators think is worth
considering; implementing the “improved” algorithm; running both on some test data;
and measuring the amount of CPU or elapsed time that was consumed. Using this
evidence, the researchers draw both graphs and conclusions, often rather more of the
former than the latter.

Such experiments almost always demonstrate improvements, and researchers rarely
admit to having invented inferior techniques. In computing, reviewers tend to react
negatively to papers that have as their rationale a further verification of the status quo,
and an experimental refutation of the implicit hypothesis that “the new idea is better”
is generally deemed to be not worthy of communication. As a result, researchers all too
often construct experiments in which their new method is identified as a success.

Many research papers fail to earn any citations. A key reason, we believe, is that the
evidence does not meet basic standards of rigor or persuasiveness, or is simply inadequate
[Tichy et al., 1995]. Perhaps the experiments were flawed, the data inadequate, the
baselines inappropriate, or, in extreme cases, the investigators deliberately chose to
overlook the parts of the results that shed a bad light. Another issue is that, often,
insufficient thought is given to the experimental design. In many cases it is far from
clear how improvements in performance should be measured. Such failings mar many
experimental papers [Johnson, 2002].

In this paper the notion of “experiment” is explored, with reference to the task of
distributed text search on a tightly-coupled cluster of computers. Our intention is, as a
case study, to explore the rigor that we believe is necessary in experimental computer
science, in the hope that the lessons learnt in our experiments will be helpful to others.

It is also worth reflecting on what can happen when rigor is neglected. Physical
scientists know well how costly careless experiments can be – thousands or millions of
dollars worth of effort wasted, and possibly reputations destroyed. Consider for example
the cold fusion saga, in which hundreds of scientists unsuccessfully attempted to repro-
duce work that had been announced without appropriate experimental validation. More
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Fig. 1. The relationship between data volume and query throughput rate for a standard “unit cost”
computer. Points in the shaded region are feasible; points above and to the right are not. The
regions labelled A, B, and C are discussed below.

recently, a claimed link (based on flimsy and now disproven evidence) between autism
and a common childhood vaccine has led to unnecessary suffering. Arguably the Y2K
“bug”, whose effects were largely unsubstantiated yet cost many billions of dollars, is
an example of similar carelessness in computing. Competent scientists applying robust
methods in an open manner are unlikely to cause such incidents.

2 Storing and Accessing Data

Consider Figure 1, which depicts a computer – with a processor, main memory, and disk
storage – applied to a data management task. The horizontal axis shows schematically
the size of problem that can be handled on this machine, with the vertical line crossing
it representing the physical storage capacity of the given hardware. For example, on a
machine with 1 TB of disk storage, we might (certainly with a straightforward imple-
mentation) suppose that problems involving more than 1 TB of data are not feasible.

The vertical axis in Figure 1 shows a processing rate – measured in queries per
second – and is an independent measure of the system. The curve represents the peak
processing load for that hardware combination. In most retrieval applications, the effort
per query increases as the data volume increases, hence the downward trend.

The shaded region bounded by the two lines is the feasible zone. Combinations of
data volume and query arrival rate that fall within the feasible zone are sustainable on
the hardware, whereas combinations outside the region are not. In practice the exact
positions of the lines depends on many factors, not all of which are easy to quantify:

– the processor speed and other characteristics, such as cache size and type;
– the amount of main memory available;
– the amount of disk storage available, and its access speed;
– the quality of the compiler;
– the skill of the programmer; and
– the fundamental nature of the algorithm and of the task that it supports.
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When circumstances dictate a combination of data volume and query arrival rate
that lies outside the feasible region, we must shift the bounding lines so that the feasible
region includes the desired performance point. Reflecting the list above, this might be
done by increasing the processor speed or cache speed or size; increasing the amount of
main memory; increasing the disk capacity or speed; using a better compiler; improving
the quality of the implementation; or by using a better algorithm.

The goal of research in areas of this type is almost always to achieve the last of these:
we seek recognition by devising better techniques, and use our science to recognize
circumstances in which adding more resources is unlikely to be helpful. In contrast, a
supplier of commercial solutions more often than not simply scales the hardware.

Figure 1 is simplistic in several ways, not the least of which is the lack of scale on
either axis. Another way in which it is potentially misleading is that the bounding curve
is portrayed as a sharp line, whereas in practice there is a blurred transition between the
feasible region and the infeasible region. When the query load is close to the maximum
that can be supported, the system may begin to thrash or behave chaotically, and average
query response time will increase markedly. In practice, systems are typically operated
well below their peak capability, so as to meet a quality-of-service guarantee.

As an example of the type of improvements that can alter the feasible region, consider
the role of compression. If we suppose that the data being manipulated can be stored
compressed, then the data volume limit (the vertical boundary in Figure 1) shifts to the
right, widening the feasible region. On the other hand, depending on the nature of the
transformation used, and the type of processing required for each query, compression
might slow query response rates rates, and lower the horizontal boundary of the fea-
sible region. Note, however, that in some circumstances compression can boost query
processing rates, thereby extending the feasible region in both dimensions [Zobel and
Moffat, 1995, Williams and Zobel, 1999].

3 Distribution

Another way to extend feasibility is via distribution – by harnessing the power of multiple
computers, we are able to tackle problems that are orders of magnitude larger than might
be handled on a single machine. For example, much of the impressive performance
achieved by the Google search engine arises as a consequence of the more than 10,000
computers used to support querying operations [Barroso et al., 2003].

Looking again at Figure 1, several distinct situations might occur. If the data volume
fits the machine profile, but the anticipated query volume is too high, then we are in
region A. To meet the required query load, the correct response is replication of the
system, since a single computer is able to support the data volume, and, assuming
that queries are read-only, multiple computers operating independently in parallel with
mirrored data sets have no need for any synchronization overhead. In this scenario, a
query is routed to a server by a receptionist process, and the server that resolves the
query communicates the output directly back to the initial client.

On the other hand, in region B of Figure 1, one server could possibly carry the query
load, but is unable to hold the necessary volume of data. Multiple computers are again
required, but now it is the data that must be divided into manageable chunks, rather than
the workload. Systems that partition the data are inherently more complex than replicated
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Fig. 2. Use of multiple unit machines to handle data volumes or query loads larger than can be
handled by a single unit machine.

systems – the receptionist process must split each query according to the data distribution,
invoke multiple servers on sub-queries, and then combine the partial answers that they
return. There are two places in this arrangement where drag, or redundant computation,
might be introduced. First, it might not be possible to perfectly split the query or data,
making the sum of the effort involved in the sub-queries greater than the cost of executing
the original query. Second, there may be non-trivial effort involved in combining the
partial answers to make a global answer.

Finally, in region C of Figure 1, the data must be partitioned across several machines,
and then replicated to obtain the required query processing capability.

One interesting question is whether it is more effective to double the volume of disk
and memory on a given machine or to add another machine with the same memory and
disk capacity. If the aim is to increase throughput, disk is unhelpful but memory could
make a massive difference; if the aim is to increase the volume of data supported, further
disk and memory can do so but at some cost in throughput and response time. If the aim
is to fully explore the space depicted in Figure 1, all three resources must be added –
hence our interest in distribution using idealized unit computers.

Figure 2 shows, again for a hypothetical unit computer of some fixed configuration,
the zones that describe the resources required when data partitioning and replication
must be combined. The shapes of the regions are a direct consequence of the factors
discussed. Twice the number of machines used to manage twice the volume of data
result is unlikely to result in the same query throughput rate being possible. On the other
hand, a data split across multiple machines reduces the load on each, so total query
load can, in theory, also increase – but not beyond what could be attained by placing a
proportionate fraction of the data on a single machine.

For these various reasons, any algorithmic challenge lies in the area of partitioning
rather than of replication. An immediate consequence is that experiments to test a dis-
tributed mechanism must be on a scale that warrants data partitioning. Taking any fixed
volume of data and executing a software system using k = 1, 2, 3, . . . computers does
not supply any inherent evidence as to the scalability of the technique in question. Such
an experiment represents an implausible situation.
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Given a new algorithm, then, the question arises as to how the benefit it offers
might be measured. A typical experiment involves selecting some sample data sets and
measuring, say, query processing times as the number of processors used is varied. But
do changes in processing time tell us anything about the position of the feasible regions
(Figure 2), or about potential throughput? And do the results have any lessons for other
hardware, or other data, or other implementations? We explore such questions below,
after reviewing issues and challenges for experimental design.

4 Designing an Experiment

The purpose of an experiment is to seek confirmation of a hypothesis. Having accepted
that experimentation is essential for robust science [Tichy, 1998], there are many issues
that an investigator needs to confront [Zobel et al., 1996, Zobel, 2004, chapter 11]. The
following paragraphs summarize a set of minimum standards that a skeptical reader (and
a good reviewer) will apply before accepting the validity of any experiments.

Baselines. There needs to be a clear, interesting hypothesis. It isn’t particularly mean-
ingful, for example, to claim that an algorithm is “fast” or “efficient”. Efficient compared
to what? Such a claim implies the existence of a baseline – a method against which the
new algorithm is being compared. It follows that the baseline should be the best previous
method for computing the same task. Comparison against a poor baseline makes little
sense, since there are many different ways of gaining initial improvements. And is the
new method faster on all kinds of data, on all machines, at all scales?

More typically, it is the trend of behavior that is relevant. A technique is most inter-
esting if, as the data volume increases, the improvement offered by the new algorithm
increases by a greater fraction.

The use of baselines presents other challenges. If the implementations are not of
similar standard, then the results are meaningless; yet, during a research program, in-
vestigators tend to focus on developing their contribution and not on reimplementing
the work of others. In some cases, other investigators have made their code available
– allowing results directly comparable to those previously published. (Note that if you
do use the source code or data of others, you should both cite the paper in which the
techniques are described and also as a separate note indicate the source and authorship
of the software you have made use of. The two works may involve quite different sets
of people, and both sets should have their work acknowledged.)

An experiment might also be used to show that an algorithm provides a feasible
method for solving a problem, for example when expected asymptotic costs have been
reduced from quadratic to linear. In such cases, a baseline might be of less interest,
and absolute performance sufficient to defend the hypothesis. Nevertheless, measuring
performance across a range of scales of data is crucial. Performance at a single data
point is (singularly) uninformative.

Data and software. Measurement of performance requires use of input data. It is impor-
tant for sensible data to be used, and explained carefully. If the data is artificial in some
way, the justification for using it needs to be very careful indeed – results on synthetic
data rarely generalize to realistic cases.

Once you have finished with your data and software, it is good practice to make
them publicly available. By all means add any caveats that you wish – “may be used for
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research purposes only”, “no warranty”, and so on – but do allow them to be used by
your colleagues. The field that you are a member of will benefit, and your work is more
likely to be accurately recognized. Being overly protective of your intellectual property
hints that there are limitations in your code or data that would undermine or contradict
your published results.

In some fields, there are data sets that have become so widely used that they have the
status of “gold standards”. Even if you wish to give results for, and then make public,
more specific data sets that show the behavior you wish to comment on, you should also
give comparative values for previous data sets that have been widely quoted.

Occasionally an investigator argues that, because the cost of undertaking a full-scale
experiment is prohibitive, a limited or artificial experiment should be used. Perhaps two
computers running multiple processes are assumed to resemble a grid; or a gigabyte
of data is used where a terabyte would be the likely volume in practice; or querying
is simulated by random accesses into an index; or documents are simulated by random
strings of fixed length; or queries are randomly-sampled strings from documents. Doing
so is perfectly reasonable, but only if the conclusions make it clear that the results are
no more than preliminary and may have no implications for realistic implementations.

Any extrapolations from results on a limited data set are likely to be flawed. For
example, search amongst a few thousand documents does not present the challenges of
search across the web. Similarly, performance on a data set that fits into a CPU cache
has no implications for performance on a memory-sized data set. Nor does performance
on data that fits in memory have any lessons for larger data sets on disk.

Measurement. Another important issue is deciding what to measure. Candidates include
– but are not limited to – response time, CPU time, query throughput, memory usage,
number of simultaneous users, network activity, disk volume, and, in the case of text
search, effectiveness as indicated by the ability to retrieve relevant documents.

These various facets are often in tension, and can be traded against each other. Giving
an overall feel as to the viability of a technique is just as useful as giving precise results
in one axis of measurement. For example, a new data compression technique that obtains
improved compression effectiveness may be of considerable interest, but the excitement
would be greatly tempered if the computational costs and memory requirements mean
that in practice it can only be applied to small files.

Measurement is rarely straightforward. Even simple cases present issues, such as
startup costs and questions such as whether it makes sense to average costs over widely
varying inputs. A common error is to report reductions in size and gains in speed, but to
fail to note that they could not be achieved at the same time.

Another common error is to introduce a large number of variables, then fail to deter-
mine which are responsible for the observed performance. Fixing key variables while
exploring others is essential for thorough analysis of behavior. However, be aware that
variables may be correlated with each other; for example, considering the example in
the previous section, fixing the size of the data set while varying the number of machines
may lead to meaningless results.

A key issue is that any training must be separated from testing. It is enticing to play
around with your implementation until you are sure it is properly tuned, and then report
a “best” run and claim it as evidence of success; but in a production environment such
settings might be impossible to determine. In contrast, if tuning or training on one set
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of data leads to excellent performance on another, it is clear that the results are indeed
strong. Even better is if a wide range of training data gives rise to consistent and stable
parameter settings. That is, the more independent cross-checks that can be performed,
the more robust the claims. Conversely, results from a single data set should be treated
with suspicion – and if there is any doubt about replicability, statistical tests should be
applied to the output of multiple independent experiments, and confidence estimates
reported to lend credence to claimed relativities.

Finally, it is perhaps worth commenting that it can also be valuable to carry out
experimentation on a tractable rather than industrial scale, or using assessment method-
ologies that have known flaws but still provide some useful guidance. Not everyone
has the resources to operate – referring to our distributed text querying case study – a
network of dozens of computers and terabytes of data.

Reporting. A final aspect of measurement is considering what to report. For example,
what units will convey the most general information? How might the numbers be stan-
dardized across different data sets to eliminate unimportant information? And are they
presented as graphs, or tables, or both? This aspect of experimental design is beyond the
scope of this paper, and the reader is instead referred to the advice given by, for example,
Johnson [2002], and Zobel [2004].

5 Distributed Text Querying

We now return to our case study: distributed text retrieval. We suppose that there are k
processors, that the data is being split k ways, and that the data is sufficiently voluminous
that a k-way split is sensible on the target hardware.

In a text retrieval system, queries are sets of words or phrases, and the records being
searched are unstructured. For example, in a web search engine, a large number of web
pages are indexed, and users supply queries typically containing just a few words. To
answer a query, the retrieval system identifies the r documents in the collection that
are assigned the highest scores by a similarity heuristic. In web applications r = 10 or
perhaps 100, and in other document search environments r = 1,000 is a reasonable upper
limit. In both situations, the system is implemented using an inverted index, consisting
of a vocabulary, and a set of inverted lists [Witten et al., 1999].

Two different types of data partitioning have been proposed for text searching. In
a document-partitioned index, each server contains an index for a fraction of the doc-
uments, and can answer queries for that subset of the documents. Queries for the col-
lection as a whole are only answered when all servers have computed their top r an-
swers, at which time the top r of those rk answers can be identified by the receptionist.
Document-partitioned systems have been described by, amongst others, Harman et al.
[1991], Tomasic and Garcı́a-Molina [1993], and [Cahoon et al., 2000]. Google uses both
document-partitioning and replication [Barroso et al., 2003].

In an index-partitioned index, each server contains the full index information for a
subset of the terms. Queries for the collection as a whole can only be answered when all
servers that store information for query terms have returned the corresponding inverted
lists to the receptionist. Index-partitioned indexing has been considered by, among others,
Jeong and Omiecinski [1995], Ribeiro-Neto and Barbosa [1998], and Badue et al. [2001].
In effect, an index-partitioned system uses the additional computers as data stores only,
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Table 1. Comparison of costs associated with document-partitioned text retrieval and index-
partitioned text retrieval, when a query of q terms is processed with a k-way data partition, to
determine a ranked list of r answers. Note that q is assumed to be less than k. Quantity I is the
sum of the lengths of the inverted lists for the query terms, counted in pointers.

Performance indicator Monolithic Index Document
system partitioned partitioned

Number of servers active on query 1 q k

Per processor
Disk seeks and transfers q 1 q
Index volume transferred from disk I I/q I/k
Number of documents scored r 0 r

Plus
Computation load at receptionist n/a I + r kr
Network volume n/a I kr

Total cost I + q + r I + q + r I + kq + kr

rather than as auxiliary computation devices. In the event of two terms being stored on
the same machine, local operations can take place, but for large text searching systems
the usual relationship is k � q, and only one term per processor is active in any given
query.

Each of the alternatives has disadvantages. In a document-partitioned system, each
query is executed in full on each of the machines, including the disk seeks to retrieve
inverted lists. Over the k processors, a query of q terms involves kq seeks and data
transfers. Moreover, if the top-ranking r documents for the whole collection are to be
correctly determined, each of the subcollections must also identify its top r documents.
In total, more computation is performed than in a monolithic system. Conversely, in an
index-partitioned system, all of the computation is undertaken on the receptionist, which
is then a potential bottleneck.

Table 1 summarizes the relative performance of document- and index-partitioned
systems, and compares them to a non-partitioned system (assuming it to be feasible)
for the same volume of data. In a non-partitioned system, there is one seek per query
term, and a total computation load dominated by the processing of I pointers, and then
extracting the top r answers. Note that, in practice, I is directly proportional to the
volume of indexed data.

An interesting aspect of performance not directly captured in the table is elapsed
time per query, which is best approximated as the sum of the per processor section of
the table, plus the receptionist cost. In the case of the index-partitioned system, the sum
is proportional to I + q + r still, as the receptionist must collate all inverted lists to
determine the final answer. On the other hand, for a document-partitioned system, the
elapsed sum time is proportional to I/k + q + kr, and it is clear that the elapsed time
will be less, since r � I for a typical query.

Table 1 suggests that index-partitioning is more scalable than document-partitioning,
because the per-query cost using the latter is dependent on k. In this argument, as the data
is split over more and more machines, the drag associated with document-partitioning
becomes greater, and index-partitioning is more efficient.
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However, we observed above that partitioning should only be used when the volume
of data exceeds the capacity of one machine. That is, there is a relationship between I
and k that must be allowed for, and any “scaling up” discussion must take account of the
fact that doubling the number of processors k is only required when the volume of data
being manipulated doubles, and hence when the volume of data I per query is doubled.
Thus the bottom line of Table 1 shows that both document- and index-partitioned text
retrieval costs can be expected to scale almost linearly with data volume, and hence with
the number of processors.

Elapsed time per query suggests another perspective. Since I grows with data volume,
increasing the number of processors is of little benefit to index-partitioning, as the
receptionist must become a bottleneck. In contrast, for document-partitioning addition
of further processors increases total costs but can reduce elapsed time.

6 The Challenge

We recently developed a new pipelined distributed query evaluation method, and sought
to compare it to the document- and term-partitioning approaches. The new method is
a variant of index-partitioning, with the bottleneck at the receptionist circumvented by
transferring queries amongst servers. Each query still has elapsed time roughly propor-
tional to I , compared to roughly I/k for document-partitioning, but k queries can be
processed in about the same elapsed time as can k queries with document-partitioning.
Thus, intuitively, individual elapsed times might be higher but throughput should be
similar. We also expected pipelining to scale better with additional data and processors
due to the elimination of some of the per-processor costs.

But how to evaluate relative performance experimentally? In the context of the criteria
identified in Section 4, the baselines are clear. We can regard pipelining as successful if
the trend is to better throughput and response time than document- or index-partitioning.
Regarding software, we developed all of the necessary code in-house, and the same
libraries underpin our implementations of all three approaches. The result is a full-scale
search engine, and even with just one standard desktop workstation, the monolithic
implementation can process 5–50 queries per second on 100 GB of data. Regarding
data, artificial sources would clearly be inappropriate, and would lead to unrealistic
results. Fortunately, large volumes of real web data are available, and we made use
of 100 GB of text from the TREC project [Bailey et al., 2003], and some millions of
queries from the logs of search engines such as Excite. We are not comparing retrieval
effectiveness in these experiments, so have no need for query sets that have matching
relevance judgements. Whether or not 100 GB of data is sufficient is arguable, but use
of more would imply a significant escalation of costs, both for data acquisition, and for
experimental hardware.

Measurement, in our context, is far from straightforward. We wish to investigate
scalability as the volume of data and the number of processors is increased, and must
also consider the number of simultaneous users, which are supported in different ways
in the different approaches.

One important facet of our experiments was that we removed start-up effects, by
measuring the elapsed time for 10,000 queries; then some time later measuring the
elapsed time for 20,000 queries; and then finally attributing the difference in elapsed
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time to the second tranche of 10,000 queries. We also experimented carefully with intra-
query parallelism, allowing multiple execution threads to be simultaneously active.

In terms of reporting, we used units “GB×queries/machines×seconds”, where “GB”
is the volume of indexed data and “seconds” is elapsed time measured over a large set
of queries. In these units, a low number corresponds to inefficient use of machines. The
measure provides an indication of whether a system scales with number of machines
and with data volume. It does not show absolute throughput (“queries/seconds”), though
this can be deduced; and nor does it provide an indication of averaged elapsed time per
query, which needs to be measured separately.

Some previous work in the area of distributed text retrieval is unconvincing because
of failings with respect to these issues. One paper, for example, extrapolates results from
a small number of processors and 160 MB of data, to 1 TB of data – based on synthetic
documents and synthetic 10-term queries. In several papers, only small numbers of
queries are used to compare approaches; however, since the different methods cache re-
used data in different ways, the results cannot be applied to a system with an aggregate
non-trivial volume of memory. In many cases, the volume of data is unrealistically small;
given that the amount of disk activity is one key discriminator between the approaches,
a small data set that resides in memory is uninformative.

More subtly, in many of the past papers the power of distribution was demonstrated
by choosing a fixed-size data set and increasing the number of machines. It should be
clear from the discussion above that little can be learnt from such an experiment. If
the volume of data is well within the capacity of a single machine, spreading it among
many machines does no more than allocate additional memory and disk – strategies that
would also improve performance on a single machine. Bottlenecks in the system are
not revealed, nor is there evidence of scaling. More worrying is that in only a few of
these papers is there evidence that queries were allowed to proceed in parallel; in many
cases, the measurement was of sequential query processing, an uninteresting task in a
distributed environment. Our pipelined method, for example, would perform poorly in
such a context, despite higher potential for scaling with data volumes and with number
of servers than is offered by other approaches.

7 Summary

This article has, in no small part, arisen by our being asked to read very many papers
in which experimentation has been neglected, or handled poorly. Good experimentation
can be tedious, and expensive to mount; but is the ultimate test of our science – and of the
usefulness of our ideas. As a consequence, we should not hesitate to undertake careful
experimentation, and as readers (and referees) should expect that claims of usefulness
will be empirically defended by rigorous and plausible experiments.

Having said that, out final observation is that experimentation is extraordinarily hard
to do well, but very rewarding when accomplished. Our investigation into distributed
searching was criticized by the referees as being on too little data and using insufficient
machines, and the paper was rejected. Our challenge now is to design and execute further
experiments that do pass the twin tests of rigor and persuasion.
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