
The VLDB Journal (2009) 18:157–179
DOI 10.1007/s00778-008-0094-1

REGULAR PAPER

B-tries for disk-based string management

Nikolas Askitis · Justin Zobel

Received: 11 June 2006 / Revised: 14 December 2007 / Accepted: 9 January 2008 / Published online: 11 March 2008
© Springer-Verlag 2008

Abstract A wide range of applications require that large
quantities of data be maintained in sort order on disk. The
B-tree, and its variants, are an efficient general-purpose disk-
based data structure that is almost universally used for this
task. The B-trie has the potential to be a competitive alter-
native for the storage of data where strings are used as keys,
but has not previously been thoroughly described or tested.
We propose new algorithms for the insertion, deletion, and
equality search of variable-length strings in a disk-resident
B-trie, as well as novel splitting strategies which are a criti-
cal element of a practical implementation. We experimentally
compare the B-trie against variants of B-tree on several large
sets of strings with a range of characteristics. Our results
demonstrate that, although the B-trie uses more memory, it
is faster, more scalable, and requires less disk space.

Keywords B-tree · Burst trie · Secondary storage ·
Vocabulary accumulation · Word-level indexing ·
Data structures

1 Introduction

Efficient storage and retrieval of data is one of the fundamen-
tal problems in computer science. Many applications such as
databases and search engines, are built on infrastructures that
require efficient access to large volumes of data. However, the
choice of data structure is limited, as the majority of trees and

N. Askitis (B)
School of Computer Science and Information Technology,
RMIT University, Melbourne, Australia
e-mail: naskitis@cs.rmit.edu.au; nikolas.askitis@rmit.edu.au

J. Zobel
NICTA, University of Melbourne, Parkville, Australia
e-mail: jz@csse.unimelb.edu.au

tries that are efficient in memory cannot be directly mapped
to disk without incurring high costs [52].

The best-known structure for this task is the B-tree, pro-
posed by Bayer and McCreight [9], and its variants. In its
most practical form, the B-tree is a multi-way balanced tree
comprised of two types of nodes: internal and leaf. Internal
nodes are used as an index or a road-map to leaf nodes, which
contain the data. The B-tree is considered to be the most effi-
cient data structure for maintaining sorted data on disk [3,43,
83]. A key characteristic is the use of a balanced tree struc-
ture, which guarantees worst-case O(logB N) performance
for search of N keys with a branching factor (node fan-out)
of B, regardless of the distribution of data. This access bound
is often significantly better than the performance of an
in-memory data structure using virtual memory [3]. In prac-
tice, due to its high branching factor, typically the total vol-
ume of internal nodes is very small and traversal requires
only a single disk access. External hash tables [21,44,58,
67] are also efficient data structures, but cannot guarantee
a bounded worst-case cost, nor can they maintain strings
in sort order, which would be required for efficient range
search.

In addition to its widespread use in standard database sys-
tems [23], the B-tree has many applications, including dat-
abases, information retrieval, and genomic databases [76].
B-trees have been used to efficiently manage and retrieve
large vocabularies that are associated with text databases [12].
Some file systems, such as Linux Reiser and Windows NTFS,
are also based on B-trees.

The B-trie—a disk-resident trie—has the potential to be a
competitive alternative for the sorted storage of data where
strings are used as keys. While the concept of the B-trie has
been outlined in previous literature [89], it has not previ-
ously been formally described, explored, or tested. In par-
ticular, there are no discussions on node splitting strategies,

123

158 N. Askitis, J. Zobel

which are a critical element of a practical implementation.
The B-trie proposed by Szpankowski [89] is simply a static
trie indexing a set of buckets that store up to b keys.

In this paper, we propose new algorithms for the inser-
tion, deletion, and equality search of variable-length strings
in a disk-based B-trie, for use in common string processing
tasks such as vocabulary accumulation and dictionary man-
agement. Our variant of B-trie is effectively a novel applica-
tion of a burst trie [51] to disk, and is therefore composed of
two types of nodes: trie and bucket. In a burst trie, when a
bucket is deemed as being full, it is burst into at most A new
buckets that can be randomly accessed during the bursting
phase; A represents the size of the alphabet used, which in
our case, is the 128 characters of the ASCII table. Bursting
is efficient in memory because buckets can be of variable-
size and, as shown by Heinz et al. [51], their random access
during the bursting phase has little to no impact on perfor-
mance. On disk, however, a bucket must be kept to a size that
is a multiple of the disk-block size used by the underlying
architecture (for efficiency purposes). However this implies
that bursting a bucket on disk will create up to A new disk-
block sized buckets, which is a waste of space. A further
issue is that these buckets can be accessed at random during
the bursting phase, which can attract unacceptable costs due
to excessive disk accesses.

A major contribution is therefore the development of an
appropriate approach to bucket splitting, which allows the
B-trie to reside efficiently on disk, by both minimizing the
number of buckets created and the random access caused
during the splitting process. In this approach, we classify
buckets as either hybrid or pure, which differ in the man-
ner of how they are split. These novel elements of pure and
hybrid buckets are how the B-trie can reside efficiently on
disk, while giving a B-tree-like organization of data. Unlike
the B-tree, however, the B-trie is an unbalanced structure,
but as we demonstrate later, this has little or no impact on
actual performance, which in our case, involves strings with
an average length of up to 30 characters.

Existing disk-resident trie structures, such as the exter-
nal suffix tree [65,90], are full-text indexes and are therefore
not suited for common string processing tasks, due to exces-
sive space requirements and high update costs when moved
onto disk [47,90]. The B-trie, in contrast, maintains a word-
level index, and is thus not as powerful as a full-text index.
Hence, like the B-tree, the B-trie is ideally suited for common
string processing tasks that typically involve basic string pro-
cessing operations such as insertion, deletion, and equality
match on individual strings. Range search (finding all strings
that begin with a sequence of characters) is also a common
string processing operation and can be readily applied to trie-
based data structures, including the B-trie. However, we omit
range search in this paper, as it is beyond the scope of our
work.

In the discussions that follow, we address variants of
B-trees that are available for disk-based string management,
and continue our discussions on disk-resident suffix trees.
We then propose new algorithms for the B-trie and conduct
thorough experiments to compare our B-trie against effi-
cient variants of B-trees. These variants include a prefix
B+-tree [10], where internal nodes only store the shortest
distinct prefix of strings that are promoted from leaf nodes,
and the Berkeley B+-tree [77], which is a high-performance
open-source B+-tree implementation. Other variants we con-
sider are the string B-tree [36], which can maintain unboun-
ded-length strings efficiently on disk, and a cache-oblivious
string B-tree [17,20], which is theoretically designed to per-
form well on all levels of the memory hierarchy (including
disk), without prior knowledge of the size and characteristics
of each level [64].

The B-trie was, in most cases, superior to the B+-trees
with typical speed gains of 5–15% and up to 50% in the
presence of skew in the data distribution. The B-trie creates
a larger index structure than the B+-trees, and thus requires
more space to buffer its trie nodes in memory, but the amount
of space involved is small. In most cases, the overall disk
space required by the B-trie was less than the equivalent
B+-tree, due to the elimination of shared prefixes in buckets
that compensated for the space consumed by trie nodes. Over-
all, our results show that the B-trie is a superior data struc-
ture to the B-tree, for the task of efficient disk-based string
management.

2 B-trees

The B-tree is a balanced multi-way disk-based tree designed
to reduce the number of disk access required to manage a
large set of strings. The B-tree was proposed by Bayer and
McCreight [9] to solve the problem of external data man-
agement. The B-tree employs a similar balancing scheme to
that of AVL trees [40], which, however, cannot be efficiently
sustained on disk, as changes are not restricted to a single
path of the tree (from the root to the candidate node).

The B-tree is one of the most efficient disk-based data
structures for external data management [43,78,83,91], as it
offers four properties that are desirable for disk-based appli-
cations. First, even with large volumes of data, the height
of the B-tree remains low, due to the high branching fac-
tor which minimizes the number of nodes accessed. Second,
with the exception of the root node, all nodes are guaranteed
to have a load factor of at least 50%. In practice, an average
utilization of 69% for random keys has been observed [94].
Third, the tree is a balanced structure, offering a guaran-
teed worst-case access cost, regardless of the distribution of
data. Bounds on access costs are an essential requirement for
applications such as database query engines [70]. Fourth, the

123

B-tries for disk-based string management 159

tree maintains data in sort order, and can therefore support
efficient range search queries.

The B-tree has been successfully applied to many tasks,
including spatial and geographic databases, multimedia data-
bases, text retrieval systems, and high-dimensional databases,
which are commonly associated with data warehouses [76].
There are other data structures available for disk-based string
management, yet none offer all the properties described. The
M-tree, for example, is a generalization of a standard binary
search tree that utilizes three types of nodes: internal nodes,
semi-leaves, and leaves. A comparative study of M-trees
and B-trees [4] demonstrated that the average search cost of
M-trees often rivals that of B-trees. However, M-trees have
catastrophic space requirements for large data volumes.
Arnow et al. [5] extended the concept of the M-tree to yield
the P-tree. This multi-way tree reduces the space require-
ments of an M-tree while sustaining its favorable average-
case performance. It was found to have superior average-case
storage utilization and search costs (for small files) to the
B-tree. However, unlike the M-tree, the P-tree is an unbal-
anced tree structure, to an extent that makes it impractical for
large files.

Dense multi-way trees [31] are another class of balanced
multi-way trees that are similar to the B-tree, but offer alter-
native tree construction schemes that allow for the creation
of highly dense tree structures. Denser trees require fewer
nodes, which can significantly reduce the space requirement
of the overall tree structure. However, this is achieved at the
expense of higher update and maintenance costs.

The buffer tree is a balanced multi-way tree that allocates
a buffer to each node [2]. Nodes are only populated with data
once their buffer overflows, which amortizes the cost of disk
access. Hence, the buffer tree, as the name suggests, batches
insertion and search requests to improve performance. The
buffer tree is primarily designed for sorting and for use in
external priority queues or external range search.

There are many variants of and enhancements to the
B-tree that have been developed to satisfy specific require-
ments. Comer [29] proposed the B∗-tree (also known as the
B*-method), developed to improve space efficiency by
increasing the load factor of each node to a minimum of 67%.
In this approach, when a node is full, a sibling node to the
left or right is accessed. If the sibling has space, a single key
is moved to prevent a split. Otherwise, the two full nodes are
split into three. The space saved, however, is at the expense
of access time.

A further advance in space efficiency is the method of
partial expansion [68], which uses variable-sized nodes on
disk. When a node is full, its size is expanded until a thresh-
old is met. This approach has the advantage of prolonging
the split of infrequently accessed nodes, which can reduce
tree height. Partial expansion can achieve the same space
efficiency as the B∗-tree, but at a lower cost. However, it

is impractical to maintain dynamic nodes on disk, due to
the high costs involved and the space wasted due to exter-
nal fragmentation [8]. Another similar method is the adap-
tive overflow technique proposed by Baeza-Yates [7]. This
method also uses variable-sized nodes, but performs unbal-
anced splits. Its storage utilization, which is adaptive, is not as
good as the previous methods described, but it does provide
better insertion costs than the B∗-tree, while offering space
utilization that is almost as good. Unlike partial expansion,
however, nodes are grown in fixed-sized chunks, which can
be more efficient to maintain on disk. As with the B∗-tree
and partial expansion, this technique sacrifices speed to
improve space.

A simple yet effective improvement is the B+-tree [29].
When a leaf node splits, a copy of the middle key is promoted
up into the internal nodes; in the B-tree, the middle key is
moved out of the split node. This copy only occurs when a
leaf splits. The index component of the B+-tree remains as a
B-tree, while the leaf nodes contain a complete copy of the
data. This technique separates the index from the data, which
has obvious advantages for applications such as databases.

Bayer and Unterauer [10] took advantage of the indepen-
dent index of a B+-tree to develop a simple prefix B+-tree. In
this refinement, internal nodes only store the shortest distinct
prefix from the strings promoted from leaf nodes. When a leaf
node is split, the middle key is compared to the next larger
key to determine the smallest distinguishing prefix. Once
found, the prefix is then promoted up the tree and the leaf is
split. For example, consider the sequence of strings “auto”,
“boat”, “car”, “zebra”. On split, the middle key, “boat”, is
compared against “car”, yielding the shortest distinct pre-
fix of “c”, which is promoted up instead of “boat”. In some
cases, however, no space is saved, for example when the split
key is “programmer” and the next larger key is “program-
mers”. In this case, Bayer and Unterauer [10] suggest using
a split interval or window around the middle key, to select
the smallest key that can be promoted. Before the smallest
key is selected, however, the keys in the split interval are
filtered to determine their smallest distinguishing prefix. For
example, a split interval consisting of the strings “car”, “cat”,
“boat”, and “zebra” is filtered into “car”, “cat”, “b”, and “z”.
From this example, candidate “b” offers the least characters
(scanning left to right).

The goal of the prefix B+-tree is to increase the string
capacity of each internal node, to reduce tree height and hence
the number of disk accesses. Bayer and Unterauer [10] pro-
posed a more complicated modification to the prefix B+-tree
that can further reduce height by using a prefix compression
technique on strings, which is similar to front-coding [93].
However, the space saved is at the expense of access time, as
internal nodes must be decompressed on access [82].

The string B-tree (SB-tree) is another variant proposed by
Ferragina and Grossi [36]. The primary difference between

123

160 N. Askitis, J. Zobel

the SB-tree and its predecessors is that strings are not stored
within nodes. Instead, they are stored, uncompressed, in a
file on disk and nodes simply maintain pointers to them. This
approach can substantially increase the fan-out of each inter-
nal node, reducing tree height while supporting unbounded
length strings.

In a prefix B+-tree, for example, storing long strings in
nodes will reduce node fan-out and in cases where the length
of a string exceeds the size of a node, overflow buckets are
used which can be expensive to maintain. Hence, the SB-tree
is likely to be a viable alternative for tasks involving long
strings. However, maintaining a sorted array of string point-
ers per node is unrealistic [3]. During tree traversal, access to
a node incurs a disk access and the subsequent binary search
of its k sorted string pointers can cause a further log2 k disk
accesses. The strings on disk are typically not maintained
in sort order—due to the potentially high costs involved—
which can reduce the access locality of pointers within nodes.
Hence, traversing a SB-tree in this manner can cause strings
to be accessed randomly on disk, which is inefficient.

Ferragina and Grossi [36] therefore represent each node
as a Patricia trie, also known as a blind trie. Binary search
is replaced by a trie traversal that incurs at most a single
disk access, used to fetch a string suffix for comparison.
The expected access cost for traversing a SB-tree is there-
fore 2 logB N . In addition, the blind tries are stored suc-
cinctly on disk, to reduce their space consumption. However,
this requires that nodes are decompressed on access and
re-compressed on modification, which could become a per-
formance bottleneck. Another potential disadvantage is that
nodes can be split unevenly (that is, the contents of a node
can not always be divided evenly amongst two new nodes),
due to the complexity of splitting a blind trie.

To match the analytical cost of a conventional B-tree—
where strings are stored within nodes—the SB-tree must keep
nodes cached in memory, to eliminate the disk cost incurred
on node access. However, this can make the SB-tree ineffi-
cient to access in situations where space is highly restrictive.
To minimize the random access caused by traversing string
pointers, Ferragina and Grossi [36] suggest sorting the entire
dataset on disk, and to build the SB-tree from the bottom-up,
that is, to bulk-load [3,36,56]. This will significantly reduce
the construction costs of the SB-tree and improve the access
locality of its string pointers. However, sorting the entire data-
set beforehand may not be a viable solution when the dataset
is large, or when strings are not known in advance. In such
cases, the SB-tree can be constructed from the top-down,
which can be expensive. First, new strings are appended to
the file on disk, which will reduce the access locality of string
pointers. Second, the SB-tree requires nodes (from the same
level in the tree) to be stored contiguously and in lexico-
graphic order [36,56,74]. Hence, once a node splits, it will
be necessary to move a potentially large number of nodes

on disk to maintain this invariant, which can become a per-
formance bottleneck for large datasets. To support top-down
construction efficiently, the SB-tree must therefore buffer its
internal and leaf nodes in-memory, to minimize access to
disk.

Rose [81] experimentally compared the performance of
the SB-tree against the Berkeley B+-tree [77], a high-per-
formance open-source B+-tree implementation. The SB-tree
was found to be consistently faster than Berkeley for long
strings that contained thousands of characters. Berkeley per-
formed poorly due to the use overflow buckets and its sub-
sequent increase in height. The SB-tree, in contrast, required
no overflow buckets and thus remained efficient and com-
pact. With short strings, however, such as those commonly
seen in plain-text documents, the SB-tree was shown to be
consistently slower. Rose [81] noted the cause as being the
computational overhead of compressing and decompressing
nodes and the bottleneck of requiring up to two disk accesses
per node: the first to fetch the node, and the second to fetch
one of its strings. Although these factors were also present
with long strings, the elimination of overflow buckets and
the high fan-out compensated. Hence, the SB-tree is an effi-
cient data structure for long strings, but has relatively poor
performance otherwise [81], as we show in later experiments.

Ferragina and Grossi [35] compared the performance of
the SB-tree to a suffix array [71], for the task of finding all
occurrences of an arbitrary pattern P in datasets of up to
128 megabytes. The SB-tree was shown to be more efficient
than a suffix array, and has subsequently been successful in
applications that involve pattern matching [30,34,37].

B-trees have also been modified to make better use of
memory and cache. A cache-conscious B+-tree stores the
child nodes of any given node sequentially [80]. This forms
a clustered index where only the address of a node’s first
child is required, in order to access the remaining child nodes.
Access locality is improved as a result, but update costs are
considerably higher due to the overhead of maintain clus-
tered indexes. Furthermore, the cache-conscious B+-tree is
an in-memory data structure that operates solely on fixed-
length keys. As a consequence, it is not a viable choice for
managing variable-length strings on disk.

The persistently cached B-tree [57] is another innovation
where performance is improved by exploiting unused areas
within nodes. This is accomplished through a replication
technique known as persistent caching, where part of one
node is copied into the free space of another, thereby effec-
tively loading two nodes from one disk access. This approach
can reduce search costs using fixed-length keys, but update
costs can be high due to the non-trivial task of maintaining
data coherency amongst nodes.

Cache-oblivious data structures are designed to perform
well on all levels of the memory hierarchy (including disk)
without prior knowledge of the size and characteristics of

123

B-tries for disk-based string management 161

each level [42,64]. Brodal and Fagerberg [20], for example,
theoretically investigated a static cache-oblivious string dic-
tionary. Similarly, a dynamic cache-oblivious B-tree [14] has
been described, but with no analysis of actual performance.
The cache-oblivious dynamic dictionary [16] has been com-
pared to a conventional B-tree, but on a simulated memory
hierarchy. These assume a uniform distribution in data and
operations, which is typically not observed in practice [15].

Recently, Bender et al. [17] theoretically investigated a
dynamic cache-oblivious string B-tree, which has been clai-
med to handle unbounded-length strings efficiently. How-
ever, the authors present no experimental evidence and derive
expected performance from experiments involving a cache-
oblivious B-tree [14], using uniformly distributed integers.
Indeed, a dynamic cache-oblivious string B-tree has yet to
be implemented [17].

Despite its success, the B-tree has disadvantages. One
problem is the complexity involved with processing nodes.
Splitting a node generally involves numerous steps that typi-
cally incur expensive performance penalties such as un-local-
ized disk access. Another problem is that strings within leaf
nodes may not share common prefixes, even though they are
lexicographically adjacent. For applications that require pre-
fix searches, a B-tree can be inefficient. The B-tree is poten-
tially inefficient under skewed access, as frequently accessed
leaves cannot be brought closer to the root of the tree, mak-
ing the B-tree less attractive for applications such as search
engines that typically process many repeated searches.

Researchers have addressed the problem of skew access on
disk by proposing several theoretical data structures that are
self-adjusting. Sherk [85] proposed a generalization of splay-
ing to K-ary trees, forming a self-adjusting B-tree called a
k-splay tree. Unlike the B-tree, the k-splay tree can become
severely unbalanced and, as a consequence, can be expen-
sive to access and maintain on disk. Martel [72] introduced
another a self-adjusting data structure called the k-forest. The
k-forest is simply an ordered set of B+-trees, where the first
tree is of height of 1, the second tree is of height 2, and so
forth, up to a height of h. A search proceeds by accessing the
trees, in sequence, until a match is found. Once found, the
key is moved to the first tree, and if there is no space, a key
from the first tree is selected and demoted into the second
tree. The demotion process can propagate through the trees,
until finally a new tree of height h + 1 is created. Frequently
accessed items will therefore be located in trees of smaller
height, which will improve access costs. However, the cost
of moving and demoting keys per search can become a per-
formance bottleneck on disk, and there is no benefit under
uniform access distributions. Furthermore, the cost of unsuc-
cessful search is high, as it involves accessing all trees in the
k-forest [52].

Ciriani et al. [25,26] proposed (in theory) a self-adjust-
ing disk-resident skip list. The basic concept of a skip list

involves building an index upon a totally ordered set of n
atomic items, such as integers. Hence, the disk-resident skip
list is built from the bottom-up using keys that are known and
sorted in advance. Although the skip list can be updated from
the top-down, in practice, this would be inefficient—partic-
ularly with strings—due to cost of updating its multi-layer
index [79,92].

The disk-resident skip list supports unbounded-length
strings in a manner similar to the SB-tree. That is, strings
are kept on disk and are accessed via string pointers. In prac-
tice, however, this approach implies that up to two disk reads
can be incurred on string access (one to fetch the node that
contains the string pointer, and another to fetch the string
for comparison), which is expensive. Although its expected
performance is studied in theory, the external skip list has yet
to be experimentally compared against other external string
data structures, such as the B+-tree.

Ko et al. [63] proposed a self-adjusting layout scheme for
suffix trees on disk that can theoretically optimize the number
of disk accesses required for a sequence of queries. However,
the authors also argued that the cost of adjusting their layout
scheme will likely be more expensive than using a balanced
tree. As such, their layout, which begins as a balanced tree,
is designed to make tree adjustments infrequent.

2.1 B+-tree implementation

We sought to develop a high performance disk-based B+-
tree to act as a baseline for comparison with our B-trie. We
implemented a standard B+-tree—where internal nodes store
full-length strings—and a prefix B+-tree. Other B-tree vari-
ants, such the cache-conscious B+-tree and the persistently
cached B-tree, are not suitable, due to their high update costs
and lack of support for variable-length strings. Similarly, the
SB-tree is also not a suitable candidate. We maintain variable
but bounded-length strings that are typically no more than a
few tens of characters in length. The SB-tree is known to be
inefficient with such strings [81]. Furthermore, to the best of
our knowledge, there is currently no implementation support
for a dynamic SB-tree [33,35,36,56,74,81] that can operate
efficiently when the number of strings to be stored or indexed
is not known in advance. A static SB-tree is available [88],
but requires strings to be sorted in advance and, once built,
it cannot accommodate new strings. Therefore, it is reason-
able to assume that a good implementation of a standard or
prefix B+-tree, on balance, is competitive with even recent
innovations.

We have followed a conventional B+-tree model [29]. All
nodes are of fixed size, which in our case is 8,192 bytes
(Fig. 1). This is a typical disk-block size and has been shown
to provide good performance [32,45]. In contrast to the SB-
tree, strings are stored within nodes. To prevent the situation
where a single string consumes an entire node, we enforce a

123

162 N. Askitis, J. Zobel

9 23 45

7 15 23 24

7

31 45 1009

Fig. 1 A conventional B+-tree. In this example, integers are used as
keys for simplicity

aeroplane\0zoo\0foil\0cat\0Fast\0

Fig. 2 Null-terminated strings are appended to existing strings in a
node. Pointers to these strings are kept in sort order. This approach
permits rapid insertion and search

string limit of 1,000 characters. (A production implementa-
tion would have to cater for longer strings by using overflow
buckets, but such strings do not arise in our data.) Duplicates
are maintained through the use of a 4-byte counter (an accu-
mulator), which is stored before each string. Only leaf nodes
maintain accumulators.

Hansen [49] describes several schemes for node organi-
zation, including Middle Gap, Binary Search, Partitioned,
and Square Root structures, which are designed to fully uti-
lize the space of a node at the cost of some search perfor-
mance. For instance, with the Middle Gap scheme, strings
are sorted and partitioned into several groups separated by
unused space. When a new string is inserted into a group, the
existing strings must be moved to maintain sort order. We
chose to sacrifice some space efficiency within our nodes to
obtain a node-organization scheme that offers fast insertion
and search. Our node organization is somewhat similar to the
unordered node structure mentioned by Hansen [49]. Strings
are stored in a sequential (occurrence order) manner; new
strings and their accumulators are simply appended. This
offers rapid insertion, but at the expense of a linear search on
node access, which is inefficient. To improve this model, we
assigned a string pointer to each string. These pointers are
maintained in a single array that is stored before the list of
strings, and are kept in ascending lexicographic order. This
allows for binary search, which is known to be an efficient
search method for accessing nodes [13]. Figure 2 shows an
example.

To reduce wasted space within nodes, we apply two tech-
niques. First is a string-pointer allocation strategy where each
node begins with 128 empty pointers. Once all pointers are
exhausted, room is made by appending space to the exist-
ing pointer-array. The strings that follow the array must be

shifted to the right to accommodate. Second, all buffered
nodes are given an additional kilobyte of space when brought
into memory. This oversize region helps ensure that 100% of
the node is utilized prior to splitting.

We use a bottom-up splitting approach, where a split first
occurs in a leaf node and then propagates up [83]. A top-
down technique has been proposed by Guibas and Sedgewick
[48], which performs the splitting during tree traversal. This
approach results in a slight decrease in space efficiency, as
full nodes can be unnecessarily split. The main components
of the B+-tree are as follows:

Internal nodes: These are 8,192 byte disk blocks that serve
as a road-map or an index to other nodes. They contain an
array of string pointers, an array of node pointers, a string
counter and a free-space counter. Strings in these nodes are
only copies from those promoted from leaf nodes.

Leaf nodes: Structurally identical to internal nodes, except
for the array of node pointers, which is absent.

A stack: Used to record the path taken to reach a leaf node.
This avoids the use of parent pointers within nodes, which
are expensive to maintain [3].

In a production system, we must store data that is associ-
ated with each string. We maintain string accumulators that
can easily be changed to represent pointers to data objects for
example. Larger data fields can be associated with each string
in the leaf nodes, however, this will leave less room for the
strings themselves, forcing the creation of more nodes. We
do not investigate the impact on performance when large data
fields are associated with strings. However, in such cases, we
found that it is generally more efficient to associate a single
pointer with every string, which is only traversed when the
additional data is required.

The B+-tree algorithm we implemented for string inser-
tion, deletion, and search complies with the standard descrip-
tions of the B+-tree [9,29,53]. However, certain additional
rules were adhered to:

1. A node is split once its free space is exhausted. All strings
smaller or equal to the middle string are retained in the
original node.

2. On modification, a node is immediately synchronized
(written) to disk, to ensure data integrity.

3. The most significant bit (MSB) of each node-pointer
determines the type of node it refers to. If its MSB is
set, then it points to a leaf node. A pointer to a node is
represented as an unsigned 32-bit integer which stores
the block number of a node (in a file) on disk.

We implement what is known as lazy deletion [53]. Dele-
tion proceeds by first searching for the required string, and

123

B-tries for disk-based string management 163

assuming it is found, it is removed from the acquired leaf
node. The leaf node is then internally re-organized, to update
its string pointers and to eliminate internal fragmentation.
The computational cost of node re-organization is small and
bound by the size of the node. Once the leaf node becomes
empty, it is flagged as having been deleted by placing its file
address into an address pool, to be reused by new nodes. The
parent node is then modified to have its corresponding leaf-
node pointer (and its string) deleted. Once the internal node
becomes empty, it is deleted in the same manner.

Lazy deletion is a simple and time-efficient way to delete
entries in large B+-trees. Many database system implemen-
tations have used lazy deletion [43,46]. Johnson and Shasha
[54,55] showed that with a mix of insertions and lazy deleti-
ons—assuming that deletions do not outnumber insertions—
nodes can retain acceptable percentages of entries.

Lazy deletion will waste space when deletions outnumber
insertions. In such cases, Jannink [53] described an alterna-
tive deletion algorithm that can shrink a B+-tree gracefully,
to conserve space. When a key is deleted from a node, and the
node is deemed as being under-loaded, we access its immedi-
ate neighbors to check whether they can transfer some of their
keys without becoming under-loaded themselves. Otherwise,
the under-loaded node must be merged with one of its neigh-
bors, and have its parent node updated. Such an algorithm,
however, can become expensive to apply on large B+-trees,
due to the potentially high number of disk accesses involved.

3 Trie-based data structures

Tries have two properties that cannot be easily imposed on
data structures based on binary search. First, strings are clus-
tered by shared prefix and second, there is an absence of—or
great reduction in the number of—string comparisons. In
addition, trie-based data structures, such as our B-trie, are
implicit cost-adaptive data structures. Trie nodes can be rap-
idly traversed, allowing frequently accessed buckets to be
acquired at minimal cost, even though they are not physi-
cally moved closer to the root. This is a key distinction to
self-adjusting tree structures, such as the splay tree [87], the
k-splay tree [85], the k-forest [72] and the external skip
list [26]. These data structures achieve cost-adaption through
structural modifications that are often too expensive to apply
in practice.

These benefits have made the trie popular for applications
such as text compression [11], dictionary management [1],
and pattern matching [39]. However, although fast, trie struc-
tures are space-hungry [28,51,73]. A simple implementation
of an trie is to represent every node as an array of pointers,
one for each letter of the alphabet [41]. This forms an array
trie, where each leaf is the terminus of a chain of pointers rep-
resenting a string, with k nodes in a string of length k. The

array trie offers rapid access to strings, but is space-intensive.
Several variations have been proposed to address this space
problem. A compact trie [11] for example, omits chains of
trie nodes that descend to a single node. The Patricia trie [83]
uses a similar approach, but collapses all redundant chains,
not just those that point to leaf nodes. These variants save
space but at the expense of access time and maintaining a
more complex data structure.

Another approach is to reduce the size of each trie by
removing unused pointers. The de la Briandais trie [19] or
list trie [61] saves space by changing the representation of trie
nodes from arrays to linked lists that only maintain non-null
pointers. These savings in space are at the expense of access
time [84]. Bentley and Sedgewick [18] changed the repre-
sentation of trie nodes from a linked list to a binary search
tree, forming a structure known as a ternary search trie. Every
node in a TST stores three outgoing pointers, and so, is not as
compact as a list trie, but can be substantially faster to access
while conserving more space than an array trie.

A highly effective solution to the space problem is the
burst trie [51]. The burst trie stores strings within bounded-
sized buckets. Once a bucket is full, it is burst, which involves
creating a new parent trie node that is represented as an array
of pointers, one for each letter of the alphabet A. The strings
within the original bucket are then distributed into at most
A new buckets, in accordance to the lead character, which is
then removed. By storing strings within buckets and creating
only a single trie node per burst, the burst trie is able to reduce
the space required by the array trie by as much as 80%, with
little to no impact in access speed.

The burst trie is currently one of the fastest in-memory
data structures for strings, but it cannot be directly mapped
to disk because of the way it represents and manages buck-
ets. Bursting a bucket on disk implies creating up to A new
fixed-sized buckets that can be randomly accessed, which is
expensive. Similarly, other variants of trie, such as the TST,
are also unsuitable for disk due to their high space require-
ments and poor access locality. To our knowledge, there has
yet to be a proposal in literature for a trie-based data structure,
such as the burst trie, the can reside efficiently on disk to sup-
port common string processing tasks. Such a data structure
would inherit the clever advantages offered by tries, such as
the removal of common prefixes and implicit cost-adaption,
which is of value considering that B+-trees are known for
their poor performance under skew access.

Suffix trees are well-known trie-based (Patricia trie) data
structures that can reside on disk [27]. However, these data
structures maintain full-text indexes that store every distinct
suffix in a text collection [47,56]. Conventional data struc-
tures—such as the B+-tree and our B-trie—are word-level
indexes that store only distinct words in a text collection. Full-
text indexes are more powerful than word-level indexes, as
they can efficiently support complex search operations such

123

164 N. Askitis, J. Zobel

as finding all occurrences of a pattern in a text collection,
whereas word-level indexes are typically restricted to exact-
match word searches. Full-text indexes are used in pattern
matching applications, such as molecular biology, data com-
pression, and data mining.

Full-text indexes are space-intensive and can typically
require 4 to 20 times the space of the text they index [65].
Their high space consumption is a major restriction on their
application to common string processing tasks, such as
vocabulary accumulation and text indexing [38,47,75].
Grossi and Vitter [47] introduced a compressed suffix tree
(and suffix array) that could, in theory, approach the space-
efficiency of inverted lists. In practice, however, inverted lists
are substantially more space-and time-efficient [75,95,96],
but cannot support pattern matching.

As a result of their high space consumption, suffix trees
(and suffix arrays) can rapidly exhaust main memory for large
text collections. Researchers have addressed this problem
by proposing new suffix-tree construction algorithms that
can substantially reduce both the time and space required
to construct and maintain a suffix tree on disk [22,62,90].
Relative to the performance of word-level indexes, however,
current suffix-tree construction algorithms remain substan-
tially more expensive, and thus are not suitable replacements
for word-level indexes, such as the B+-tree, for applications
that do not require pattern matching.

Chowdhury et al. [24] proposed, in theory, the application
of a word-level trie for external storage, called a DiskTrie.
The DiskTrie is a static variant of Patricia trie (an LPC-
trie) that is designed for use in small external flash memory
devices. The Patricia trie and its variants are commonly used
to represent external tries because their size is not depen-
dant on the length of the keys, but rather on the number of
keys inserted, which makes them well suited for situations
where space usage is highly restrictive. However, the Patricia
trie (and its variants) is an expensive structure to access and
maintain when storing a large set of strings [51]. As claimed
by Heinz et al. [51], Patricia tries are not practical solutions
for common string processing tasks, where typically both
access time and space are important. It is therefore attractive
to explore viable methods of applying the space-and time-
efficient burst trie to disk.

Hence, in the discussions that follow, we propose a novel
variant of B-trie which is designed to efficiently maintain
a word-level index on disk, for common string-processing
tasks, such as dictionary management, text indexing, docu-
ment processing, and vocabulary accumulation.

4 The B-trie

The B-trie is an unbalanced multi-way disk-based trie struc-
ture, designed to sort and cluster strings that share common

prefixes. It borrows the design of the burst trie [51] to main-
tain a space-efficient trie, by storing strings within buckets
that are structurally similar to those described for the B+-tree:
fixed-sized disk blocks represented as arrays. Once a bucket
becomes full, a splitting strategy is required that, in contrast
to bursting, throttles the number of buckets and trie nodes
created. The concept of a B-trie has been suggested by Szpan-
kowski [89] and is briefly discussed elsewhere [59,60,69].
However, information about the data structure, such as algo-
rithms to insert, delete, search, and how to split nodes effi-
ciently on disk, is scarce.

We propose that buckets undergo a new splitting proce-
dure called a B-trie split. In this approach, the set of strings
in each bucket is divided on the basis of the first character
that follows the trie path that leads to the bucket. (Each node
in the path consumes one character.) When all the strings in
a bucket have the same first character, this character can be
removed from each string; subsequent splitting of this bucket
will force the creation of a new parent trie. We label these
buckets as pure. When the set of strings in a bucket have
distinct first characters, several paths in the parent trie lead
to it. We label these buckets as hybrid; subsequent splitting
of this bucket will not create a new parent trie.

When a bucket is split, a character is first selected as a
split-point and the strings are then distributed according to
their lead character. That is, strings with a lead character
smaller than or equal to the split-point remain in the original
bucket, while others are moved into the new bucket. During
a split, the trie property is temporarily violated, but only for
the leading character in each string. Once the split propagates
into the parent trie node, the trie property is restored, but, in
some cases, with multiple pointers to the same bucket, form-
ing a hybrid bucket. Figures 3, 4, and 5 illustrate examples
of this splitting procedure, which we explain in more detail
later.

In either case (hybrid or pure), each bucket is a cluster
of strings with a shared prefix, a property with clear advan-
tages for tasks such as range search. In addition, the B-trie
offers other advantages. One is that the cost of traversing
a chain of trie nodes can be, in comparison to the traversal
of internal B-tree nodes, significantly lower; identification
of a bucket involves no more than following a few point-
ers. Another is that short strings—which are the commonest
strings in applications such as vocabulary management—are
likely to be found without accessing a bucket and can be
conveniently managed in memory. This splitting process is,
however, a major contribution, as it solves the problem of
efficiently maintaining a trie structure on disk for common
string processing tasks.

A potential drawback compared to a B+-tree, is that split-
ting a bucket cannot guarantee that the two new buckets are
equally loaded. In most cases, the load is likely to be approx-
imately equal (as we observed in our experiments described

123

B-tries for disk-based string management 165

a c

a - a erospace
lgorithm

b - b ike a - a che
t

b - z omputer c - z desktop
practice

Hash Table. . . x

. . .

b

a cb

y z

x y z

Fig. 3 The words “cat”,“algorithm”,“computer”, “practice”, “cache”,
“bike”, “desktop” and “aerospace” were inserted into the B-trie, creat-
ing three pure buckets (first three from the left) along with two hybrids.

The hash table stores strings that are consumed. “c” for example, would
be consumed by the root trie and “a”, would be consumed by the first
pure bucket

a c

a - a erospace
lgorithm

b - b ike a - a che
t

b - l lever

Hash Table. . . x

. . .

c - z desktop
practice

m - z omputer
old

b

a cb

zy

x zy

Fig. 4 The strings “cold” and “clever” were inserted into the B-trie in Fig. 3. The second hybrid bucket (from the right of Fig. 3) split, creating
two new hybrids

a c

a - l erospace
lgorithm

b - b ike a - a che
t

b - z omputer c - z desktop
practice

Hash Table. . . x

. . .a b c . . . x y z

m - z rrow

b

a cb

zy

x zy

Fig. 5 The word ‘arrow” was inserted into Fig. 3. The left-most pure bucket split into two hybrids and a new parent trie

later). In some cases, however, it is highly skew. For exam-
ple, if every string but one begins with the same character,
then one of the new buckets will contain one string only,
while the other contains the rest. However, our B-trie split-
ting algorithm ensures that there are no empty buckets, and,
as we demonstrate later, an occasional uneven split has little
to no impact on performance.

Another drawback is the applicability of bulk-loading. To
bulk-load a data structure implies populating leaf nodes with-
out consulting an index. This is accomplished by using sorted
data; the index is constructed independently as the leaf nodes
are sequentially populated. Bulk-loading is an efficient way
of constructing B+-trees. However, the B-trie cannot be effi-
ciently bulk-loaded because its index—which can consume
strings—is not independent from the data stored in buckets.

We now describe algorithms for maintaining a B-trie. The
main components of our B-trie are as follows:

Buckets: Structurally—apart from the added character-ran-
ge field—buckets are identical to the leaf nodes used by our
implementation of a B+-tree. However, the lead character of
each string in the bucket must be within its character range.

Trie nodes: A trie node is an array of pointers, one pointer
per character in the ASCII table, 128 pointers in total. The
leading character of a string is used as an offset and is dis-
carded once a new trie node or a pure bucket is acquired.
Recall that a pure bucket contains strings that begin with
the same lead character (which is removed). A pointer in a
trie can be empty (null) or point to either a bucket or a trie.

123

166 N. Askitis, J. Zobel

As discussed by Heinz et al. [51], the number of trie nodes—
and hence the space they require—can be kept small due to
the use of buckets. As a result, the space saved by employ-
ing more space-efficient trie structures, such as the Patricia
trie or the TST, was found to be small and did not justify
tolerating higher access costs. Hence, for the burst trie, the
use of an array trie was preferable. This is also the case for
our B-trie, making the use of an array trie—which is fast
and can be directly mapped to disk—preferable over more
space-efficient but slower alternatives.

An auxiliary data structure: Access to a trie node or to a
pure bucket will delete the lead character from a string during
search. It is therefore possible for a string to be consumed
entirely (deleted) prior to reaching or searching a bucket.
When this occurs, an auxiliary data structure is used to store
such short strings. We use our cache-conscious hash table [6]
for this purpose. When a string is inserted into the hash table,
it is immediately copied into a heap file on disk to allow for
re-construction. Alternatively, consumed strings can be han-
dled by setting a string-exhaust flag within the respective
trie node or pure bucket, as described for the burst trie [51].
This approach will eliminate the small performance over-
head of accessing a hash table whenever a string is consumed
during search, but can require the B-trie to maintain empty
pure buckets on disk, in order to maintain their string-exhaust
flags, which is inefficient.

The principal structures can be formally defined as fol-
lows. A node N is a set of pointers p, one for each character
c in the alphabet A; that is, N = {pc|c ∈ A}. A pointer
is a directed arc from a node N to another node N ′ or to
a bucket B; a B-trie is then a directed acyclic graph with a
single root in which all routes (traversals of the graph) ter-
minate at a bucket. Each pointer is labeled with a character;
some pointers are null, but all nodes have at least one non-
null pointer. A complete or terminated route R is represented
as a chain

N1 →c1 N2 →c2 · · · →cm−1 Nm →cm B

in which each arc →c corresponds to a labeled pointer pc.
The sequence s(R) of arcs in R is a representation of the
string c1 · · · cm . There are two types of buckets: hybrid and
pure. Pure buckets are those that have a range of a single char-
acter. Hybrid buckets are those that have a range comprised
of two or more distinct characters. All strings in a bucket
share some prefix h, and thus the prefix need not be stored.
That is, a pure bucket is a set of strings

B P (h) = {t |s = h · t ∈ V for any string t}

where V is the complete set (or vocabulary) of strings stored
in the B-trie, h is a string, and “·” is the string concatenation

operator. A hybrid bucket is a set of strings

B H (h, l, u) = {c · t |s = h · c · t ∈ V and c ∈ [l, u]}
where l and u are characters. The algorithms described later
in this section enforce the following properties:

1. There is only a single route to each pure bucket.
2. There is only a single route from the root to any trie node.
3. For a route R leading to a pure bucket B P (h), the seque-

nce s(R) = h.
4. For a route R leading to a hybrid bucket B H (h, l, u), the

sequence s(R) = h · c where c ∈ [l, u].
5. In a hybrid bucket, l �= u.
6. For a hybrid bucket B H (h, l, u) where h = c1 · · · cm−1,

there is a set R of routes

R = {N1 → c1 · · · → cm−1Nm →c B H (h, l, u)|c ∈ [l, u]}

and no other routes terminate at B H (h, l, u).

Before proceeding with the algorithms, we give a brief
overview of how to maintain a B-trie. The B-trie is initial-
ized with one empty hybrid bucket with a parent trie. When
a hybrid bucket splits, it creates one new sibling bucket (the
original bucket is re-used). This action grows the B-trie hori-
zontally. An example is shown in Fig. 4. Eventually, splitting
a hybrid will lead to the creation of a pure bucket. As strings
are distributed into the pure bucket, their leading character
is removed. This may cause a single string to be consumed
entirely, in which case the string is reconstructed (from the
path taken to reach the bucket) and stored in the hash table.
When a pure bucket is split, a new trie node is created and
assigned as its parent, after which the pure bucket is trans-
formed into a hybrid and the split proceeds as a hybrid. When
a pure bucket splits, the B-trie is grown both vertically and
horizontally. An example is shown in Fig. 5. We adhered to
the following design principles to allow for a fairer compar-
ison to the B+-tree:

1. Buckets are structured and managed in much the same
manner as the leaf nodes used by our implementation
of a B+-tree, as discussed in Sect. 2.1. That is, buckets
are initialized with 128 string pointers and are given an
additional kilobyte of free space when read into memory.
No string duplicates are maintained. Instead, strings that
are stored in buckets or the hash table are proceeded by
a 4-byte accumulator.

2. A pointer refers to a trie node if its most significant bit
is set. A pointer to a node is represented as an unsigned
32-bit integer which stores the block number of a node
(in a file) on disk.

3. On modification, a trie node or bucket is immediately
synchronized (written) to disk, to ensure data integrity.

123

B-tries for disk-based string management 167

4.1 B-trie initialization

When there are no trie nodes or buckets on disk, a new empty
hybrid bucket and a parent trie is created. The hash table is
re-populated with strings found in its heap file.

4.2 To search for a string

Equality search takes a query string Q as input and may return
a pointer to a bucket B, its parent trie node P (if any) and Q′,
which represents the characters of Q that were not consumed
during traversal. That is, searching for a string Q involves
traversing the B-trie to determine whether the string Q was
consumed and thus stored in the hash table, or to find a pure
bucket B P (h) such that t ∈ B P (h) and Q = h · t , or to find a
hybrid bucket B H (h · c, l, u) such that c · t ∈ B H (h · c, l, u)

and Q = h · c · t .
A search proceeds as follows. The leading character of

Q is used as an offset into the trie nodes, beginning from
the root. Prior to accessing a child node that is either a trie
node or a pure bucket, the lead character is deleted. If instead,
an empty pointer is encountered or, if Q′ is empty (that is,
the query string is completely consumed during traversal),
the search concludes by consulting the hash table for Q.
When a bucket B is acquired, a binary search for Q′ con-
cludes the search.

4.3 To insert a string

Insertion takes a string Q, performs an equality search as
described above, and on search failure, inserts what remains
of the query string (that is, Q′) into the acquired bucket B.
That is, insertion of a string Q is the task of finding a pure
bucket B P (h) such that Q = h · t , and adding t to B P (h),
or finding a hybrid bucket B H (h · c, l, u) such that Q =
h · c · t , and adding c · t to B H (h · c, l, u). If the bucket is
now full, it must be split. Otherwise, the insertion process
concludes.

In the event where the query string was consumed during
search (that is, Q′ is empty), Q is stored in the hash table
and the insertion is complete. If a null pointer was encoun-
tered during search, a new bucket is created to store Q′. The
new bucket has a character range that engulfs all neighboring
null pointers in the parent trie P that span from the original
null pointer encountered during search (up until a non-null
pointer is accessed). This action will determine whether the
new bucket is hybrid or pure. In the latter case, care must be
taken to discard the bucket prior to writing it out to disk and
to clear (null) its parent pointer, if it consumes Q′ entirely.
In this case, Q is stored in the hash table to complete the
insertion process.

4.4 To delete a string

The B-trie employs a lazy deletion scheme, similar to that
described for the B+-tree. Deletion proceeds as follows. We
search for the required string Q, as described above. If Q
is consumed during traversal, we clear the end-of-string flag
in the acquired trie node or pure bucket, and delete Q from
the hash table to complete the deletion process. If, instead,
a null pointer is encountered during search, then we delete
Q from the hash table (if it exists), to complete the deletion
process.

Otherwise, either a hybrid or pure bucket is acquired which
is binary searched for the string suffix Q′. If the suffix is
found, it is removed and the bucket is internally re-organized
to avoid space wastage due to internal fragmentation. The
computational cost of re-organizing the bucket is small and
bound by the size of the bucket. Once the bucket is empty,
all of its incoming pointers from the parent trie node P are
nulled, and its file address is placed in an address pool for
reuse. Once P has had all of its pointers nulled, then P is also
deleted by having its parent pointer nulled, and by placing
its file address in an address pool for reuse. Lazy deletion of
trie nodes can propagate up to the root.

Alternatively, we can apply a more space-efficient dele-
tion scheme, as described for B+-trees [53]. That is, once
a bucket becomes empty, we check its immediate neighbors
to determine whether we can transfer some strings. We can
only initiate a transfer if the neighbor is a hybrid bucket and
will not become empty on split. (A pure bucket can be used,
but, on split, the lead character of its strings must be restored
which can complicate matters.) If these two conditions are
satisfied, the neighboring hybrid node is split and its strings
are distributed between itself and the empty bucket. The par-
ent trie node is then updated accordingly.

Otherwise, if no immediate neighbors are hybrids or if a
split will cause a neighbor to become empty, then the empty
bucket cannot be merged and must be deleted. One way
to delete the bucket is to apply lazy deletion as described,
and simply flag the bucket as having been deleted. However,
to conserve space, the bucket should be deleted from disk,
but which can involve shifting a potentially large number of
buckets (and updating their respective trie nodes), which is
likely to be expensive for a large B-trie. As with the B+-tree,
this option should only be applied when deletions out number
insertions, or when space is highly restrictive.

4.5 Splitting a bucket

Splitting takes place when the insertion algorithm deems a
bucket as full, due to insufficient space. Splitting a hybrid
bucket B H (h, l, u) produces two buckets, both of which
can be either pure or hybrid. This action grows the B-trie

123

168 N. Askitis, J. Zobel

horizontally. An example is shown in Fig. 4. The basis of
the split is the first character of the strings in the bucket.
A pair of characters d and d ′ need to be chosen such that
d ′ is the character that lexicographically follows d, with
d, d ′ ∈ [l, u], and—as nearly as possible—among the strings
in B H (h, l, u), roughly half begin with a character in the
range [l, d] while the remainder begin with a character in the
range [d ′, u]. If the range cannot be neatly divided, one bucket
or the other will be under-loaded but no empty buckets are
maintained.

That is, a split-point must be found that can achieve good
distribution across two new buckets. To determine a split
point, we count the number of occurrences of each lead-
ing character in the original bucket. Then, in lexicographic
order, we simulate moving these counters (representing the
clusters of strings to be moved) to a new location, comput-
ing a simple distribution ratio (strings moved divided by the
strings remaining). Once the ratio exceeds 0.75—a threshold
found though preliminary trials—a suitable split point has
been found and the strings can be distributed accordingly.
Achieving this threshold may not always be possible. In such
cases, the second last counter to be moved (its representing
character) is used as d, which can cause the creation of an
empty bucket, which is not maintained. Hence, the pointers
in the parent trie P between the range of [l, d] are nulled.

After splitting a hybrid bucket, if l �= d then the left-hand
new bucket will be a hybrid bucket B H (h, l, d); otherwise
it will be a pure bucket B P (h · l). Being a pure bucket, the
leading character of each string that is stored in the bucket
is removed. This can result in the consumption of a string,
which must therefore be reconstructed (from the path taken
to reach the bucket) and stored in the hash table. Similarly, if
d ′ �= u then the right-hand new bucket will be a hybrid bucket
B H (h, d ′, u); otherwise it will be a pure bucket B P (h · u).
The parent trie node P of the two new child buckets must
now have its pointers of range [l, u] re-assigned accordingly.

The splitting procedure for a pure bucket B P (h · u) is
almost identical to that of a hybrid. The difference is that
a new parent trie node is created which is assigned to the
pure bucket. The old parent becomes the grandparent. All
pointers in the new parent are assigned to the pure bucket,
which changes the bucket into a hybrid. The split then pro-
ceeds as described for a hybrid bucket, and so, when a pure
bucket splits, the B-trie is grown both vertically and horizon-
tally. An example is shown in Fig. 5. The splitting process
terminates only when both children are not full, in which
case, the new buckets and their parent trie are written to
disk. Otherwise, the process continues recursively by split-
ting the full child bucket. The non-full child is written to
disk and discarded from memory. These novel elements of
pure and hybrid buckets are how the trie properties are main-
tained, while giving a B-tree-like organization of data on
disk.

5 Experiments and results

We experimentally evaluate the performance of the B-trie
for the task of storing and retrieving variable-length strings
on disk. In this context, we compare the B-trie against
a standard and prefix B+-tree, as well as the Berkeley
B+-tree [77], by measuring their memory and disk space
consumption, insertion time, and search time. A standard
B+-tree stores full-length strings in internal nodes, in contrast
to a prefix B+-tree [10], which only stores the shortest dis-
tinct prefix of strings that are promoted from leaf nodes. We
also explore front-coding [93], as it has the potential to sig-
nificantly increase the string capacity of nodes in a B+-tree.

Other variants of B+-tree, such as the SB-tree [36] and the
cache-oblivious string B-tree [17], are not suitable candidates
for common string processing tasks. As discussed previously,
the SB-tree operates poorly with short strings (which are less
than 500 characters in length, for example) [81]. In addition,
it is not well suited for tasks where the number of strings to
insert is not known in advance. For example, in order to be
constructed and accessed efficiently, the SB-tree requires that
strings are sorted beforehand, to permit bulk-loading and to
improve the access locality amongst its string pointers [36,
56,81]. Nonetheless, we consider a high-quality but static
implementation of a SB-tree and compare its performance
against our B-trie and the Berkeley B+-tree. Similarly, the
cache-oblivious string B-tree is currently a theoretical con-
struct. It has yet to be implemented and there is currently no
experimental evidence that supports its performance against
conventional disk-resident B+-trees for strings [17,20,66].

As test data, we used the string sets shown in Table 1
that were extracted from documents made available through
TREC [50] and its GOV2 test collection. They are composed
of null-terminated variable-length strings (up to a 1,000

Table 1 Characteristics of the datasets used in the experiments. Our
distinct dataset containing 28772169 strings was scaled down geo-
metrically to create four distinct subsets of 9098559, 2877217, 909855,
and 287721 strings

Dataset Distinct String Average Volume Volume
strings occs length of distinct total

(MB) (MB)

trec 1401774 752495240 5.06 7.68 4508.68

urls 1265018 9987034 30.92 44.20 308.89

genome 262084 31623000 9.00 2.62 316.23

random 75000000 75000000 16.00 1290.00 1290.00

287721 287721 287721 7.16 2.34 2.34

909855 909855 909855 7.78 7.99 7.99

2877217 2877217 2877217 8.18 26.41 26.41

9098559 9098559 9098559 8.88 89.97 89.97

28772169 28772169 28772169 9.58 304.56 304.56

123

B-tries for disk-based string management 169

characters in length), in occurrence order—that is, they are
unsorted. The trec dataset is a set of word occurrences, with
duplicates, extracted from the five TREC CDs [50]. This
dataset is highly skew, containing a relatively small set of
distinct strings. The urls dataset, extracted from TREC web
data, is composed of non-distinct complete URLs. We parsed
the GOV2 test collection and acquired a dataset containing
about 29 million distinct strings. We scaled it down geo-
metrically, creating four distinct subsets shown in Table 1.
These distinct datasets contain only unique strings; repeat
occurrences were discarded. The genome dataset, extracted
from GenBank, consists of fixed-length n-gram sequences
with duplicates. Unlike the skew distributions observed in
plain text however, these strings have a more uniform dis-
tribution. Finally, the random dataset, which was gener-
ated from a memory-less source, consists of fixed-length
strings where each character is selected at random from the
English alphabet. The random dataset contains no duplicate
strings.

Our test machine was a Pentium IV 2.8 GHz processor,
with 2 GB of RAM and a Linux operating system on light
load using kernel 2.6.12. Time was measured in seconds, and
we report the average elapsed time (or total time) required
to complete a task, which we derive over a sequence of six
runs. After each run, we unmount the hard drives to flush
disk caches and flood main memory with random data. These
steps are taken to ensure that the performance of the current
run is not influenced by data cached from previous runs. Our
hard drives were formatted using the reiser file system, a
well-known Linux format. We tested reiser and found it to
offer faster disk-writes and consume less space than the ext2
and ext3 formats, which are found by default on most Li-
nux distributions. The relative performance of the B+-trees
and B-trie, however, remained the same regardless of file
format.

Research on splay trees [92] reported the inefficiency of
using the string-compare system call provided by the Linux
operating system. String comparisons are a vital component
of most string-based data structures. Williams et al. [92] used
their own implementation of string-compare and achieved
speed gains of up to 20%. We do the same for our imple-
mentations. To further reduce resource contention on library
calls, we implemented high-quality versions of strlen,
strcpy, and memcpy (string length, string copy, and mem-
ory copy respectively). The data structures were written in
C and compiled using gcc 4.1.1, with all optimizations
enabled. We are confident—after extensive profiling—that
our B+-tree and B-trie implementations are of high quality,
and as we discussed previously, we set the node size of the
B-trie and B+-trees to 8,192 bytes, which is known to offer
good performance [32,45]. We consider the height of the
B-trie or B+-trees as the number of nodes accessed prior to
reaching a bucket or leaf node, respectively.

5.1 The use of memory as cache

Our experimental evaluations of the B-trie and B+-trees
involve the use of an index buffer. An index buffer stores
the internal nodes of a B+-tree or the trie nodes of a B-trie
in memory, to eliminate disk access on index traversal. Tra-
versing a B-trie or B+-tree will therefore incur only a single
disk access to fetch the required leaf node or bucket from
disk. The index buffer can grow to accommodate new nodes,
however, as the index component of these data structures is
typically only a tiny fraction of the size of the data used, the
amount of memory required is small. The use of an index buf-
fer is therefore a cheap and effective technique for reducing
disk accesses without compromising data integrity—nodes
that are modified in memory are immediately synchronized
to disk, that is, the index buffer is effectively a write-through
cache. Data structures that use an index buffer are labeled as
buffered.

However, the use of an index buffer can cause unfair com-
parisons between the B+-tree, which is balanced, and the
B-trie, which is an unbalanced structure. That is, the B-trie
is likely to benefit more from the buffer than the B+-tree.
Therefore, we also evaluate the performance of these data
structures without the aid of a buffer. In this case, all nodes
are accessed from disk and we do not explicitly buffer nodes
for future reuse. Data structures that do not use an index
buffer are labeled as unbuffered. The operating system, how-
ever, can also maintain its own private file buffers [86], which
we address by ensuring that every node is accessed by issu-
ing a blocking system call to disk, and, by evaluating the
performance of these data structures when their size exceeds
the capacity of main memory.

Although not maintaining an index buffer is uncommon,
it will show the worst-case performance of these data struc-
tures and allow for fairer comparisons. For instance, the cost
of traversing an unbalanced trie will no longer be masked by
the buffering of trie nodes in memory. An alternative buffer-
ing technique is the use of a shared buffer, which allocates
a fixed-sized block of memory that stores both internal and
leaf nodes. Once the buffer becomes full, however, a replace-
ment algorithm is required to select and evict a node from
memory, which is non-trivial.

Shared buffers are typically implemented using a write-
back policy, where a modified node is only written to disk
once it is evicted from the buffer. A shared buffer can be
effective at reducing access costs, particularly under skew
access. However, for this reason, they are unsuitable for use in
experimental analysis, because they can lead to biased com-
parisons. The B-trie, for example, can become more compact
than a B+-tree, and is therefore likely to reside longer in the
buffer prior to having its nodes evicted. In addition, the use
of a large shared buffer will effectively treat a disk-resident
data structure as an in-memory structure, masking almost all

123

170 N. Askitis, J. Zobel

update and search costs. The Berkeley B+-tree also employs
a shared write-back buffer, but fortunately, its default size is
small—only 256 KB—which we found to have little to no
impact on performance for large datasets.

5.2 Distinct strings

We measure the cost of construction by individually insert-
ing strings, in occurrence order, into the B+-trees and the
B-trie. While this is a slow way to construct an index, it
shows the per-string cost of maintaining the index during
update. Table 2 shows the relationship between time and the
number of distinct strings used for insertion and self-search.
A self-search is the process of retrieving all strings that were
stored by a data structure during construction, in their original

Table 2 A comparison of construction and self-search costs between
the variants of B+-trees and the B-trie, with and without an index buffer,
using the distinct datasets of Table 1. The elapsed time is shown in
seconds and the space in megabytes. The best measures of time and
space are in bold

Dataset Build Search Disk-space
(MB)

Buffered Unbuffered Buffered Unbuffered

B-trie

287721 3.6 4.6 1.4 2.5 6.3

909855 12.1 15.9 4.6 8.8 19.9

2877217 40.6 54.0 14.8 29.8 62.4

9098559 130.0 160.1 47.4 94.7 201.6

28772169 405.9 605.9 150.8 343.4 646.2

Standard
B+-tree

287721 3.6 5.0 1.5 3.6 6.0

909855 12.4 18.5 4.8 11.6 19.4

2877217 42.0 62.1 15.5 36.9 63.5

9098559 138.7 181.2 51.0 116.1 211.8

28772169 428.8 651.2 171.7 378.7 697.9

Prefix
B+-tree

287721 3.6 4.8 1.5 3.6 6.0

909855 12.4 18.2 4.8 11.5 19.3

2877217 41.2 61.7 15.8 36.8 63.7

9098559 135.7 199.1 49.9 118.2 210.8

28772169 431.6 659.3 172.0 364.4 697.9

Berkeley
B+-tree

287721 – 5.7 − 2.5 12.3

909855 – 20.7 − 9.1 40.7

2877217 – 71.0 − 32.0 132.6

9098559 – 237.1 − 110.6 436.8

28772169 – 867.9 − 720.7 1435.3

order of occurrence. This process is useful in evaluating the
performance of the data structures during search for known
strings.

We first consider the performance of these data struc-
tures without an index buffer. The B-trie showed consis-
tent improvement over the variants of B+-tree, being up to
9% faster. The prefix B+-tree is faster to build and search
than the standard B+-tree, as expected due to the storage
of shorter strings within internal nodes. However, the pre-
fix B+tree was not competitive in space. A higher fan-out
per node will reduce the height of the tree, which will sub-
sequently reduce the space required by internal nodes. As
a consequence, however, more leaf nodes will be created,
which is likely to increase overall space consumption.

The Berkeley B+-tree showed relatively poor performa-
nce, requiring more time and space than our unbuffered B+-
trees and the B-trie. For example, with our largest distinct
dataset, the Berkeley B+-tree was up to 52% slower to access
than our unbuffered B-trie, while simultaneously requiring
around 55% more space. We note, however, that the compari-
son of space is somewhat biased, due to the fact that Berkeley
B+-tree maintains a higher space overhead per node, in order
to support more advance access routines such as concurrency
control (which is beyond the scope of our work). As a result,
the Berkeley B+-tree created more internal and leaf nodes—
and a subsequent increase in tree height —which resulted in
its poor performance, as shown in Table 2.

The B-trie cannot match the space efficiency of our stan-
dard and prefix B+-trees until enough trie nodes are created to
increase the storage capacity of its buckets (by stripping away
common prefixes). This requires that a sufficient number of
distinct strings are inserted to improve the space utilization
within buckets, which, in turn, reduce the number of splits
that occur. From our results in Table 2, we observe that the
B-trie needs around two million distinct strings to surpass
the space efficiency of our B+-trees, and improves thereaf-
ter, reaching up to a 7% reduction in space relative to the
standard and prefix B+-trees (with simultaneous improve-
ments in access times).

The hash table had little influence on overall performance
as only a tiny fraction of strings were hashed: 32,150 words
of 28,772,169. A string can only be hashed if it is consumed
by a trie node or by a pure bucket. The number of consum-
able strings is therefore bound by the number of trie nodes or
pure buckets. Thus, the hash table cannot grow large relative
to the overall size of the B-trie, as shown in Table 3. Further-
more, the hash table is accessed only after a query string is
consumed by the B-trie.

Despite using an unbalanced index that is accessed from
disk, the B-trie remains efficient. Traversing a trie node is
computationally inexpensive, requiring only a character as
an offset. Hence, a long chain of trie nodes can be traversed
rapidly, allowing frequently accessed buckets to be fetched

123

B-tries for disk-based string management 171

Table 3 A comparison of structure size (height), memory consumption, and the number of string comparisons (hash table inclusive) performed by
the B-trie and B+-trees, when self-searching the distinct datasets of Table 1

Dataset Trie Buckets Tree No. strings No. strings Index Total
nodes height compared stored in buffer memory

(Millions) hash table (MB) (MB)

B-trie

287721 203 767 3.0 2.2 288 0.10 0.63

909855 580 2398 3.3 7.1 922 0.29 0.83

2877217 1851 7503 3.8 22.4 3324 0.94 1.53

9098559 6664 24189 4.4 71.0 10236 3.41 4.14

28772169 20915 77549 5.2 224.7 32150 10.70 11.87

Internal Leaves

Standard B+-tree

287721 3 735 2 4.9 − 0.02 0.02

909855 8 2363 2 17.2 − 0.06 0.06

2877217 20 7740 2 59.5 − 0.16 0.16

9098559 71 25788 2 203.7 − 0.58 0.58

28772169 285 84917 2 692.9 − 2.33 2.33

Prefix B+-tree

287721 3 732 2 4.8 − 0.02 0.02

909855 5 2362 2 16.8 − 0.04 0.04

2877217 18 7767 2 58.2 − 0.14 0.14

9098559 70 25670 2 199.6 − 0.57 0.57

28772169 236 84964 2 680.2 − 1.93 1.93

Berkeley B+-tree

287721 6 1506 2 − − − −
909855 20 4958 2 − − − −
2877217 72 16124 2 − − − −
9098559 218 53111 2 − − − −
28772169 762 174448 3 − − − −

at low cost. The B+-tree, in contrast, must binary search
every node that is accessed. Traversing a B+-tree is therefore
computationally expensive—an expense that is not entirely
obscured by the costs of disk access.

Furthermore, trie nodes are 512 bytes long, making them
sixteen times smaller than our B+-tree nodes. Hence, access
to a single block from disk will prefetch up to 16 trie nodes,
which can improve both spatial access locality and the use of
hardware disk buffers. Moreover, only 4 bytes are accessed
from each trie node, unlike the binary search of a B+-tree
node, where typically most of the node is accessed. Hence,
once brought into memory, tries are more cache-conscious.

The total binary search cost for the B+-trees is the log
of the number of stored strings. In contrast, the total binary
search cost for the B-trie is constant, as it is limited to a sin-
gle binary search. If the query string is consumed by the trie
structure, then the cost of binary search is removed altogether.
Furthermore, by removing lead characters during traversal,

the single binary search only involves string suffixes. This
leads to a reduction in the number of instructions executed,
which contributes to the reduction in overall access time.
This is reflected in Table 3, with the total number of string
comparisons being significantly less for the B-trie, than the
standard or prefix B+-trees.

The major advantage of the B-trie is, however, the reduc-
tion in disk costs. To access a bucket, it is first read from
disk, which—like the cost of a binary search—is avoided
entirely if the query string is consumed before a bucket is
accessed. Hence, the larger the B-trie, the greater the chance
of avoiding a disk access during search. This demonstrates
the implicit cost-adaptivity of the B-trie, which we expected
to yield strong gains under skew.

Despite our efforts at limiting the number of trie nodes
created, the space consumed by the B-trie’s index exceeded
that of the B+-trees. However, because a trie-index removes
common prefixes, fewer and more capacious buckets are cre-

123

172 N. Askitis, J. Zobel

ated, which compensates by reducing the overall disk space
required, allowing the B-trie to be more compact overall than
the B+-trees. Having a larger index implies that more mem-
ory is used when we enable an index buffer. The amount
of memory in question, however, remains small, requiring
only around 9 MB more than the B+-trees, for indexing over
304 MB of strings.

With the index buffer enabled, the B-trie and B+-trees
showed considerable improvements in performance. At the
cost of a few megabytes of memory, the buffered B-trie can be
constructed up to 22% faster and searched up to 56% faster
than its unbuffered version. For example, with our largest
distinct dataset, the buffered B-trie required about 406 s to
construct and 151 s to self-search, which is about 200 s and
193 s faster than the equivalent unbuffered B-trie, respec-
tively. Similar behavior was observed for the standard and
prefix B+-trees, which were up to 34% faster to build and
up to 55% faster to self-search, but remained slower to build
and search than the buffered B-trie.

By buffering all of its trie nodes in memory, the B-trie is at
a further advantage over the B+-trees, as the computational
cost required to reach a leaf node in a buffered B+-tree will
exceed that of traversing a long chain of trie nodes. As a
result, the average height of the B-trie can grow large at no
consequence, apart from an increase in buffer space.

Although our results show that the B-trie is fast with or
without an index buffer, we anticipate that the performance
of the unbuffered B-trie will progressively deteriorate, rel-
ative to the unbuffered B+-trees, as its average trie height
increases. However, we revisit this issue below, in the con-
text of a skew access pattern.

5.3 Front-coded B+-tree

Front-coding can be used to increase the capacity of nodes in
a standard or prefix B+-tree. However, we do not expect an
improvement in speed, despite the reduction in the number
of nodes, due to the computational overhead of compressing
and decompressing nodes on access. To test these claims, we
have applied front-coding to the leaves of our buffered stan-
dard B+-tree (the results are similar for the prefix B+-tree).
Front coding is a simple compression scheme that removes
redundant prefixes in a sequence of sorted strings, and is
capable of achieving over a 40% compression on sorted text
datasets [93]. In this experiment, internal nodes remained
uncompressed, as the overall space consumed by them is
tiny relative to the space consumed by leaf nodes.

We repeated the insertion and self-search experiments as
before, comparing the time and space required by our stan-
dard B+-tree, with and without front-coding. The results
are shown in Table 4. As anticipated, by front-coding leaf
nodes, the cost of maintaining the B+-tree increased dra-
matically, being up to 93% slower for our largest distinct

Table 4 Construction and self-search costs when front-coding is
applied to the leaf nodes of the buffered standard B+-tree, using the
distinct datasets of Table 1. When front-coded, leaf nodes can store
more strings prior to splitting which reduces the number of nodes main-
tained, but at a substantial cost in access time—being up to 93% slower
than the uncompressed standard B+-tree. Elapsed times are in seconds
and space in megabytes

Dataset Construction Self-search Internal Leaf Disk-space
(s) (s) nodes nodes (MB)

287721 32.2 21.1 1 538 4.4

909855 105.1 70.2 5 1679 13.7

2877217 354.1 238.3 17 5391 44.3

9098559 1271.3 728.5 47 17142 140.8

28772169 3343.4 2338.3 152 55109 452.6

dataset. Despite the cost in access time, the front-coded stan-
dard B+-tree achieved up to a 35% reduction in space. For
example, building a compressed standard B+-tree using our
largest distinct dataset required over 3,343 s and 453 MB
of disk space. The equivalent uncompressed standard B+-
tree, in contrast, required only 429 s to build, but used over
646 MB of disk space. Decompression (and on modification,
re-compression) are now mandatory tasks during tree trav-
ersal and, although fewer nodes are accessed, the computa-
tional cost of decompressing nodes can greatly exceed the
cost of disk access, especially for large datasets. Front-cod-
ing can also be combined with bulk-loading, to speed up
the cost of construction while conserving space. However,
search will still remain expensive relative to a standard B+-
tree, due to the mandatory task of decompressing a node on
access. Hence, the use of front-coding should only be applied
to the B+-tree when space is more valuable than access time.

5.4 Skewed search

In many applications such as text search, the ability to rap-
idly retrieve frequently accessed data is crucial. That is, the
pattern of accesses is expected to be skew. To evaluate the
performance of the B-trie and B+-trees under skew access,
we first construct these data structures using the distinct
datasets of Table 1. We then measure the time required to
search for all strings in the trec dataset as the size (the string
cardinality) of the data structures increase, to determine their
scalability. The results are illustrated in Fig. 6. In addition,
we measured the cost of skewed construction and self-search
using the trec dataset, shown in Table 5, which we discuss
first.

Multi-way trie structures are among the fastest data struc-
tures under skew access, and the B-trie is no exception. The
unbuffered B-trie was up to 33% faster (around 3,170 s) to
construct and self-search than the unbuffered standard and
prefix B+-trees. The Berkeley B+-tree, in contrast, displayed

123

B-tries for disk-based string management 173

0 500 1000

Memory (megabytes)

0

2000

4000

6000

8000

10000

12000
S

ea
rc

h
tim

e
(s

ec
on

ds
)

Buffered B-tree
Buffered Prefix B-tree
Buffered B-trie
Unbuffered B-tree
Unbuffered Prefix B-tree
Unbuffered B-trie
Berkeley B-tree

Fig. 6 A comparison of skew search performance using the trec data-
set, as the string cardinality of the data structures (the number of strings
they store) increase. The distinct datasets of Table 1 represent the
points on the graph, with the left-most points representing our smallest
distinct dataset. For brevity, we label a B+-tree as a B-tree in this
figure

Table 5 A comparison of construction and self-search performance
of the B+-trees and B-trie using the trec, urls, and genome datasets
of Table 1. The elapsed times are shown in seconds and the space in
megabytes. The best measures of time and space in bold

Dataset Build Search Disk-space
(MB)

Buffered Unbuffered Buffered Unbuffered

B-trie

trec 2904.9 6316.5 2748.5 6334.3 33.3

urls 70.1 205.7 55.1 201.0 91.1

genome 160.3 387.6 156.7 386.2 4.3

Standard
B+-tree

trec 3898.6 9396.1 3933.1 9506.3 31.1

urls 71.8 143.6 60.8 133.2 75.8

genome 169.8 405.5 166.9 403.6 6.1

Prefix
B+-tree

trec 3871.1 9372.9 3893.8 9504.4 31.1

urls 72.2 141.8 60.2 131.5 75.1

genome 170.1 391.0 167.6 389.8 6.1

Berkeley
B+-tree

trec − 6390.4 − 6706.1 64.7

urls − 158.4 − 150.5 153.8

genome − 317.1 − 318.4 13.7

competitive performance, being almost as fast as our unbuf-
fered B-trie (Table 5), but required more than twice the space.
As we demonstrate later, however, the Berkeley B+-tree does
not scale well.

When constructed using the trec dataset, the B-trie cre-
ated 1,009 trie nodes with an average trie height of about

3.6 nodes. The standard and prefix B+-trees, however, cre-
ated only 10 internal nodes with a balanced height of just
2. As a consequence, the B-trie required about 7% more
disk space (or 2.2 MB more) than the standard and prefix
B+-trees. Nonetheless, its unbalanced and larger index had
no impact on performance—with or without an index buffer
—which is consistent with previous results. Furthermore, as
we discussed in previous experiments, the B-trie can reduce
its overall space consumption with an increase in the number
of distinct strings stored.

When buffered, both the construction and self-search per-
formance of the standard and prefix B+-trees improve sub-
stantially, by as much as 59% (or around 5,500 s) due to
the elimination of disk access on index traversal. Similarly,
the buffered B+-trie also improves by as much as 56% (or
around 3,590 s), and remains faster to access than the buffered
B+-trees. These results demonstrate that the B+-tree is not
efficient under skew access. With an index buffer enabled,
every string searched will issue a system call to fetch a leaf
node from disk. Hence, the number of disk accesses (or sys-
tem calls) is determined by the number of query strings. Fur-
thermore, every node accessed must be binary searched; a
computational overhead that increases as the string cardinal-
ity of the B+-tree increases. The B-trie however, requires
at most, only a single (suffix-based) binary search per query,
regardless of the size of its index. Traversing a B-trie is there-
fore far more computationally efficient than a B+-tree.

We attribute the B-trie’s superior performance primarily to
the use of a trie-based index, albeit unbalanced. Trie nodes are
sixteen times smaller than B+-tree nodes, which can improve
spatial access locality resulting in better use of hardware buf-
fers. They are also computationally efficient to traverse and
strip away shared prefixes, which can result in the creation
of fewer and more capacious buckets. Furthermore, travers-
ing a trie removes lead characters from a query string which
can lead to its consumption, a phenomenon that becomes
more frequent as the B-trie increases in average height. In
these cases, access to a bucket is avoided (assuming that the
query string is consumed prior to accessing a bucket) and
the search continues in the in-memory hash table. For exam-
ple, during construction, the B-trie consumes 1,612 strings
from the trec dataset, which are accessed over 230 million
times during self-search. Without an index buffer, the B-trie
can remain superior, as shown, due to its small average trie
height. However, we anticipate that its performance will pro-
gressively deteriorate as its average height increases, which
we demonstrate later.

Our next experiment evaluates the scalability of these data
structures, by measuring the time required to search relative
to their size. The results are illustrated in Fig. 6. Unlike the
previous experiments, however, some searches were unsuc-
cessful. For example, after having inserted almost 29 mil-
lion distinct strings into the data structures which were then

123

174 N. Askitis, J. Zobel

searched using the trec dataset, a total of 1,059,166 searches
were unsuccessful.

The buffered B-trie is clearly the fastest and most com-
pact data structure when compared to the buffered B+-trees,
and improves in performance as the number of strings stored
increase. The use of a buffer eliminates the disk costs incurred
during trie traversal, at only a small cost in memory (up to
10 MB). Furthermore, as the average trie height increases,
more strings are likely to be consumed during search, which
will further reduce disk access. For example, having stored
almost 29 million distinct strings, the B-trie reached an aver-
age trie height of 5.2 nodes (Table 3), and consumed almost
400 million queries. As a result, the buffered B-trie showed
a substantial reduction in access time, due to the caching of
short strings and the use of an index buffer. We observed up
to a 50% improvement in speed (or around 2,306 s), relative
to the buffered versions of the standard and prefix B+-trees,
which are not as scalable.

Without an index buffer, however, the B-trie is likely
to become more expensive to access as its size increases,
because the caching of short strings in-memory cannot com-
pensate entirely for the cost of traversing the trie on disk.
Shown in Fig. 6, the unbuffered B-trie was up to 67% slower
(or around 4,700 s) to access than the buffered B-trie. None-
theless, by consuming short strings, the unbuffered B-trie
incurred fewer disk accesses than the unbuffered standard
or prefix B+-trees, which were up to 31% slower (or around
3,100 s) to access. The Berkeley B+-tree showed good perfor-
mance under skew for small index sizes, rivaling the perfor-
mance of the unbuffered B-trie and B+-trees. This behavior
is consistent with the results observed previously in Table 5.
However, as the number of strings stored increase, the per-
formance of the Berkeley B+-tree rapidly deteriorates, and
becomes the slowest and most space-intensive data structure
to search.

5.5 URLs

We repeated the experiments of construction and self-search
using the urls dataset, which is also highly skew. Unlike
the strings found in the trec dataset however, these strings
are much longer, on average being around thirty characters.
Thus, they require more space and can be more expensive to
compare. We present the performance of the B+-trees and
the B-trie on construction and self-search, in Table 5.

Similar to what we observed in the previous trec exper-
iments, the buffered B-trie was the fastest data structure to
construct and self-search, being up to 9% faster (or about 6 s)
than the standard or prefix B+-trees. Despite its improved
speed however, the B-trie required about 17% (or 16 MB)
more space than the standard or prefix B+-trees. Nonetheless,
the B-trie remained more space-efficient than the Berkeley
B+-tree.

URLs typically share many long prefixes; http://www is
by far the most common example. Use of long strings implies
that fewer can be stored within buckets prior to being split.
B+-tree nodes are also forced to split more frequently,
but being a balanced structure, the B+-tree will spread out
considerably before increasing in height. As a result, the
B-trie created 10,367 trie nodes with an average trie height
of about 14 nodes. The B+-trees, in contrast, maintained a
balanced height of only 2 nodes. The standard B+-tree cre-
ated 77 internal nodes, whereas the prefix B+-tree created
only 51 internal nodes (which is equivalent in space to 816
trie nodes). The Berkeley B+-tree created 144 internal nodes
and 18,630 leaf nodes (9,450 more than the prefix B+-tree).
As a consequence, the Berkeley B+-tree was the most space-
intensive data structure.

Although the B-trie creates a relatively larger index, it is
cheap to access—compared to the computational cost of tra-
versing a B+-tree—provided that it is buffered in memory.
During the trec experiments, the unbuffered B-trie retai-
ned superior performance because of its relatively small trie
height, which can make good use of hardware buffers. In
these experiments, however, although trie access is still skew,
the urls dataset forced the B-trie to create a much larger trie
where, on average, 14 trie nodes are expected to be accessed
before a bucket is acquired. This implies that on search, the
B-trie may typically issue 15 system calls to disk (including
one to access a bucket), which is expensive. Hence, it was not
surprising to observe a performance decline of up to 35% (or
around 70 s), compared to the unbuffered standard and prefix
B+-trees. Furthermore, the caching of consumed strings did
not compensate for the cost of maintaining a larger trie, as
only 1,150 strings were consumed which were accessed only
320,894 times during self-search.

The Berkeley B+-tree was also faster to access than the
unbuffered B-trie, but was slower than both the unbuffered
standard or prefix B+-trees. These experiments demonstrate
that the B-trie is a fast and compact data structure—given
enough distinct strings to make efficient use of buckets—
when its trie is buffered in memory. Without the aid of an
index buffer, however, it can only remain superior to the
unbuffered B+-trees when maintaining a small average trie
height.

5.6 Genome

Our next experiment involves the genome dataset, which
contains fixed-length strings of strong skew. However, these
strings are distributed much more uniformly than those of
text, such as the trec dataset. The time and space required
to construct and self-search the B-trie and B+-trees using the
genome dataset, are shown in Table 5.

The buffered B-trie was the fastest data structure to con-
struct and self-search, being up to 6% (or about 10 s) faster

123

http://www

B-tries for disk-based string management 175

than the buffered standard or prefix B+-trees. It also required
the least amount of disk space. However, as observed in pre-
vious experiments, the B-trie created a larger index of 341
trie nodes, in contrast to the standard and prefix B+-trees
that created only 3 internal nodes. Similarly, the Berkeley
B+-tree created only 9 internal nodes, but which resulted in
a subsequent increase in leaf nodes, causing its overall space
consumption to be the highest.

The unbuffered B-trie retained its speed over the unbuf-
fered standard and prefix B+-trees. However, without an
index buffer, it was no longer the fastest. Instead, the Berkeley
B+-tree required the least amount of time to construct and
self-search, despite its high space requirement. This behav-
ior is consistent with results from previous experiments. For
example, the Berkeley B+-tree also showed good perfor-
mance for searching the trec dataset when having stored
only a small number of distinct strings. Indeed, in these exper-
iments, only 262,084 genome-strings were stored. However,
having noted its behavior in previous experiments, it is rea-
sonable to assume that the Berkeley B+-tree will not scale
well in both time and space, as the number of genome-strings
stored increase.

5.7 Random

Our next experiment involves the use of the random dataset
which was artificially created by selecting letters, at random,
from the English alphabet, to form a large set of fixed-length
strings. The purpose of this experiment is to grow the size of
the B-trie and B+-trees to beyond the capacity of the main
memory, which in our case was 2 GB. We considered only
the unbuffered data structures in these experiments to avoid
masking the cost of accessing the index. In previous exper-
iments, these data structures were small enough to reside
entirely within main memory. Although we maintained and
accessed them from disk, the underlying operating system
can, to some extent, buffer their files. Hence, although we
issue system calls to fetch nodes from disk, some requests
may actually be serviced from the underlying file buffers.

By growing the size of these data structures to beyond
the capacity of main memory, however, we ensure that the
operating system cannot buffer the data structures entirely
within main memory. As a result, these experiments dem-
onstrate the performance of these data structures when the
operating system has insufficient resources to mask the cost
of accessing disk. We present the time and space required
to construct and self-search the unbuffered B-trie and the
unbuffered B+-trees in Table 6.

Despite having grown large, the unbuffered B-trie remai-
ned the fastest and most compact data structure to construct
and self-search, being up to 87% faster (or 365,566 s) than the
Berkeley B+-tree, and up to 24% faster than the unbuffered
standard and prefix B+-trees. Its performance is attributed

Table 6 A comparison of the time and space required to construct
and self-search the unbuffered B-trie and B+-trees, using the random
dataset from Table 1. These results show the performance of the data
structures when their size exceeds the capacity of main memory (2 GB).
Although these data structures are not explicitly buffered in-memory,
the operating system can maintain its own private file buffers. However,
in these experiments, the operating system is unable to buffer the entire
data structure in-memory and must therefore rely on virtual memory.
The elapsed times required to construct and self-search are shown in
seconds, and the space in megabytes

Data structure Build Search Tree height Disk-space
(s) (s) (MB)

B-trie 52546 124023 3 2150.3

Standard B+-tree 69449 139003 3 2157.4

Prefix B+-tree 68092 137124 2 2151.9

Berkeley B+-tree 418112 549206 3 5638.7

to the use a trie-index, as we explained in previous experi-
ments. Although the trie-index was not explicitly buffered in
memory, it remained efficient to access due to its relatively
small height. Furthermore, no strings were consumed by the
B-trie, so the in-memory hash table was unused.

The standard and prefix B+-trees, though slower than the
B-trie, were nonetheless greatly superior to the Berkeley
B+-tree, which required almost 5.5 GB of disk space, which
is about 62% or 3.5 GB more than the B-trie and the standard
and prefix B+-trees.

5.8 String B-tree

We downloaded a high quality implementation of a SB-tree
from [88]. As discussed in Sect. 2, the SB-tree represents the
internal and leaf nodes of a B-tree as Patricia tries, which are
stored succinctly on disk [36]. However, the current imple-
mentation is that of a static SB-tree. That is, the strings used to
build the SB-tree must be known in advance, and, once built,
the entire data structure must be destroyed and re-built to
accommodate new strings. Furthermore, to simplify the com-
plexity of building and maintaining Patricia tries on disk, the
SB-tree is built from the bottom-up, that is, it is bulk-loaded.
Hence, the strings used to build the SB-tree must be sorted
in advance.

We compare the performance of the SB-tree by measur-
ing the time and space required to self-search using our dis-
tinct datasets of Table 1. We do not consider the cost of
construction due to requirement of bulk-loading. The Berke-
ley B+-tree can be bulk-loaded, but we have yet to develop an
efficient bulk-loading algorithm for the B-trie. Hence, both
the Berkeley B+-tree and the unbuffered B-trie were con-
structed from the top-down, using sorted versions of our dis-
tinct datasets. We then measured the cost of self-search by
using our original (unsorted) distinct datasets. The time and

123

176 N. Askitis, J. Zobel

0 500 1000 1500

Memory (megabytes)

1000

2000

3000
S

ea
rc

h
tim

e
(s

ec
on

ds
)

Unbuffered B-trie
String B-tree
Berkeley B-tree

Fig. 7 A comparison of the time in seconds and the space in mega-
bytes required to self-search the SB-tree, the Berkeley B+-tree, and the
unbuffered B-trie, using the distinct datasets of Table 1. The left-most
points, for example, represents the self-search cost using our smallest
distinct dataset. For brevity, we label a B+-tree as a B-tree in this
figure

space required to self-search the SB-tree, Berkeley B+-tree,
and unbuffered B-trie are presented in Fig. 7.

Representing the nodes of a B+-tree as Patricia tries can
increase their string capacity, resulting in fewer nodes which
saves space. As a result, the SB-tree was up to 61% more
compact than the Berkeley B+-tree, a saving of up to 872 MB
of disk space. Similarly, the SB-tree was also more compact
than our unbuffered B-trie, but only by up to 13% or 84 MB,
due to space saved by removing shared prefixes in buckets.
Although space-efficient, the SB-tree showed relatively poor
performance. Access to a node in a SB-tree incurred up to
two disk reads: one to read the node from disk, and then
another to fetch the required string suffix for comparison.
Furthermore, processing a node which involves traversing a
Patricia trie, is computationally expensive compared to the
comparison-less traversal of the array trie used by the B-trie.
Hence, in these experiments—which involved strings with
an average length of less than 10 characters—the SB-tree
was up to 76% slower (or around 2,290 s) to search than the
Berkeley B+-tree, and up to 89% slower (or around 2,668 s)
to search than our unbuffered B-trie. These results are con-
sistent to those reported by Rose [81], who claimed that
the Berkeley B+-tree was consistently faster to access than
the SB-tree with short strings. These results demonstrate that
the overall space saved by mapping a space-efficient trie
structure to disk, such as the Patricia trie, can be small relative
to the space consumed by the equivalent B-trie that employs
a fast array trie that is kept small in size by the use of buckets.

5.9 Deletion

Our final experiment compares the cost of deletion between
the standard B+-tree and B-trie. We implemented lazy dele-
tion, that is, when a node has had all of its strings deleted,
it is not physically deleted. Instead, its address is posted for

Table 7 A comparison of the time and space required to delete and
insert random strings from the unbuffered B-trie and unbuffered stan-
dard B+-tree. The data structures were initially built using our largest
distinct dataset from Table 1. The elapsed times required to construct
and self-search are shown in seconds and the space in megabytes. The
best measures in bold

No. Data Delete Insert Total No. Total
strings Structure (s) (s) time nodes space
deleted (s) deleted (MB)

10 million B-trie 344.2 295.4 639.6 149 1072.4

Standard B+-tree 364.9 362.0 726.9 0 1162.3

20 million B-trie 647.5 296.6 944.1 537 1043.7

Standard B+-tree 678.8 374.3 1053.1 0 1139.7

reuse. Our first experiment measures the cost of deleting 10
million strings from the B+-tree and B-trie, which were built
using our largest distinct dataset. The strings to delete were
selected at random from this dataset. Our second experiment
repeats the first, but with twice as many deletions. Once the
strings have been deleted, we measure the time and space
required to insert a further 15 million strings taken from the
random dataset (no random strings were consumed by the
B-trie). By inserting randomly generated strings, each leaf
node and bucket in the B+-tree and B-trie, respectively, has
equal probability of access.

In these experiments, we use the unbuffered standard B+-
tree and unbuffered B-trie to avoid masking the cost of
accessing their index. For brevity, we omit results from the
unbuffered prefix B+-tree as they were similar to those of
the standard B+-tree. Similarly, we omit the Berkeley B+-
tree as its performance was found to consistent with previous
experiments; that is, it was slow and space-intensive relative
to the standard B+-tree and B-trie. The results are shown in
Table 7.

The unbuffered B-trie was, in both experiments, faster
than the standard B+-tree for the deletion of strings and the
subsequent insertion of random strings. The standard B+-
tree was slower due to the computational cost of binary
search. However, with a balanced structure and consider-
ing that strings were randomly selected for deletion, no leaf
nodes were deleted. The B-trie, in contrast, deleted up to 537
buckets (no trie nodes were deleted). The B-trie is an unbal-
anced structure, and considering that buckets can be unevenly
split, more buckets are likely to be deleted than the nodes of a
B+-tree. However, this is of no consequence when lazy dele-
tion is employed. With the subsequent insertion of 15 million
strings, for example, all 537 buckets were reused, showing
no impact on performance relative to standard B+-tree.

Without lazy deletion, however, deleting strings in a B-
trie can be more expensive than in a B+-tree. Assuming that
no buckets are merged (which is the case in these experi-
ments), the B-trie would have had to physically delete up

123

B-tries for disk-based string management 177

to 537 buckets on disk, which is expensive. The standard
B+-tree, in contrast, having deleted no leaf nodes is more
efficient in this case, as both internal and leaf nodes can be
under-loaded.

6 Summary

Many applications require efficient storage and retrieval of
strings on disk. However, due to the high cost associated with
disk usage, the range of efficient and viable data structures for
this task is limited. The B+-tree and its variants have been the
most successful data structures on disk for the task of sorted
string management, employing a balanced tree that guaran-
tees a bounded worst-case cost, regardless of the distribution
of data.

A B-trie is an alternative trie-based structure that has
potential to be superior to the B+-tree, but has yet to be for-
mally described or evaluated in literature. In this paper, we
have described our novel variation of the B-trie, by propos-
ing new string insertion, deletion, equality search, and node
splitting algorithms that are designed to make efficient use
of disk, for common string processing tasks such as vocabu-
lary accumulation. Our variant of B-trie is effectively a novel
application of burst trie to disk. Existing disk-resident tries,
such as the suffix tree, are not practical solutions for common
string processing tasks, due to their high space and update
costs [22,47,90].

We ran a series of experiments to compare the B-trie to the
Berkeley B+-tree [77] and our own high performance imple-
mentation of a standard B+-tree (where internal nodes store
full-length strings), and a prefix B+-tree [10], using string
datasets extracted from documents made available through
real-world data repositories, such as TREC [50]. We consid-
ered alternative data structures such as the string B-tree [36]
and the cache-oblivious string B-tree [17], but which were
found to be unsuitable for common string processing tasks.

We compared the time and space required to store and
retrieve strings from a variety of sources and string distribu-
tions, and evaluated the scalability of these data structures
under skew access. The B-trie was found to be superior in
both time and space, offering performance gains of up to
50% when its trie is buffered in memory. There were cases
where the B-trie required more disk space than standard and
prefix B+-trees, but with no impact on speed. Furthermore,
the amount of excess disk space required was small—in the
order of a few megabytes. The Berkeley B+-tree, however,
was the largest data structure, and was also —in the majority
of cases—the slowest to access.

A minor drawback of the B-trie is that it generates a larger
index than that of the standard and prefix B+-trees. The dif-
ference in space, however, is small, as our novel B-trie split-
ting algorithm successfully throttles the creation of buckets

and trie nodes. Furthermore, the removal of shared prefixes
in buckets can compensate by allowing the B-trie to consume
less disk space in total, than the variants of B+-trees for large
numbers of insertions.

The consequence of maintaining a larger index, however,
became apparent when we disabled the index buffer, which
is an unlikely decision in practice due to the high costs of
disk access. In these cases, the unbuffered B-trie could only
sustain superior access times relative to the unbuffered
B+-trees, when maintaining a small average trie height, which,
however, is generally sustained under skew access or with
strings that have a small average length. Therefore, with the
use of a small index buffer and for the task of managing
a large set of strings on disk, we have shown the B-trie to
be a superior data structure, being faster, smaller (overall),
and more scalable than common variants of B+-tree that are
currently in standard use.

Acknowledgments This work was supported by the Australian Post-
graduate Award, a scholarship from the Australian Research Council
and the School of Computer Science and Information Technology at
RMIT University.

References

1. Aoe, J., Morimoto, K., Sato, T.: An efficient implementation of
trie structures. Softw Practice Exp 22(9), 695–721 (1992)

2. Arge, L.: The buffer tree: a new technique for optimal I/O-algo-
rithms. In: Proc. Int. Workshop on Algorithms and Data Structures,
pp. 334–345. Kingston (1995)

3. Arge, L.: External memory data structures. In: Handbook of Mas-
sive Data Sets, pp. 313–357. Kluwer, Norwell (2002)

4. Arnow, D.M., Tenenbaum, A.M.: An empirical comparison of
B-trees, compact B-trees and multiway trees. In: Proc. ACM SIG-
MOD Int. Conf. on the Management of Data, pp. 33–46. Boston
(1984)

5. Arnow, D.M., Tenenbaum, A.M., Wu, C.: P-trees: Storage effi-
cient multiway trees. In: Proc. ACM SIGIR Int. Conf. on Research
and Development in Information Retrieval, pp. 111–121. Montreal
(1985)

6. Askitis, N., Zobel, J.: Cache-conscious collision resolution in
string hash tables. In: Proc. SPIRE String Processing and Infor-
mation Retrieval Symp., pp. 91–102. Buenos Aires (2005)

7. Baeza-Yates, R.A.: An adaptive overflow technique for B-trees.
In: Proc. Int. Conf. on Extending Database Technology, pp. 16–
28, Venice (1990)

8. Baeza-Yates, R.A., Larson, P.A.: Performance of B+-trees with
partial expansions. IEEE Trans Knowl Data Eng 1(2), 248–
257 (1989)

9. Bayer, R., McCreight, E.M.: Organization and maintenance of
large ordered indices. Acta Inf 1(3), 173–189 (1972)

10. Bayer, R., Unterauer, K.: Prefix B-trees. ACM Trans Database
Systems 2(1), 11–26 (1977)

11. Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression, 1st
edn. Prentice-Hall, New Jersey (1990)

12. Bell, T.C., Moffat, A., Witten, I.H., Zobel, J.: The MG retrieval
system: compressing for space and speed. Commun ACM 38(4),
41–42 (1995)

13. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in
trees. SIAM J. Comput. 28(6), 2090–2102 (1999)

123

178 N. Askitis, J. Zobel

14. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-obliv-
ious B-trees. In: Proc. IEEE Foundations of Computer Science,
pp. 399–409, Redondo Beach (2000)

15. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Efficient tree
layout in a multilevel memory hierarchy. In: Proc. European Symp.
on Algorithms, pp. 165–173, Rome (2002)

16. Bender, M.A., Duan, Z., Iacono, J., Wu, J.: A locality-preserving
cache-oblivious dynamic dictionary. J. Algorithms 53(2), 115–
136 (2004)

17. Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: Cache-oblivi-
ous string B-trees. In: Proc. of ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, pp. 233–242. Chicago
(2006)

18. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and
searching strings. In: Proc. ACM SIAM Symp. on Discrete Algo-
rithms, pp. 360–369. New Orleans (1997)

19. de la Briandais, R.: File searching using variable length keys. In:
Proc. Western Joint Computer Conference, pp. 295–298, New York
(1959)

20. Brodal, G., Fagerberg, R.: Cache-oblivious string dictionaries. In:
Proc. ACM SIAM Symp. on Discrete Algorithms, pp. 581–590,
Miami (2006)

21. Chang, Y., Lee, C., ChangLiaw, W.: Linear spiral hashing for
expansible files. IEEE Trans. Knowl. Data Eng. 11(6), 969–
984 (1999)

22. Cheung, C., Yu, J.X., Lu, H.: Constructing suffix tree for giga-
byte sequences with megabyte memory. IEEE Trans. Knowl. Data
Eng. 17, 90–105 (2005)

23. Chong, E.I., Srinivasan, J., Das, S., Freiwald, C., Yalamanchi,
A., Jagannath, M., Tran, A., Krishnan, R., Jiang, R.: A map-
ping mechanism to support bitmap index and other auxiliary
structures on tables stored as primary B+trees. ACM SIGMOD
Record 32(2), 78–88 (2003)

24. Chowdhury, N.M.M.K., Akbar, M.M., Kaykobad, M.: DiskTrie:
An efficient data structure using flash memory for mobile devices.
In: Workshop on Algorithms and Computation, pp. 76–87. Ban-
gladesh Computer Council Bhaban, Agargaon (2007)

25. Ciriani, V., Ferragina, P., Luccio, F., Muthukrishnan, S.: Static opti-
mality theorem for external memory string access. In: IEEE Symp.
on the Foundations of Computer Science, pp. 219–227, Vancouver
(2002)

26. Ciriani, V., Ferragina, P., Luccio, F., Muthukrishnan, S.: A data
structure for a sequence of string accesses in external mem-
ory. ACM Trans. Algorithms 3(1), 6 (2007)

27. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary stor-
age. In: Proc. ACM SIAM Symp. on Discrete Algorithms, pp.
383–391, Atlanta (1996)

28. Comer, D.: Heuristics for trie index minimization. ACM Trans.
Database Systems 4(3), 383–395 (1979)

29. Comer, D.: Ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–
137 (1979)

30. Crauser, A., Ferragina, P.: On constructing suffix arrays in external
memory. In: Proc. of European Symp. on Algorithms, pp. 224–235,
Prague (1999)

31. Culik, K., Ottmann, T., Wood, D.: Dense multiway trees. ACM
Trans. Database Systems 6(3), 486–512 (1981)

32. Deschler, K.W., Rundensteiner, E.A.: B+Retake: Sustaining high
volume inserts into large data pages. In: Proc. Int. Workshop on
Data Warehousing and OLAP, pp. 56–63, Atlanta (2001)

33. Fan, X., Yang, Y., Zhang, L.: Implementation and evaluation of
String B-tree. Tech. rep., University of Florida (2001)

34. Farach, M., Ferragina, P., Muthukrishnan, S.: Overcoming the
memory bottleneck in suffix tree construction. In: IEEE Symp.
on the Foundations of Computer Science, p. 174, Palo Alto (1998)

35. Ferragina, P., Grossi, R.: Fast string searching in secondary stor-
age: theoretical developments and experimental results. In: Proc.

ACM SIAM Symp. on Discrete Algorithms, pp. 373–382, Atlanta
(1996)

36. Ferragina, P., Grossi, R.: The string B-tree: a new data struc-
ture for string search in external memory and its applications.
J. ACM 46(2), 236–280 (1999)

37. Ferragina, P., Luccio, F.: Dynamic dictionary matching in external
memory. Inf. Comput. 146(2), 85–99 (1998)

38. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM
52(4), 552–581 (2005)

39. Flajolet, P., Puech, C.: Partial match retrieval of multimedia data.
J. ACM 33(2), 371–407 (1986)

40. Foster, C.C.: Information retrieval: information storage and retrie-
val using AVL trees. In: Proc. National Conf., pp. 192–205, Cleve-
land (1965)

41. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
42. Frigo, M., Leiserson, C., Prokop, H., Ramachandran, S.: Cache-

oblivious algorithms. In: IEEE Symp. on the Foundations of Com-
puter Science, p. 285, New York City (1999)

43. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems:
the Complete Book, 1st edn. Prentice-Hall, New Jersey (2001)

44. Gonnet, G.H., Larson, P.: External hashing with limited internal
storage. J. ACM 35(1), 161–184 (1988)

45. Gray, J., Graefe, G.: The five-minute rule ten years later, and other
computer storage rules of thumb. SIGMOD Record 26(4), 63–
68 (1997)

46. Gray, J., Reuter, A.: Transaction Processing: Concepts and Tech-
niques, 1st edn. Morgan Kaufmann, San Francisco (1992)

47. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees
with applications to text indexing and string matching (extended
abstract). In: Proc. ACM Symp. on Theory of Computing, pp. 397–
406, Portland (2000)

48. Guibas, L.J., Sedgewick, R.: A dichromatic framework for bal-
anced trees. In: IEEE Symp. on the Foundations of Computer Sci-
ence, pp. 8–21, Ann Arbor (1978)

49. Hansen, W.J.: A cost model for the internal organization of B+-
tree nodes. ACM Trans. Program. Languages Systems 3(4), 508–
532 (1981)

50. Harman, D.: Overview of the second text retrieval conf. (TREC-
2). Inf. Process. Manage. 31(3), 271–289 (1995)

51. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: A fast, efficient
data structure for string keys. ACM Trans. Inf. Systems 20(2), 192–
223 (2002)

52. Hui, L.C.K., Martel, C.: On efficient unsuccessful search. In: Proc.
ACM SIAM Symp. on Discrete Algorithms, pp. 217–227, Orlando
(1992)

53. Jannink, J.: Implementing deletion in B+-trees. Proc. ACM SIG-
MOD Int. Conf. Manag. Data 24(1), 33–38 (1995)

54. Johnson, T., Shasha, D.: Utilization of B-trees with inserts, deletes
and modifies. In: Proc. of ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, pp. 235–246, Phila-
delphia (1989)

55. Johnson, T., Shasha, D.: B-trees with inserts and deletes: why
free-at-empty is better than merge-at-half. J. Comput. System
Sci. 47(1), 45–76 (1993)

56. Kärkkäinen, J., Rao, S.S.: Full-text indexes in external memory.
In: Algorithms for Memory Hierarchies, pp. 149–170. Dagstuhl
Research Seminar, Schloss Dagstuhl (2002)

57. Kato, K.: Persistently cached B-trees. IEEE Trans. Knowl. Data
Eng. 15(3), 706–720 (2003)

58. Kelley, K.L., Rusinkiewicz, M.: Multikey extensible hashing for
relational databases. IEEE Softw. 05(4), 77–85 (1988)

59. Knessl, C., Szpankowski, W.: A note on the asymptotic behavior
of the height in B-tries for B large. Electron. J. Combinat. 7(R39)
(2000)

60. Knessl, C., Szpankowski, W.: Limit laws for the height in Patricia
tries. J. Algorithms 44(1), 63–97 (2002)

123

B-tries for disk-based string management 179

61. Knuth, D.E.: The Art of Computer Programming: Sorting and
Searching, vol. 3, 2nd edn. Addison-Wesley Longman, Redwood
City (1998)

62. Ko, P., Aluru, S.: Obtaining provably good performance from suf-
fix trees in secondary storage. In: Proc. Symp. on Combinatorial
Pattern Matching, pp. 72–83, Barcelona (2006)

63. Ko, P., Aluru, S.: Optimal self-adjusting trees for dynamic string
data in secondary storage. In: Proc. SPIRE String Processing and
Information Retrieval Symp., pp. 184–194, Santiago (2007)

64. Kumar, P.: Cache oblivious algorithms. In: Algorithms for Mem-
ory Hierarchies, pp. 193–212. Dagstuhl Research Seminar, Schloss
Dagstuhl (2003)

65. Kurtz, S.: Reducing the space requirement of suffix trees. Softw.
Practice Exp. 29(13), 1149–1171 (1999)

66. Ladner, R.E., Fortna, R., Nguyen, B.: A comparison of cache aware
and cache oblivious static search trees using program instrumen-
tation. In: Experimental Algorithmics: from Algorithm Design to
Robust and Efficient Software, pp. 78–92, New York City (2002)

67. Larson, P.: Linear hashing with separators—a dynamic hash-
ing scheme achieving one-access. ACM Trans. Database Sys-
tems 13(3), 366–388 (1988)

68. Lomet, D.B.: Partial expansions for file organizations with an
index. ACM Trans. Database Systems 12(1), 65–84 (1987)

69. Mahmoud, H.M.: Evolution of Random Search Trees, 1st edn. J
Wiley, New York (1992)

70. Makawita, D., Tan, K., Liu, H.: Sampling from databases using
B+-trees. In: Proc. CIKM Int. Conf. on Information and Knowl-
edge Management, pp. 158–164, McLean (2000)

71. Manber, U., Myers, G.: Suffix arrays: a new method for on-line
string searches. In: Proc. ACM SIAM Symp. on Discrete Algo-
rithms, pp. 319–327, San Francisco (1990)

72. Martel, C.: Self-adjusting multi-way search trees. Inf. Process.
Lett. 38(3), 135–141 (1991)

73. McCreight, E.M.: A space-economical suffix tree construction
algorithm. J. ACM 23(2), 262–271 (1976)

74. Na, J.C., Park, K.: Simple implementation of String B-trees. In:
Proc. SPIRE String Processing and Information Retrieval Symp.,
pp. 214–215, Padova (2004)

75. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM
Comput. Surv. 39(1), 1–61 (2007)

76. Ooi, B.C., Tan, K.: B-trees: Bearing fruits of all kinds. In: Proc.
Australasian Database Conf., pp. 13–20, Melbourne (2002)

77. Oracle: Berkeley DB, Oracle Embedded Database (2007). http://
www.oracle.com/technology/software/products/berkeley-db/
index.html. Version 4.5.20

78. Pagh, R.: Basic external memory data structures. In: Algorithms
for Memory Hierarchies, pp. 14–35. Dagstuhl Research Seminar,
Schloss Dagstuhl (2002)

79. Pugh, W.: Skip lists: a probabilistic alternative to balanced
trees. Commun. ACM 33(6), 668–676 (1990)

80. Rao, J., Ross, K.A.: Making B+-trees cache conscious in main
memory. In: Proc. ACM SIGMOD Int. Conf. on the Management
of Data, pp. 475–486, Dallas (2000)

81. Rose, K.R.: Asynchronous generic key/value database. Master’s
thesis, Massachusetts Institute of Technology (2000)

82. Rosenberg, A.L., Snyder, L.: Time and space optimality in
B-trees. ACM Trans. Database Systems 6(1), 174–193 (1981)

83. Sedgewick, R.: Algorithms in C, Parts 1-4: Fundamentals, Data
structures, Sorting, and Searching, 3rd edn. Addison-Wesley, Bos-
ton (1998)

84. Severance, D.G.: Identifier search mechanisms: a survey and gene-
ralized model. ACM Comput. Surv. 6(3), 175–194 (1974)

85. Sherk, M.: Self-adjusting k-ary search trees. In: Proc. of Workshop
on Algorithms and Data Structures, pp. 381–392, Ottawa (1989)

86. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Con-
cepts, 7th edn. Wiley, Boston (2004)

87. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J.
ACM 32(3), 652–686 (1985)

88. Software, T.M.: C++ string B-tree library (2007). http://
wikipedia-clustering.speedblue.org/strBTree.php

89. Szpankowski, W.: Average Case Analysis of Algorithms on
Sequences, 1st edn. Wiley, New York City (2001)

90. Tian, Y., Tata, S., Hankins, R.A., Patel, J.M.: Practical methods for
constructing suffix trees. Int. J. Very Large Databases 14(3), 281–
299 (2005)

91. Vitter, J.S.: External memory algorithms and data structures: deal-
ing with massive data. ACM Comput. Surv. 33(2), 209–271 (2001)

92. Williams, H.E., Zobel, J., Heinz, S.: Self-adjusting trees in prac-
tice for large text collections. Softw. Practice Exp. 31(10), 925–
939 (2001)

93. Witten, I.H., Bell, T.C., Moffat, A.: Managing Gigabytes: Com-
pressing and Indexing Documents and Images, 1st edn. Morgan
Kaufmann, San Francisco (1999)

94. Yao, A.C.: On random 2-3 trees. Acta Inf. 9, 159–170 (1978)
95. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM

Comput. Surv. 38, 1–56 (2006)
96. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files ver-

sus signature files for text indexing. ACM Trans. Database Sys-
tems 23(4), 453–490 (1998)

123

http://www.oracle.com/technology/software/products/berkeley-db/index.html
http://www.oracle.com/technology/software/products/berkeley-db/index.html
http://www.oracle.com/technology/software/products/berkeley-db/index.html
http://wikipedia-clustering.speedblue.org/strBTree.php
http://wikipedia-clustering.speedblue.org/strBTree.php

	B-tries for disk-based string management
	Abstract
	1 Introduction
	2 B-trees
	2.1 B+-tree implementation

	3 Trie-based data structures
	4 The B-trie
	4.1 B-trie initialization
	4.2 To search for a string
	4.3 To insert a string
	4.4 To delete a string
	4.5 Splitting a bucket

	5 Experiments and results
	5.1 The use of memory as cache
	5.2 Distinct strings
	5.3 Front-coded B+-tree
	5.4 Skewed search
	5.5 URLs
	5.6 Genome
	5.7 Random
	5.8 String B-tree
	5.9 Deletion

	6 Summary
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

