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Abstract External sorting of large files of records involves
use of disk space to store temporary files, processing time
for sorting, and transfer time between CPU, cache, memory,
and disk. Compression can reduce disk and transfer costs,
and, in the case of external sorts, cut merge costs by reduc-
ing the number of runs. It is therefore plausible that overall
costs of external sorting could be reduced through use of
compression.

In this paper, we propose new compression techniques
for data consisting of sets of records. The best of these tech-
niques, based on building a trie of variable-length common
strings, provides fast compression and decompression and
allows random access to individual records. We show exper-
imentally that our trie-based compression leads to significant
reduction in sorting costs; that is, it is faster to compress the
data, sort it, and then decompress it than to sort the uncom-
pressed data. While the degree of compression is not quite
as great as can be obtained with adaptive techniques such as
Lempel-Ziv methods, these cannot be applied to sorting. Our
experiments show that, in comparison to approaches such as
Huffman coding of fixed-length substrings, our novel trie-
based method is faster and provides greater size reductions.

Keywords External sorting · Semi-static compression ·
Query evaluation · Sorting

1 Introduction

Relational database systems, and more recent developments
such as document management systems and object-oriented
database systems, are used to manage the data held by virtu-
ally every organisation. Typical relational database systems
contain vast quantities of data, and each table in a database
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may be queried by thousands of users simultaneously. How-
ever, the increasing capacity of disks means that more data
can be stored, escalating query-evaluation costs. Each stage
of the entire storage hierarchy of disk, controller caches,
memory, and processor caches can be a bottleneck. Proces-
sors are not keeping pace with growth in data volumes [43],
particularly for tasks such as joins and sorts where the costs
are superlinear in the volume of data to be processed.

In this paper we propose the use of compression of data
to reduce the costs of external sorting, thus making better
use of the storage hierarchy. A current problem is that tens
to hundreds of processor cycles are required for a memory
access, and tens of millions for a disk access, a trend that is
continuing: processor speeds are increasing at a much faster
rate than that of memory and disk technology [5]. During an
external sort, total processing time is only a tiny fraction of
elapsed time. Most of the time is spent writing sorted runs
to disk, then reading and merging the runs. This imbalance
can partly be redressed through use of compression.

For external sorting, it should in principle be possible
to use spare cycles to compress the data on the fly, thus re-
ducing the number of runs. We propose that compression
proceed by allowing pre-inspection of the first buffer-load
of data, and building a model based on this data alone. This
partial (and probably non-optimal) model can then be used
to guide compression and decompression of each subsequent
run. It can also reduce the temporary space required to store
the runs.

However, a compression technique for this application
must meet strong constraints. First, in contrast to adaptive
compression techniques, which treat the data as a continu-
ous stream and change the codes as the data is processed,
it must allow the records to be accessed individually and
reordered. Second, in contrast to standard semi-static tech-
niques, the data cannot be fully pre-inspected to determine
a model. Third, the coding and decoding stages must be of
similar speed to the transfer rate for uncompressed data.
Last, the compression model must be small, so that it does
not consume too much of the buffer space, which is needed
for sorting.
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None of the commonly used compression methods
meets these constraints. Huffman coding is a possibility,
although model construction can be slow and, for tokens of
sufficient length to give good compression, model size is a
potential problem. As our experiments show, it is unsatis-
factory. Nonetheless, data compression can be an effective
means of increasing bandwidth – not by increasing physical
transfer rates, but by increasing the information density
of transferred data—and can relieve the I/O bottlenecks
found in many high-performance database management
systems [13].

We have therefore developed several new compression
techniques designed to solve the problem of rapidly com-
pressing records while allowing random access. The first
two are based on the simple heuristic of extracting com-
mon fixed-length sequences of letters and allocating them
bytewise codes. (Bitwise codes offer slightly greater com-
pression, but are considerably more expensive to process.)
These succeed in reducing the cost of sorting large files, but
further gains would be desirable.

For this reason, we have investigated novel compression
techniques based on constructing in-memory tries of com-
mon strings, inspired by our previous success with use of
tries as a fast space-efficient data structure [15] and for in-
ternal sorting [34, 35]. We show experimentally that using
bytewise codes to represent common variable-length strings
can greatly reduce the space required to store the runs. For
smaller files, the time required to compress and decompress
outweighs the savings, but, for our largest file, use of com-
pression reduced sorting time by a third. With current trends
in computer hardware, the gains due to compression are ex-
pected to increase.

Previous research [7, 12, 14, 23, 29, 37] has shown the
benefits of decompressing data on the fly where the data is
stored compressed. However, it was found [37] that com-
pression on the fly had significantly higher processor costs,
indicating that compression is only beneficial to read-only
queries. Our results show, in contrast to previous work, that
compression is useful even when the data is stored uncom-
pressed.

2 External sorting

External sorting is used when data to be sorted does not fit
into available memory. It can be used for sorting any large
file, but is of particular value in the context of databases,
where a machine may be shared amongst a large number of
users and queries, and per-query buffer space is limited. In
the context of databases we handle records in units of blocks.
Vitter [36] surveys algorithms and data structures for large
applications that do not fit entirely in memory. Sorting can
be used as the basis for several of the relational-algebra op-
erations. Garcia-Molina et al. [11] outline algorithms for du-
plicate elimination, grouping and aggregation using sorting,
as well as sort-based union, intersection, and difference.
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Fig. 1 A simple external merge sort, with sorted blocks of records
written to intermediate runs that are then merged to give the final result

The external merge sort has two phases [11, 27]. The
process assumes that a fixed-size buffer is available for sort-
ing in the first phase and for merging in the second. The
external merge sort process is illustrated in Fig. 1, and is de-
scribed in detail by Knuth [16]. In detail, external sorting
proceeds as follows. Assume that M is the number of blocks
in the buffer space to be used to hold the input and any in-
termediate results, B(R) denotes the number of blocks that
are required to hold all the tuples of relation R, and T (R)
is the number of tuples in relation R. If we have a large re-
lation R, where B(R) > M , a two-pass algorithm for the
external merge sort is as follows:

Two-pass external merge sort:
Build runs: Process buffer-sized amounts of data in turn to

produce a sorted list of records that just fits in the avail-
able memory, yielding several sorted sublists or runs,
which are merged in the next phase. The following is
repeated until all input is consumed:
1. Fill the buffer with records from the relation to be

sorted (that is, read M blocks of R into memory).
2. Sort the records in memory using an efficient sorting

algorithm.
3. Write records in sort order into new blocks, forming

one run of M blocks on disk.
Merge runs: Merge the N runs into a single sorted list. The

following is repeated until all runs have been processed:
1. Divide input buffer space amongst the runs, giving

per-run buffers of size M/N blocks, and fill these
with blocks from each of the runs.

2. Using a heap, find the smallest key among the first
remaining records in each buffer, then move the cor-
responding record to the first available position of the
output buffer.
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3. If the output buffer is full, write it to disk and empty
the output buffer.

4. If the input buffer from which the smallest key was
just taken is now exhausted, fill the input buffer from
the same run. If no blocks remain in the run, then
leave the buffer empty and do not consider keys from
that run in any further sorting.

The number of disk I/Os used by this algorithm, ignoring
the handling of the output is B(R) reads to fetch each block
of R when creating the runs, B(R) writes to store each block
of the runs on disk, and B(R) reads to fetch each block from
the runs at the appropriate time when merging. Thus the total
cost of this algorithm is 3B(R).

Assume we have a relation R consisting of 10,000,000
tuples. Each tuple is represented by a record with several
fields, one of which is the sort key. For simplicity assume
that the records are of a fixed length, say 100 bytes. Also,
assume that the block size is 8 Kb, and we have 64 MB of
main memory available as buffer space for the algorithm.
We can fit eighty 100-byte records in each block. The re-
lation thus occupies 125,000 blocks. The number of blocks
that can fit in 64 MB of memory is 8192. In the first phase of
the external merge sort we fill memory 16 times, sort the
records in memory, and write the sorted sublists to disk.
At the conclusion of this phase we have 16 runs on disk.
We read each of the 125,000 blocks once and we write out
125,000 new blocks, resulting in 250,000 disk I/Os. If each
access takes 1 ms, the I/O time for the first phase is 250 s or
4.2 min. In the second phase of the external merge sort we
read 125,000 blocks (if we include the output, we also write
125,000 blocks). The I/O time for the second phase is half
of the first or 125 s (if we include the time to write the result,
the time is the same or 250 s). Both the read phase and the
write phase are more or less ordered and will make good use
of disk cache.

There are many variants on this algorithm. One variant is
that, if the merged results are to be written to disk, they can
be written in-place; in the context of database query pro-
cessing, however, it is often the case that the results are im-
mediately used and discarded. Another is that, with a large
number of runs, there can be housekeeping problems for
the operating system, and the per-run buffers may become
too small. A solution is to merge the runs hierarchically, so
that each pass reads in all the data from disk and writes it
out again. Hierarchical merge incurs significant penalties in
data transfer, and should be avoided. The Unix command-
line utility sort takes this approach.

We do not test hierarchical merging in our experiments.
Even for large relations, two passes are usually sufficient.
Consider the following example. Suppose that we have a
block size of b, memory available for buffering of m bytes,
and records of size r bytes. The number of buffers available
in memory is thus m/b. In the second phase each buffer can
be devoted to one of the runs. Thus the number of runs that
can be created in the first phase is m/b. Each time memory
is filled to produce a run, we can sort m/r records. Thus the
total number of records that we can sort is (m/r)(m/b) or

m2/rb records. If we use the parameters from the example
above, then m =67,108,864, b = 8192, and r = 100. We can
thus sort up to m2/rb = 5.5 billion records, occupying 0.5
terabytes of storage. Given the current limits on secondary
storage, a two-phase merge sort is likely to be sufficient for
most practical purposes.

Many sorting techniques are based on the assumption
that memory access costs are homogeneous. However, the
costs of sorting can be greatly reduced if more realistic mod-
els of memory are used. As we discuss later, even internal
sorting can be accelerated through appropriate use of the
memory hierarchy. At the lowest level – that is, closest to the
processor – are the processor registers and caches that con-
sist of the fastest but most expensive memory. At the next
level, internal memory, is dynamic random access mem-
ory, which is slower but less expensive. Inexpensive disks
are used for external mass storage. In database systems, the
amount of data to be stored is typically large, and it would be
prohibitively expensive to store the data entirely in memory;
and, as disk volumes have increased, so have the volumes of
data that have to be managed. Data is also stored on disk for
reasons of permanency [36].

Each level of the memory hierarchy acts as a cache for
the next. When data to be referenced is not cached, we incur
the additional cost of fetching the data from a higher level
of storage. Each level has its own cost and performance ben-
efits. The time for accessing a level increases for each new
level, with the largest bottleneck being between memory and
disk. The main constituents of disk access costs are seek
time, rotational delay, and transfer time. To amortize these
delays, large contiguous amounts of data or blocks are trans-
ferred at a time. Aspects that determine memory access cost
include: latency and address translation.

When dealing with large volumes of data, all levels of
the memory hierarchy must be used. On typical hardware,
loading a register takes on the order of a quarter of a
nanosecond (10−9 s), and accessing memory takes tens of
nanoseconds. Accessing data from a disk requires several
milliseconds (10−3 s), which is several orders of magni-
tude slower [36]. For applications that must process large
amounts of data, the I/O costs, that is, the times to transfer
data between levels of storage, are a bottleneck of increasing
significance. Processor speeds have been doubling every
18 months, and processors have additionally become faster
through internal parallelism. The speed of commercial
microprocessors has increased about 70% every year, while
the speed of random-access memory has improved by a little
more than 50% over the past decade, and the speed of access
to disk has increased by only 7% a year. That is, processor
speeds are increasing at a much faster rate than that of
memory and disk technologies [5, 19]. These issues are
particularly acute for applications such as external sorting.

2.1 Cache-aware sorting

With the speed of processors increasing at a greater rate than
that of both disk and memory, algorithms and data structures
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must be cache-aware, and tuned to the memory access pat-
tern imposed by a query and hardware characteristics such
as cache size [18, 19, 24, 34]. An approach analogous to that
for reducing disk I/O can be applied to in-memory process-
ing, where the aim is then to reduce memory access costs
such as cache misses.

The external merge sort algorithm above reduces disk
I/O by sorting memory buffer-sized loads of data at a
time. A similar approach can be used to reduce memory
I/O. For an in-memory sort, the R-MERGE algorithm of
Wickremesinghe et al. [38] sorts cache-sized loads of data
with quicksort, which are then merged (as in an external
merge sort). The merge heap is accessed multiple times
for every key, and is relatively small. This allows the heap
to be stored in registers, which reduces the cost to access
it, and eliminates the need to load heap elements from
memory. Another advantage of limiting the merge order is
that memory accesses tend to be in the set of pages cached
in the translation lookaside buffer.

Nyberg et al. [24] describes a cache-aware sort algo-
rithm, AlphaSort, which uses clustered data structures to get
good cache locality, file striping to get high disk bandwidth,
quicksort to generate runs, and replacement selection to
merge the runs. While loading all records into memory,
AlphaSort sorts small batches of records to create mini-runs.
When memory is full AlphaSort merges all mini-runs in a
single, wide merge using a selection tree in the same way as
for replacement selection. To reduce the disk I/O bottleneck,
disk striping is used to spread the input and output file across
several disks. This allows parallel disk reads and writes.

Larson [18] introduces batched replacement selection,
which is a cache-aware version of replacement selection
that works for variable length records. The algorithm resem-
bles AlphaSort in that it creates small in-memory runs and
merges these mini-runs to produce the final runs. The cre-
ation and merging of mini-runs in memory, and the process-
ing of both input and output in batches rather than single
records in the replacement selection algorithm reduces the
number of cache misses.

In the burstsort algorithm of Sinha and Zobel [34], data
structures are again chosen to minimise accesses to memory
and so make better use of the cache. In burstsort, a trie is
dynamically constructed as strings are sorted, and is used to
allocate a string to a bucket. Like MSD radix-sorts, the lead-
ing character of each string is inspected only once, however,
the pattern of memory accesses better utilises the cache. In
an MSD radix-sort, before the bucket-sorting phase, each
string is repeatedly accessed, once for each character. For
a large collection of strings it is likely that the string will no
longer be in the cache the next time it is accessed. In con-
trast, each string in burstsort is accessed once only, while the
trie nodes are accessed repeatedly. Burstsort is currently the
fastest sorting algorithm for strings or integers [33].

The run-generation phase of large external sorts with
compression should benefit from these faster in-memory
sorts. The overall external sort time will be dominated even
more by disk I/O and merge costs as the time for in-memory

sorting is reduced. It is these costs that we aim to reduce
by the use of compression. The relative difference in speed
between level-one cache and level-two cache, or between
level-two cache and memory, is orders of magnitude smaller
than that between memory and disk, so our focus is to use
compression to reduce the more significant disk I/O bottle-
neck.

3 Database compression techniques

The cost of I/O can be reduced through the use of com-
pression. That is, it is possible to trade off the increase
in processor overhead in compressing and decompressing
data on the fly against reduced I/O costs by transferring
compressed data. Data compression is therefore an effective
means of increasing bandwidth – not by increasing physical
transfer rates, but by increasing the information density of
transferred data – and can relieve the I/O bottlenecks found
in many high-performance database management systems
[13]. In other work [31], we have shown that even the cost of
transferring data from internal memory to the on-processor
cache can be reduced through appropriate use of compres-
sion.

In operations where intermediate results must be written
to disk, data can first be compressed, reducing volumes of
data to be transferred. If the overhead of compressing and
decompressing data combined with the I/O cost of transfer-
ring the compressed representation is smaller than the I/O
cost of transferring the uncompressed data, we can reduce
the overall query time. Compression may also lead to other
benefits in addition to reduced I/O costs. For example, in ex-
ternal sorting, smaller records due to compression may re-
sult in the generation of fewer runs, thus reducing the merge
cost of the operation. In hash partitioned joins, compression
of records will result in smaller partitions, and these smaller
partitions are more likely to fit entirely in memory (com-
pared to uncompressed partitions) and hence will not require
repartitioning.

The value of compression in communications is well-
known: it reduces the cost of transmitting a stream of data
through limited-bandwidth channels. Much of the research
into compression has focused on this environment, in which
the order of the data does not change and pre-inspection of
the data is not necessarily available, leading to the devel-
opment of high-performance adaptive techniques. Compres-
sion depends on the presence of a model that describes the
data and guides the coding process; in adaptive compression,
the model is changed with each symbol encountered. Com-
pression is achieved by using short codes for highly probable
symbols, and longer codes for rarer symbols.

Compression is not straightforward in the context of
databases. There are several constraints on compression
when used in the context of reducing database query eval-
uation costs, particularly if compression and decompression
need to be performed on-the-fly:
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• To allow random access and atomic compression and
decompression of records, modeling schemes must be
semi-static. Adaptive techniques are largely inapplica-
ble to the database environment, in which the stored data
is typically a bag of independent records that can be re-
trieved or manipulated in any order. In such applications,
the only option is to use semi-static compression, in
which the model is fixed after some training on the data
to be compressed, so that the code allocated to a symbol
does not change during the compression process. Adap-
tation can be used while a record is being compressed
[21], but at the start of the next record it is necessary to
revert to the original model.

• It can be impractical to inspect an entire relation to build
a model during query evaluation. To reduce processor
and I/O overhead, only a sample of the data, not the en-
tire database, is inspected to determine symbol frequen-
cies. This can lead to sub-optimal compression, as in-
specting the entire database can produce a more accurate
model of the data and hence give better compression ef-
fectiveness.

• Compression of individual records or attributes allows
random access to data, but is less effective than com-
pressing entire files.

• The presence of a compression model reduces the buffer
space available to evaluate the query.

• Even with the increasing speed of processors, it has been
shown that existing compression schemes can lead to an
increase in query times [37]. That is, coding and decod-
ing be fast so as not to eliminate the benefits of reduced
data transfer times.

• Database systems typically have large numbers of users
running multiple queries, so buffer space per query is
limited. To reduce memory usage, we must limit the
model size, restricting the compression effectiveness of
the compression technique, as the compression model is
likely to be only a tiny fraction the volume of data to
be compressed, a situation that is likely to lead to poor
compression. This too yields sub-optimal compression;
larger models would allow a better model of the data and
hence increase compression effectiveness. For example,
in algorithms such as Lempel-Ziv coding, the entire text
to be compressed is used as a random-access model.

The best-known semi-static compression technique is
zero-order frequency modeling coupled with canonical
Huffman coding, in which the frequency of each symbol
(which might be a byte, Unicode character, character-pair,
English word, or any other such token) is counted, then
a Huffman code is allocated based on the frequency. In
canonical Huffman coding, the tree is not stored and de-
compression is much faster than traditional implementations
[17, 40].

Semi-static compression has been successfully inte-
grated into text information retrieval systems, resulting in
savings in both space requirements and query evaluation
costs [2, 31, 39, 40, 42]. The compression techniques used
are relatively simple – Huffman coding for text, and inte-

ger coding techniques [39] for indexes – but the savings are
dramatic. Index compression in particular is widely used in
commercial systems ranging from search engines such as
Google to content managers such as TeraText. Moreover,
integer coding is extremely fast. As mentioned above, in
other work [31] we found that even the cost of transferring
from memory to processor cache can be reduced through ap-
propriate use of compression based on elementary bytewise
codes.

However, compression has traditionally not been used in
commercial database systems [7, 23], and data compression
has been undervalued in database query processing research
[13]. Earlier papers investigated the benefits of compression
in database query evaluation theoretically [14, 23, 29], and
only in the last few years have researchers reported compres-
sion being incorporated into database systems [7, 12, 37].
An exception is text retrieval systems, where compression
has been widely used in indexing [40].

Most of the research in database compression has fo-
cused on reducing storage and query processing costs when
data is held compressed. Graefe and Shapiro [14] recom-
mend compressing attributes individually, employing the
same compression scheme for all attributes of a domain.
Ng and Ravishankar [23] describe a page-level compres-
sion scheme based on a lossless vector quantisation tech-
nique. However, this scheme is only applicable to discrete
finite domains where the attribute values are known in ad-
vance and the cardinality of each domain is low. Ray et al.
[29] compared several coding techniques (Huffman, arith-
metic, Lempel-Ziv, and run-length) at varying granularity
(file, page, record, and attribute). They confirm the intuition
that attribute-level compression gives poorer compression,
but allows random access.

Goldstein et al. [12] described a page-level compression
algorithm that allows decompression at the field level. How-
ever, like the scheme described by Ng and Ravishankar [23],
this technique is only useful for records with low-cardinality
fields. Westman et al. [37] used compression at the attribute
level. For numeric fields they used null suppression and en-
coding of the resulting length of the compressed integer [30].
For strings they used a simple variant of dictionary-based
compression. This is particularly effective if a field can only
take a limited number of values. For example, a field that
can only take the values “male” and “female” could be rep-
resented by a single bit which could then be used to look up
the decompressed value of the field in the dictionary. They
saw a reduction in query times for read-only queries, but
significant performance penalties for insert and modify op-
erations. Chen et al. [7] used the same scheme as Westman
et al. [37] for numerical attributes, and developed a new
hierarchical semi-static dictionary-based encoding scheme
for strings. They also developed a number of compression-
aware query optimization algorithms. Their results for read-
only queries showed a substantial improvement in query per-
formance over existing techniques. A consensus from this
work is that, for efficient query processing, the compres-
sion granularity should be small, allowing random access
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to the required data and thereby minimising unnecessary de-
compression of data; and the compression scheme should be
lightweight, that is, have low processor costs, so as not to
eliminate the benefits of reduced data transfer times

When examining the benefits of compression, Westman
et al. [37] saw that compression of a tuple had significantly
higher processor costs than decompression, and so did not
believe that compression could improve the performance of
online transaction processing (OLTP) applications. All the
other papers presupposed a compressed database, so the only
compression-related cost involved in query resolution was
the decompression of data.

Note that, for query processing, compression has value
in addition to improved I/O performance, because decom-
pression can often be delayed until a relatively small data
set is determined. Exact-match comparisons can be on com-
pressed data. During sorting, the number of records in mem-
ory and thus per run is larger, leading to fewer runs and pos-
sibly fewer merge levels [13].

Given the constraints outlined earlier, off-the-shelf com-
pression systems are not useful for external sorting, as also
noted by Witten et al. [40]. Arithmetic coding, Lempel-Ziv,
and PPM methods do not allow random access to data; thus
we cannot use, for example, gzip or bzip2 , where de-
compression must start at the beginning of the data. For ef-
ficient query processing, compression must allow random
access to data, either individual records or fields, and so the
compression granularity must be small. In an external sort,
individual records need to be sorted on a key, and written to
different runs. In hash-partitioned joins, records are spread
among several different partition files. These compression
techniques could be used to compress individual records or
attributes, however Ray et al. [29] show that, as the unit of
compression decreases, adaptive schemes progressively pro-
duce poorer compression relative to non-adaptive schemes.

In our work, we aim to create new efficient decompres-
sion and compression methods for data stored in general
purpose database systems. Thus the database can be left un-
compressed, with any necessary compression and decom-
pression performed on the fly during query execution. This
approach eliminates the necessity of maintaining a model
for the relations, as is necessary in previous methods. The
model must be stored with the relations, and will become
out of date as data is modified in the database. By compress-
ing on-the-fly, a model does not need to be explicitly stored
and is always up to date. This also allows both read and write
queries to be evaluated on the data.

Several observations can be made. We need to inves-
tigate which semi-static coding techniques can be used in
conjunction with a model based on inspection of only part
of the data. If we were to read the entire relation to build a
compression model, and read it again to perform the query,
any possible gains through the use of compression would
be lost. (Moreover, if the data to be sorted is the output of
a subquery, it is not available for pre-inspection.) To avoid
any additional I/O cost, in all our methods discussed below
we build a model based solely on the data contained in the

first buffer load of data we read in for the database operation.
Also, if some symbol does not occur in this part of the data,
it is nonetheless necessary that it have a code.

Bitwise or bytewise codes are much faster than arith-
metic coding [40], which is too slow for this application.
Bytewise codes are much faster than bitwise codes [31], but
may lead to poor compression effectiveness. Both coding
and decoding must be highly efficient: for example, given a
symbol it is necessary to find its code extremely fast. Zero-
order models are an obvious choice, because higher-order
models lead to high symbol probabilities – and thus poor
compression efficiency – with bitwise or bytewise codes (for
a given model size), and model size must be kept small.

In view of these observations, Huffman coding is one
choice of coding technique, based on a model built on sym-
bol frequencies observed in the first buffer-load of data.
Bytewise codes are another option. Possible heuristic ap-
proaches to compression that meet the constraints stated
above are discussed later in this section. Another choice
would be to use a semi-static scheme such as XRAY [6], in
which an initial block of data is used to build a model. Each
symbol, including all unique characters, is then allocated a
bitwise code. XRAY provides high compression effectiveness
and fast decompression; in both respects it can be superior
to gzip on text data, for example, even though the whole
file is compressed with regard to one model. (In gzip ,
a new model is built for each successive block of data.
Compression effectiveness depends on block size, which is
around 64 Kb in standard configurations; with small blocks
no size reduction is achieved.) However, the training process
in XRAY is slow.

Likely buffer sizes are a crucial factor in design of al-
gorithms for this application. We have assumed that tens
of megabytes are a reasonable minimum volume for sort-
ing of data of up to gigabytes; in our experiments we re-
port on performance with buffers sizes of 18.5 and 37 MB.
(These were arbitrary choices based on design constraints
in the system in which we undertook these experiments.) In
this context, model sizes need to be restricted to at most a
few of megabytes.

We now consider simple compression techniques that
may be applicable for external sorting.

3.1 Huffman coding of bigrams

In compression, it is necessary to choose a definition of
symbol. Using individual characters as symbols gives poor
compression; using all trigrams (sequences of three distinct
characters) consumes too much buffer space. We therefore
chose to use bigrams, or all character pairs, as our symbols,
giving an alphabet size of 216. The amount of memory
required for the model is approximately 800 Kb, comprised
of 528 Kb for the decode part (the mapping from codes
to symbols, that is, the symbol table) and 264 Kb for the
additional encode part (the reverse mapping).

Huffman coding yields an optimal bitwise code for such
a model. Standard implementations of Huffman coding are
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slow; we used canonical Huffman coding, with the imple-
mentation of Moffat and Turpin [20].

3.2 Bytewise bigram coding

Bitwise Huffman codes provide a reasonable approximation
to symbol probabilities; a symbol with a 5-bit code, for ex-
ample, has a probability of approximately 1 in 32. Bytewise
codes can be emitted and decoded much more rapidly, but do
not approximate the probabilities as closely, and thus have
poorer compression efficiency. However, their speed makes
them an attractive option.

One possibility is to use radix-256 Huffman coding.
However, given that the model is based on partial infor-
mation, it is attractive to use simple, fast approximations
to this approach – in particular, the bytewise codes that we
have found to be highly efficient in other work [31]. In these
variable-byte codes, a non-negative integer is represented by
a series of bytes. One flag bit in each byte is reserved for
indicating whether the byte is final or has a successor; the
remaining bits are used for the integer. Thus the values 0 to
27−1 can be represented in a single byte, 27 to 214−1 in two
bytes, and so on. Using these bytewise codes, the calculation
of codes for bigrams can be dispensed with. The bigrams are
simply sorted from most to least frequent and held in an ar-
ray, and each bigram’s array index is its code. The first 27 or
128 most frequent bigrams are encoded in one byte, the next
214 are be encoded in two bytes, and so on.

This scheme is simple and fast, but does have the
disadvantage that compression can no more than halve the
data size, regardless of the bigram probabilities, whereas
Huffman coding could in principle provide reduction by
around a factor of 16 (ignoring the sort key and record
length, which in our application must be kept uncom-
pressed). The model sizes are identical to those for Huffman
coding of bigrams above.

3.3 Bytewise common-quadgram coding

To achieve better compression than is available with bi-
grams, we need to include more information in each symbol.
Longer character sequences can yield better compression,
but models based on complete sets of trigrams and quad-
grams are too large. Another approach is to model common
grams and use individual characters to represent other letter
sequences. In a 32-bit architecture, it is efficient to process 4-
byte sequences, and thus we explored a compression regime
based on quadgrams and individual characters.

Because buffer space is limited, we cannot examine all
quad-grams and choose only the commonest. As a heuristic,
our alphabet is the first L quadgrams observed, together with
all possible 256 single characters. We use a hash table with
a fast hash function [26] to accumulate and count the first L
overlapping quadgrams, and simultaneously count all char-
acter frequencies. The symbols – quadgrams and characters
together – are then sorted by decreasing frequency, and in-
dexed by bytewise codes as for bytewise bigram coding.

This scheme is not perfect; for example, “ther” and “here”
may both be common, but they often overlap, and if one is
coded the other isn’t. We believe that determining an ideal
set of quadgrams is NP-hard. However, the frequencies are
in any case only an approximation, as only part of the data
has been inspected. In the presence of overlap, choosing
which quadgram to code (rather than greedily coding the
leftmost) can improve compression, but is slower. We use
the simple greedy approach.

We varied L for the two buffer sizes tested, using L =
216 for the 18.5 Mb buffer and L = 217 for the 37-Mb buffer.
The amount of memory required for the model is approxi-
mately 1.8 Mb (528 Kb for the decode part and 1.3 Mb for
the encode part) or 3.0 Mb (528 Kb for the decode part and
2.5 Mb for the encode part). As for bigram coding, the com-
monest 27 symbols are represented in a single byte. In detail,
the method for building the model is as follows:

Construction of a model of common quadgrams:
1. Initialise the model to contain all possible 256 single

characters.
2. As characters are encountered, update their frequency in

a char-table.
3. Use the character to create a new quadgram and update

its frequency in a quadgram table, which contains entries
for the first L quadgrams observed.

4. When the end of the input buffer in reached, copy the
quadgrams and their frequencies to a decode table.

5. Sort symbols (characters and quadgrams) into order of
decreasing frequency.

6. For each symbol in the decode table:
(a) If it is a character, replace the frequency in the char-

table with the ordinal position in the decode table.
(b) If it is a quadgram, replace the frequency in the

quadgram hash table with the ordinal position in the
decode table.

Coding then proceeds as follows. If the current four charac-
ters from the input form a valid quadgram, its code is emit-
ted, and the next four characters are fetched. Otherwise, the
code for the first character is emitted, and the next character
is fetched. Decoding proceeds by replacing successive codes
by the corresponding symbols, which can be characters or
quadgrams. (We observed in our experiments that about two-
thirds of the output codes represented quadgrams.)

In some data, patterns of much more than four characters
may be common, however, and fixed-length methods such as
these – although efficient to compute – do not achieve high
degrees of compression. For this reason we explored a more
principled alternative.

4 Vargram compression

ptMany of the most effective compression techniques, such
as Lempel-Ziv coding and XRAY , rely on identification
of long repeated strings. In this section we propose a
novel technique for rapidly identifying such strings. In this
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variable-gram or vargram compression, we gradually in-
crease the length of the symbols added to the model as data
is inspected. The Lempel-Ziv family and XRAY schemes
use an in-memory tree structure to store phrases of variable
length, which grow as the data is inspected. In our vargram
techniques, we use in-memory trie-based structures to both
store and accumulate statistics on common strings observed
in the data.

That is, as data is processed, the trie is grown to rep-
resent strings of increasing length; a path through the trie
represents a string. As we plan to use bytewise codes, we
need to avoid having symbols of excessively high frequency,
or compression efficiency will be low; hence the attractive-
ness of trying to identify symbols of lower, similar frequency
but of varying length. By – hopefully – identifying long, not-
excessively-common strings, and allocating a single short
code to each such string, significant compression can be
achieved.

The main advantages of tries are speed of storage and
access, ease of addition or updating, facility in handing in-
formation sequences of diverse lengths, and the ability to
take advantage of redundancies in the information stored.
The main disadvantage is relative inefficiency in utilising
storage space [10]. Various techniques haven been investi-
gate to reduce the space requirements of tries [1, 9, 25, 28],
but these techniques are generally best suited to static tries.
The most successful method for dynamic tries is the burst
trie [15], where leaves are bags of strings that are burst to
give a new subtrie when they become too large.

There are several approaches to implementing tries, de-
pending on the structure of the nodes and the method used
to guide descent [8]. An array-trie uses an array of point-
ers to access subtrees directly, one for each character of the
alphabet. To search for or insert an n-gram, each character
is used in turn to determine which pointer to follow. Access
is fast, with one node traversal for each character, but, for
high-cardinality alphabets, utilisation can be low and most
positions in the array only contain null pointers.

A list-trie represents non-empty subtrees as linked lists,
reducing the storage costs, but access is slower as an array
lookup is replaced by linked list traversal. We have not used
an implementation based on list-tries, as Clement et al. [8]
showed that list-tries require approximately three times as
many comparisons as the TST discussed below.

A BST-trie uses binary search trees as the subtree ac-
cess method. An effective structure of this type is the ternary
search trie or TST [3, 32]. In a TST, each node has a charac-
ter and three links. Two of the links, the left and right, point
to nodes with characters less than and greater than the cur-
rent node, and are used to link to characters on the same level
of the trie. Thus for a particular level – which corresponds to
a particular character in the n-gram – characters are searched
for as in a BST. When a match has been found, the third link
or middle pointer is used to descend to the next level of the
trie. The next character in the n-gram is then searched for as
describe above, and the trie traversed until all characters of
the n-gram have been found. While this structure has lower

memory requirements compared to the array-trie (there are
no null pointers), this comes at the expense of increased ac-
cess cost. While the array-trie only requires a simple array
lookup, the TST requires a binary search for each character
in the n-gram.

We use array tries and TSTs to represent models. Due to
the tight constraints on buffer space available for a model, a
parameter was used to bound the size of the model. To avoid
storing n-grams that appear only a small number of times,
the creation of a new node is delayed until a predetermined
number of instances of an n-gram have been encountered,
which we term the burst limit. A similar idea is that of in-
hibiting rule formation [22]. The number of nodes in the
trie and the number of symbols or n-grams stored were also
limited to ensure that the model would fit within specified
memory limits. The model parameters are discussed in more
detail below.

4.1 Array-trie implementation

The first stage of compression is building a model. We pro-
pose that the encode part of the model consist of an array-trie
structure. Each node consists of two arrays of 256 positions,
one to count occurrences of each n-gram (and later used to
contain the ordinal position of the symbol in the code table),
and one containing pointers to the next node in the sequence,
as illustrated in Fig. 2. The arrays are indexed by the current
character or byte value.

The decode part of the model consists of a symbol buffer
containing all the n-grams identified during encoding, ac-
cessed via a code table of which each element contains the
frequency of the n-gram, a pointer to the n-gram in the
symbol buffer, and its length, as illustrated in Fig. 3. This
is analogous to the dictionary used in other compression
techniques.

Two of the parameters used to bound the size of the
model are the number of nodes and the number of symbols
or codes. The other parameter is the burst limit, which delays
the creation a new node until a fixed number of occurrences
of an n-gram have been observed. The root node of the trie is
initialised with all counts set to 1 to ensure that all possible
256 single characters are assigned codes. As each character
is read from the buffer, the count for that character in the
current node is incremented. When the count for an n-gram
reaches the burst limit, a new node is created. Then, when
the next character is read, it becomes the last character of a
new (n + 1)-gram. Consider the example in Fig. 4. In part
(a), the character ‘b’ has been observed five times. The next
character in the sequence is another ‘b’. If the burst limit
is set at 5, a new node is created as displayed in part (b).
In part (c), the character ‘c’ is observed, its count is incre-
mented by one, creating a new n-gram of ‘bc’. At the next
character, updating starts again from the root node of the trie.

After all characters in the buffer have been inspected, the
trie is traversed (see Fig. 2) and all the n-grams are copied
into a symbol buffer to be used for decoding. An array is
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Fig. 2 An example trie structure. Each position in the array corresponds to one character or byte value

90

3

52

6

40

5

52

8

www.ayesnfFAILeifndhttp:/3o5dpad;al...vmlkjdfgif/jfl376al;ioj

pointer to symbol

symbol frequncy

symbol length 9

1

symbol buffer

Fig. 3 An example sequence of n-grams in a model. The symbol buffer
contains all the symbols of the model and is accessed via the code table.
The first (and most frequent) symbol in the buffer is “www” and is 3-
bytes long. The last (and least frequent) symbol is “367al;ioj” and is
9-bytes long

used to record the position of each symbol in the buffer, its
length, and its observed frequency. This array is then sorted
in decreasing frequency order. In the trie (which is used at
encoding), the frequency of each symbol is then replaced by
its ordinal position in the sorted array.

The same variable-byte integer coding scheme as for the
simple bytewise schemes can be used on the ordinal posi-
tion values to produce codewords. As for the other bytewise
schemes, the commonest 27 symbols are represented in a
single byte, the next 214–27 in two bytes, and so on. Thus the
most common symbols are assigned shorter codewords, and
the less frequent symbols progressively longer codewords.
In detail, the model construction algorithm is as follows.

Constructing a vargram model using an array trie:
1. Initialise the model: create the root node and initialise

the count for each character to 1.
2. Build the trie as data is inspected.

(a) Start at the root node.
(b) Until all characters have been read from the

buffer,

i. Read a character from the buffer and incre-
ment its frequency

ii. If the current node is a leaf node, then
A. If frequency for the character is 0 (char-

acter sequence not observed yet) then
increment the number of n-grams ob-
served, and return to the root node.

B. If the frequency is equal to the burst
limit then create a new child node cor-
responding to the current character, and
start the next iteration at the new node.

C. Otherwise, return to the root node.
iii. Otherwise, traverse the appropriate pointer.

. . .

...bcababbc

2
b

15
ca

2
b

1
ca

...bcababbc

. . .0
b

1
ca

0

...bcababbc

. . .0
b

0
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0

(a)

(b) (c)

. . .2
b

1
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6 . . .2
b

1
ca

6

Fig. 4 Creation of a new node in the trie when the burst limit is reached
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3. Traverse the trie and for each symbol, copy the sym-
bol and its frequency to the symbol buffer, and copy the
symbol length to the code table.

4. Sort the code table in decreasing frequency order.
5. For each symbol replace its frequency in the trie with its

ordinal position in the sorted code table.

Coding proceeds as follows. As characters are read from
the input, the trie is traversed until a leaf node, or a non-
valid (that is, unobserved) n-gram is encountered. This finds
a match for the longest symbol stored in the model. For a
leaf node, the codeword for the current n-gram is emitted.
For a non-valid n-gram, the codeword representing all the
previous characters (or current (n −1)-gram) is emitted, and
trie traversal then commences from the root node for this
character. The algorithm for encoding is as follows.

Encoding of data using an array trie:
1. Start at the root node.
2. Until all characters have been encoded,

(a) Read a character from the buffer.
(b) If the current n-gram represented by path from

root to this character has not been observed,
i. Variable-byte encode the ordinal number for

symbol containing the previous characters of
the n-gram (that is, the n-gram excluding this
character).

ii. Return to the root node and traverse from the
pointer for this character.

(c) If the current node is a leaf node then variable-
byte encode the n-gram and return to the root
node.

(d) Otherwise, use the current character to traverse
the trie.

Decoding proceeds by replacing successive codewords
by the corresponding symbol or n-gram. Since the codeword
is the variable-byte encoding of the ordinal position of the
symbol in the symbol buffer, decoding is fast and is simply
a matter of decoding the variable-byte integer, and using this
as an offset from which the symbol or n-gram can be emit-
ted. The algorithm for decoding is as follows.

Decoding using an array trie:
1. Until the number of symbols decoded is equal to the

number of symbols encoded,
(a) Decode one variable-byte integer.
(b) Use this value as an index into the code table and

read the length and position of the symbol in the
symbol buffer.

(c) Emit the symbol stored in the symbol buffer.

The burst limit and the maximum number of codewords
and nodes were varied on some sample data to observe the
effect on compression effectiveness, in experiments not re-
ported here. We then chose settings that achieved a good
balance between model size and compression effectiveness.
The maximum number of codewords was to limited to
50,000, the maximum number of nodes was limited to 2500,

and the burst limit was set at 100. These values were chosen
using a range of preliminary experiments. This resulted in a
total model size of approximately 5.64 MB, with the decode
part of the model only requiring approximately 0.76 MB.
Results for these and some other combinations are shown
later.

When building the models above, the input buffer was
simply parsed character by character from the beginning
of the buffer to the end. Consider the example sequence
abbcadbac. If the character sequence abbc (positions 1–
4) has just been added to the trie, one option is to go back
to position 2 and continue looking at the overlapping se-
quences, such as bbca, or another option is to ignore the
overlapping sequences and simply continue from position 5
searching for new substrings beginning with adbac. In ex-
periments not reported here, we examined at the effects of
building a model using overlapping n-grams. However, for
models based on overlapping n-grams to be effective, they
require model build times and memory requirements much
too large to make them efficient enough for use in this appli-
cation, and so were not used when building the compression
models in the experiments.

As noted earlier, we believe that determining an ideal
set of n-grams is NP-hard. The frequencies are in any case
only an approximation, as only part of the data has been in-
spected. Also, choosing which n-gram to code (rather than
greedily coding the leftmost) can improve compression, but
is slower. We again use the simple greedy approach.

4.2 TST implementation

In our experiments, we observed that node utilisation was
low. On average only about 10% of the 256 positions in the
array of the array-trie implementation were occupied. An al-
ternative is to use a TST, with, for efficiency, an array trie
node as the root. Thus we have an array of 256 TSTs, one
for each possible value of the first character of an n-gram.
An example is illustrated in Fig. 5.

With a TST, the decode part of the model is identical to
that of the trie implementation. The algorithms for building
the model and encoding are similar to the array trie imple-
mentation, except that the root node is treated differently to
the other nodes, and, when a character is first observed fol-
lowing a given prefix, a node must be created for it in the
TST.

As before, the burst limit and maximum number of code-
words and nodes were varied on sample data to observe the
effect on compression effectiveness. We then chose a set that
achieved a good balance between model size and compres-
sion effectiveness. The maximum number of codewords and
nodes was limited to 150,000, and the burst limit was set
at 2. This resulted in a total model size of approximately
5.55 MB (3.15 MB for the decode part and 2.40 MB for the
encode part).

As for the array trie implementation, models based on
overlapping n-grams require model build times and memory
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Fig. 5 An example tst structure containing the n-grams “fish”, “fin”,
“fit”, “fool” and “foot”

requirements much too large to make them efficient enough
for use in this application, and so were not used when build-
ing the compression models in the experiments.

5 Comparison of compression techniques

We have proposed compression techniques for the specific
task of compressing data record by record, using a semi-
static model. The performance of the different approaches
varies considerably in both speed and compression effi-
ciency, and varies from file to file.

One way of benchmarking them is to compare them to
general-purpose compression methods. These do not allow
random access to compressed data, and so have fewer con-
straints on the way data can be represented or manipulated,
but – even though they cannot be used for sorting – do pro-
vide a point of reference. Our compression techniques, and
XRAY , are semi-static and have been developed to allow ran-
dom access to compressed data. However, even these are
not directly comparable. XRAY ’s primary aim is for effec-
tive compression and fast decompression, with the memory
and processor resources required for compression being a
secondary consideration. Our techniques, while also semi-
static, are intended to be efficient in both compression and
decompression.

We use a range of data sets to compare the compression
methods and their impact on sorting, to explore performance
on data with different characteristics. The data sets are as
follows:

Proxy log. Records from a web proxy cache log. Each con-
sists of a fixed series of fields, including URL, file size,
time and date, and file type. Each record in the relation

has eleven fields, eight of which are string fields, two are
floating point numbers, and one is an integer.

Web crawl. Lines of text from a large web crawl that
has been widely used in TREC experiments (see
trec.nist.gov). This data contains nine fields: two
string and seven integer, including the text itself, coun-
ters, and lengths.

Low-cardinality data. As discussed earlier, some other
database compression research focuses on low-
cardinality data. We used the proxy log as above,
but replaced each of the eleven fields by the ASCII
representation of its length in bytes.

Canterbury corpus. The large corpus component of the
Canterbury Corpus (corpus.canterbury.ac.nz),
which is a mix of documents of a mix of sizes. It is
a benchmark that enables researchers to evaluate loss-
less compression methods. We used Escherichia coli (the
complete genome of the E.Coli bacterium) of 4,638,690
bytes and and world192.txt (the CIA world fact book) of
2,473,400 bytes.

For each of the first three sets we have 10 GB of data.
The first data set used is the proxy log. The top third of

Table 1 shows results for the compression utilities gzip and
bzip2 , which cannot be used in conjunction with sort-
ing but – as commonly used utilities – provide an interesting
benchmark. The middle third shows results for XRAY [6] and
our implementation of canonical Huffman coding based on
algorithms described by Moffat and Turpin [20] for single
characters and bigrams. The bottom third of the table con-
tains results for our new compression techniques. In these
timings, our compression techniques build a model based on
only the first 36 MB of data. This value can be varied, but,
in our sorting experiments – where we are compressing on
the fly – it will be inefficient to examine the entire database,
and so we need to sacrifice some compression effectiveness
for increased efficiency by building a compression model on
only a small portion of the data. There are two sets of results
for each of our vargram implementations, the first with pa-
rameters as used in the sort experiments (v1), and another
set from parameters that give better compression effective-
ness (v2), at the cost of larger model sizes and compression
times.

While XRAY achieves the highest compression effective-
ness and is fast to decompress, it is, like bzip2 , slow to
compress, and it requires large amounts of memory. For the
default configuration of XRAY (v1) the peak memory usage
was approximately 170 MB. The Huffman and fixed-length
n-gram methods are relatively fast to compress or decom-
press, but the compression efficiency is low.

The compression achieved by our semi-static vargram
techniques is comparable to gzip , although our techniques
are slightly slower. TST vargram v2 achieves the most ef-
fective compression, but is the slowest of our schemes and
requires a model size in excess of 100 MB. The bytewise
codes have been surprisingly effective; for these methods,
we have shown entropies, which are the sizes that would be

trec.nist.gov
corpus.canterbury.ac.nz
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Fig. 6 Size of the compressed data as a percentage of the original size
versus the total time to compress and decompress 1 GB of text data
from a web proxy cache log

achieved with a perfect code; the bytewise codes are consis-
tently about 20% greater.

Results for compressing 1 GB of text data from a
web proxy cache log are graphed in Fig. 6. The distri-
bution of the results is similar to that of Table 1. Both
XRAY and bzip2 provide good compression, but are slow,
while gzip is both efficient and effective. Our semi-static
schemes again have comparable compression effectiveness
to gzip . However, compared to compression of 100 MB,
our semi-static schemes have declined slightly. In both ex-
periments, only the first 36 MB of data is inspected to build
the compression model, so presumably the model is in this
case less representative.

Table 2 shows results of similar experiments on 100 Mb
of the web crawl data. The compression effectiveness is less
for all of the techniques compared to Table 1. The distribu-
tion of results is similar to those for the web proxy cache
log, but our vargram techniques are closer in performance to
gzip .

Table 1 Results for compression utilities gzip and bzip2 , XRAY -best (default), XRAY -fast (limited to 36 MB sample and five passes),
canonical Huffman coding of single characters and bigrams, and our new methods: bigram, quadgram, trie vargram v1 (burst limit 100, max.
nodes 2500, max. codes 50,000), trie vargram v2 (burst limit 5, max. nodes 50,000, max. codes 100,000), TST vargram v1 (burst limit 2, max.
nodes 150,000, max. codes 150,000), TST vargram v2 (burst limit 1, max. nodes 2,000,000, max. codes = 2,000,000) on 100 MB of text data
from a web proxy cache log

Compress time (s) Decompress time (s) % of original size Entropy

gzip -best 23.3 6.3 25.22 –
gzip -fast 13.3 6.5 32.30 –
bzip2 109.3 33.3 15.72 –

XRAY -best 358.4 6.4 11.89 –
XRAY -fast 109.3 7.4 23.17 –
Huffman (character) 18.0 18.6 68.39 –
Huffman (bigram) 14.0 12.1 54.93 –

Bigram 16.8 8.3 68.60 –
Quadgram 22.1 7.1 45.15 –
Trie vargram v1 23.1 7.1 34.53 29.50
Trie vargram v2 34.9 7.7 27.55 22.74
TST vargram v1 35.3 6.5 26.76 22.06
TST vargram v2 46.6 5.4 18.28 16.15

Table 3 shows results for 100 Mb of low-cardinality data.
As expected, this data is more compressible and all the com-
pression schemes achieve better results. The relativities are
much as the same as before, and the vargram compression
schemes again have effectiveness and efficiency compara-
ble to gzip . The innate defects of the fixed-length n-gram
methods are, however, more obvious.

We also tested these methods on documents from the
Canterbury Corpus. The results in Tables 4 and 5 illustrate
the compression effectiveness and efficiency of the various
schemes. In the context of databases, these file sizes are very
small. In our other experiments we use data sets of several
gigabytes. Even though the data is probably not likely to rep-
resent that in a typical database, it is still informative to com-
pare these methods with different types of data.

The results for our methods compared to the others
is best for the E. coli file (Table 4). For this file, with
trie vargram v1 the compression effectiveness falls between
gzip -fast and gzip -best, but with a time closer to gzip -
fast. The compression effectiveness is also close to that of
XRAY and with lower compress and decompress times. The
result for trie vargram v2 in this table, in contrast to all the
others, is worse than for trie vargram v1. However, as men-
tioned above, the second set of parameters are those that
gave better compression for the web proxy cache log. For
the text file (Table 5) our methods do not perform as well.
This is probably due to a lower degree of repetition com-
pared to E.coli, and demonstrates the advantage of adaptive
schemes that are able to continuously update their compres-
sion models as the data is being compressed. Also, this ma-
terial has locality that is absent in the proxy log (and can-
not be used in semi-static compression), giving gzip and
bzip2 opportunities for improved compression.

It is possible that, for these small files, our vargram com-
pression schemes would be able to provide better compres-
sion with a different set of parameters. In these experiments
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Table 2 Results for compression utilities gzip and bzip2 , XRAY -best (default), XRAY -fast (limited to 36 MB sample and 5 passes), canonical
Huffman coding of single characters and bigrams, and our new methods: bigram, quadgram, trie vargram v1 (burst limit 100, max. nodes 2500,
max. codes 50,000), trie vargram v2 (burst limit 5, max. nodes 50,000, max. codes 100,000), TST vargram v1 (burst limit 2, max. nodes 150,000,
max. codes 150,000), TST vargram v2 (burst limit 1, max. nodes 2,000,000, max. codes = 2,000,000) on 100 MB of text data created from TREC
wt10g web data

Compress time (s) Decompress time (s) % of original size Entropy

gzip -best 23.06 4.41 33.66 –
gzip -fast 13.73 6.30 37.82 –
bzip2 148.58 36.02 24.27 –

XRAY -best 523.86 8.31 24.07 –
XRAY -fast 158.80 8.29 28.34 –
Huffman (bigram) 14.00 10.45 55.05 –

Bigram 14.04 6.58 69.56 –
Quadgram 25.59 4.88 47.25 –
Trie vargram v1 24.04 8.52 41.50 35.56
Trie vargram v2 33.33 8.80 38.75 31.18
TST vargram v1 40.94 9.89 38.43 31.27
TST vargram v2 55.85 7.93 30.00 26.52

Table 3 Results for compression utilities gzip and bzip2 , XRAY -best (default), XRAY -fast (limited to 36 MB sample and 5 passes), canonical
Huffman coding of single characters and bigrams, and our new methods: bigram, quadgram, trie vargram v1 (burst limit 100, max. nodes 2500,
max. codes 50,000), trie vargram v2 (burst limit 5, max. nodes 50,000, max. codes 100,000), TST vargram v1 (burst limit 2, max. nodes 150,000,
max. codes 150,000), TST vargram v2 (burst limit 1, max. nodes 2,000,000, max. codes = 2,000,000) on 100 MB of low cardinality data

Compress time (s) Decompress time (s) % of original size Entropy

gzip -best 42.64 5.59 5.41 –
gzip -fast 7.35 5.87 9.68 –
bzip2 287.97 24.95 3.25 –

XRAY -best 147.86 2.68 3.11 –
XRAY -fast 53.99 4.36 9.85 –
Huffman (bigram) 13.78 9.49 25.17 –

Bigram 13.75 5.39 50.00 –
Quadgram 16.15 3.10 26.95 –
Trie vargram v1 22.03 4.26 8.65 6.86
Trie vargram v2 33.25 3.07 6.34 5.40
TST vargram v1 19.99 3.16 6.69 5.60
TST vargram v2 26.43 3.10 6.73 5.55

Table 4 Results for compression utilities gzip and bzip2 , XRAY , canonical Huffman coding of single characters and bigrams, and our new
methods: bigram, quadgram, trie vargram v1 (burst limit 100, max. nodes 2500, max. codes 50,000), trie vargram v2 (burst limit 5, max. nodes
50,000, max. codes 100,000), TST vargram v1 (burst limit 2, max. nodes 150,000, max. codes 150,000), TST vargram v2 (burst limit 1, max.
nodes 2,000,000, max. codes = 2,000,000) on E.coli from the Canterbury Corpus (file size of 4.42 MB)

Compress time (s) Decompress time (s) % of original size Entropy

gzip -best 12.48 0.25 28.00 –
gzip -fast 1.08 0.49 32.91 –
bzip2 5.09 1.84 26.97 –

XRAY 21.18 0.58 28.53 –
Huffman (character) 0.68 0.64 28.07 –
Huffman (bigram) 0.52 0.44 25.28 –

Bigram 0.43 0.31 50.00 –
Quadgram 1.08 0.22 34.12 –
Trie vargram v1 1.75 0.25 30.24 25.67
Trie vargram v2 3.59 0.49 32.22 25.03
TST vargram (1) 2.79 0.39 32.62 25.51
TST vargram (2) 3.76 0.42 31.00 24.69
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Table 5 Results for compression utilities gzip and bzip2 , XRAY , canonical Huffman coding of single characters and bigrams, and our new
methods: bigram, quadgram, trie vargram v1 (burst limit 100, max. nodes 2500, max. codes 50,000), trie vargram v2 (burst limit 5, max. nodes
50,000, max. codes 100,000), TST vargram v1 (burst limit 2, max. nodes 150,000, max. codes 150,000), TST vargram v2 (burst limit 1, max.
nodes 2,000,000, max. codes = 2,000,000) on world192.txt from the Canterbury Corpus (file size of 2.36 MB)

Compress time (s) Decompress time (s) % of original size Entropy

gzip -best 0.80 0.75 29.17 –
gzip -fast 0.53 0.29 37.11 –
bzip2 2.33 1.20 19.79 –

XRAY 10.22 0.71 24.69 –
Huffman (character) 0.43 0.44 63.02 –
Huffman (bigram) 0.42 0.31 54.87 –

Bigram 0.32 0.22 68.97 –
Quadgram 1.01 0.16 49.70 –
Trie vargram v1 0.93 0.25 49.89 43.99
Trie vargram v2 2.76 0.35 40.02 33.26
TST vargram (1) 1.99 0.29 37.81 31.07
TST vargram (2) 3.27 0.43 34.91 26.97

on the files from the Canterbury Corpus, we used the pa-
rameters we found to work well with 100 MB of data; in
particular, we did not want to exceed the memory limit on
the compression model too early, so that a greater percent-
age of the data could be inspected when gathering statistics.
With these smaller files, the limits used in our vargram com-
pression schemes could have been relaxed, as we did not use
all the memory allocated for the model.

Overall, these results show that our fast semi-static com-
pression techniques achieve reasonable compression perfor-
mance compared to general-purpose adaptive compression
techniques and the semi-static XRAY , and that the speed of
compression is of similar magnitude to that of disk trans-
fer rates. The compression techniques are versatile and can
be parameterised to balance memory requirements, com-
pression efficiency, and compression effectiveness. Our var-
gram compression techniques have not been designed to
achieve the best possible compression, but are designed to
trade the various requirements of compression effectiveness
against processor and memory utilisation; yet compression
efficiency is close to that of gzip . In the sections follow-
ing, we make use of our compression schemes in sorting op-
erations.

6 External sorting with compression

By incorporating compression into sorting, we aim to reduce
the time taken to sort due to better use of memory, reduced
I/O transfer costs, and the generation of fewer runs, which
will reduce the costs of merging. One of the two key ques-
tions of this research is how to integrate compression into
standard database operations such as sort.

Compression could be used simply to speed memory-
to-disk transfers, by compressing runs after they have been
sorted and decompressing them as they are retrieved. This
approach has the advantage that high-performance adaptive
compression techniques could be used, but also has disad-

vantages. In particular, it does not allow reduction in the
number of runs generated, and at merge time a separate com-
pression model must be used for each run.

The alternative is to compress the data as it is loaded into
the buffer, prior to sorting. This allows better use to be made
of the buffer; reduces the number of runs; and, since semi-
static compression must be used, the same model applies to
all runs. However, the compression is unlikely to be as ef-
fective. Nonetheless, given the cost of adaptive compression
and the advantages of reducing the number of runs – such as
increasing the buffer space available per run and reducing
disk thrashing – it is this alternative that we have explored in
our experiments.

Figure 7 illustrates the entire external sorting process
with compression. In this figure, the input buffer is of size A,
the output buffer is of size B, and the compression model
size is C .

External sorting with compression:
Build the compression model The arrangement of buffers is

shown in Fig. 7a. The input buffer has capacity A − C to
store records.
1. Fill the input buffer with records from the relation to

be sorted
2. Build a model based on the symbol frequencies in

these records.
Generate the first run

1. Sort on the keys of the records in the input buffer.
2. In sorted order, compress the records then write them

to disk as a sorted run.
Generate the remaining compressed runs The arrangement

of buffers is shown in Fig. 7b; note that to increase
the number of records per run, they must first be com-
pressed. The input and output buffers are of size B/2
each, and the sort buffer is of size A − C .
Repeat the following until all data has been processed:
1. Fill the input buffer with data.
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Sort

Build model

Disk Disk

Main Memory Buffers

Input OutputCompress

(a) Build model and generate rst compressed run

Disk Disk

Main Memory Buffers

Input Compress OutputSortSort

(b) Generation of subsequent compressed runs

Disk

Input

Output

Disk

DecompressSort

Main Memory Buffers

(c) Merge of compressed runs

Fig. 7 External sorting with compression. The first stage is using the
initial data to determine a model. Then runs are generated and merged
as before, but compression is used to increase the number of records
per run

2. Compress each record in the input buffer, then write
it to the sort buffer. Continue until the sort buffer is
full, reloading the input buffer as necessary.

3. Sort on the keys of the records in the sort buffer.
4. In sorted order, write the compressed records to disk,

forming one run.
Merge all runs The arrangement of buffers is shown in

Fig. 7(c). The input buffer is of size A − C , the output
buffer is of size B. Note that only the decoding part of
the model is required in this phase, so C is smaller.
1. Divide the input buffer space amongst the runs, giv-

ing per-run buffers, and fill with data from the com-
pressed runs.

2. Find the smallest key among the first remaining
record in each buffer, decompress the corresponding
record and move it to the first available position of
the output block.

3. If the output buffer is full, write it to disk and reini-
tialise.

4. If the input buffer from which the smallest key was
taken is exhausted, read from the same run and fill
the same input buffer. If no blocks remain in the run,
then leave the buffer empty and do not consider keys
from that run in any further sorting.

number of bytes
encoded
(vbyte)

record  key
compressed and
padded to byte
boundary

key
(uncompressed)

Fig. 8 Format of record in compressed run

5. Repeat until all buffers are empty.

In this algorithm, the sort key must be left uncompressed,
and to simplify processing each compressed record should
be prefixed with a byte-length. Compressed records start
with the number of bytes encoded in the compressed part
of the record (represented as a variable-byte integer) fol-
lowed by the key attribute, which is left uncompressed. The
remainder contains the original record, excluding the key,
compressed and then padded to a byte boundary. The format
of compressed records is shown in Fig. 8.

When comparing sorting techniques, each should use the
same fixed amount of buffer space. If compression is not
used, all the buffer space is available for sorting. For the
compression-based sort algorithms, the buffer space avail-
able for sorting will be reduced by the memory required by
the compression model. In the run generation phase, both
the encode model and the decode model are used, so the
available buffer space is reduced by the combined size of
the models. However, once the runs have been generated,
only the decode model is required for merging, so the buffer
space during the merge phase is only reduced by the memory
required to store the decode model.

In Sect. 2, we noted that if B(R) is used to denote the
number of blocks that are required to hold all the tuples of
relation R, then the number of disk I/Os used by the external
sort algorithm without compression, ignoring the handling
of the output, is B(R) to read each block of R when creating
the runs, B(R) to write each block of the runs to disk, and
B(R) to read each block from the runs at the appropriate
time when merging. Thus, the total cost of this algorithm is
3B(R) I/Os.

If the compression scheme used is able to reduce the size
of the runs by, say, 50%, the I/O cost becomes B(R) to read
each block of R when creating the runs, B(R)/2 to write
each block of the runs to disk, and B(R)/2 to read each
block from the runs at the appropriate time when merging.
This results in a total cost of 2B(R) I/O’s for the compres-
sion based algorithm.

As the volume of data increases, compression will re-
duce the total I/O cost of the algorithm. However, this does
come at the expense of higher processor costs for compress-
ing and decompressing the data. A further benefit of com-
pression is a reduction in the merge costs. With compression
it is possible for each run (excluding the first) to contain
more records, thereby reducing the number of runs, which
will allow larger per-run buffers in the merge phase. Reduc-
ing the number of runs also reduces the cost of the merge.
Again, this is more difficult to quantify. The overall effect of
the addition of compression to the external sort algorithm is
expected to reduce the execution time of the sort, with the
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amount of reduction dependent on the different trade-offs of
processor and I/O costs.

Our experiments were run on a typical personal com-
puter with one processor and one non-RAID disk. We do not
investigate other approaches reported in the literature to re-
duce I/O bottlenecks such as systems with multiple proces-
sors or disks. In these approaches the reduction in I/O access
times reduces the time the processor is idle, and therefore re-
duces the effectiveness of the use of compression which re-
lies on idle processor time for the compression and decom-
pression of data. On the other hand, with an additional pro-
cessor the benefit of compression could be much greater, and
in both cases we would retain the benefits of reduced merge
costs due to the generation of a smaller number of runs. As
with approaches such as AlphaSort, we do not sort entire
records, but rather sort key–pointer pairs, making more ef-
fective use of the cache.

7 External sort experiments

To test the effect of compression on external sorting, we im-
plemented a fast external sorting routine, and added as op-
tions the compression schemes described earlier. Runs were
sorted with an efficient implementation of quicksort [4]. We
are confident that the implementation is of high quality. For
example, on the same data and with similar parameters, the
Unix sort utility takes almost twice as long (or four times as
long to sort on strings, for experiments not reported here).

Two buffer sizes were used, as earlier, 18.5 and 37 MB.
Data volumes tested ranged from 100 Mb to 10 Gb of dis-
tinct records.

All experiments were carried out on an Intel 1 GHz
Pentium III with 512 Mb of memory and a 120 Gb hard drive
(Ultra ATA/100 interface, average seek time of 14.3 ms,
7200 rpm) and running the Linux operating system (RedHat
8.0). Other processes and disk activity were minimised dur-
ing experiments, that is, the machine was under light load.

Proxy log. For the proxy data, Tables 6–11 show the ef-
fect that incorporating compression into external sorting has
on elapsed time and temporary disk requirements. The task
was to sort these on one of the numerical fields. The ta-
bles show experimental results for external sorting without
compression, with Huffman coding of bigrams, and with
the four new compression schemes we have developed: bi-
gram, quadgram, trie vargram, and TST vargram. The “build
model” time is the time to determine the model. The “gen-
erate runs” time is the time to read in the data and write out
all the runs. The “merge runs” time is the time to read in and
merge the runs and write out the result. The total sort times
are illustrated in Fig. 9, including additional data points.

These results show that, as the volume of data being
sorted grows – or as the amount of buffer space available de-
creases – compression becomes increasingly effective in re-
ducing the overall sort time. The gains are due to reduced
disk transfer, disk activity, and merging costs, savings that

eventually outweigh the increased processor cost incurred
by compression and decompression of the data. In the best
case observed, with an 18.5 Mb buffer on 10 Gb of data, total
time is reduced by a third. The computationally more expen-
sive methods, such as Huffman coding and the quadgram
and vargram schemes, are slow for the smaller data sets,
where the disk and merging costs are a relatively small com-
ponent of the total. For a given buffer size, the cost of build-
ing each run is more or less fixed, and thus run construction
cost is linear in data size; merge costs are superlinear in data
size, as there is a log K search cost amongst K runs for each
record merged. Use of hierarchical merge and other similar
strategies does not affect the asymptotic complexity of the
merge phase. The results in Tables 8 and 11 show that, with
compression, the most benefit was achieved when there is a
large difference in the the number of runs.

For the compression schemes that have a greater effec-
tiveness (quadgram and vargram), the sort times increase
more slowly with database size compared to the less effec-
tive schemes (Huffman and bigram). This is most notice-
able in the upper graph in Fig. 9, which shows that, for
smaller volumes of data, compression and decompression
speed is the dominating factor; and that, at larger volumes,
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Fig. 9 Sort times as a percentage of the time to sort without compres-
sion for the proxy cache log. a With 18.5 Mb of buffer space. b With
37 Mb of buffer space
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Table 6 Results for sorting 100 Mb created from web proxy cache log data with 18.5 Mb of buffer space, using no compression and using five
alternative compression techniques

No compression Huffman Bigram Quadgram Trie vargram TST vargram

Build model (s) – 0.35 0.27 2.90 0.92 2.61
Generate runs (s) 10.39 14.54 12.21 14.40 11.17 17.78
Merge runs (s) 12.91 20.31 14.26 15.24 16.42 15.50
Total time to sort (s) 23.30 35.20 26.74 32.54 28.51 35.89
Comparative (%) 100.0 151.1 114.8 139.7 122.4 154.0

CPU utilisation (%) 46.8 82.3 62.9 75.4 73.8 85.5

Number of runs 6 5 5 5 4 4
Size of runs (Gb) 0.101 0.066 0.078 0.057 0.048 0.037
Comparative (%) 100.0 64.6 76.5 56.4 47.5 36.6

Disk reads 52 398 401 408 412 408
Disk writes 427 477 525 445 398 361

Results include time to sort and temporary space required

Table 7 Results for sorting 1 Gb created from web proxy cache log data with 18.5 Mb of buffer space, using no compression and using five
alternative compression techniques

No compression Huffman Bigram Quadgram Trie vargram TST vargram

Build model (s) – 0.35 0.27 2.90 0.93 2.66
Generate runs (s) 114.74 148.16 120.26 144.32 117.28 166.72
Merge runs (s) 178.65 199.12 157.86 161.32 174.49 169.99
Total time to sort (s) 293.39 347.63 278.39 308.54 292.70 339.37
Comparative (%) 100.0 118.5 94.9 105.2 99.8 115.7

CPU utilisation (%) 37.5 74.3 58.7 72.3 69.4 85.6

Number of runs 56 39 46 36 36 28
Size of runs (Gb) 0.976 0.641 0.757 0.559 0.484 0.380
Comparative (%) 100.0 65.7 77.6 57.3 49.6 38.9

Disk reads 3443 5713 6347 5604 5394 5059
Disk writes 4111 4847 5349 4488 4066 3678

Results include time to sort and temporary space required

Table 8 Results for sorting 10 Gb created from web proxy cache log data with 18.5 Mb of buffer space, using no compression and using five
alternative compression techniques

No compression Huffman Bigram Quadgram Trie vargram TST vargram

Build model (s) – 0.35 0.27 2.92 0.95 2.64
Generate runs (s) 1239.80 1573.24 1231.39 1598.39 1257.93 1774.68
Merge runs (s) 5374.66 4423.15 4355.40 3062.31 2992.15 2337.15
Total time to sort (s) 6614.46 5996.74 5587.06 4663.62 4251.03 4114.47
Comparative (%) 100.0 90.7 84.5 70.5 64.3 62.2

CPU utilisation (%) 17.4 42.9 31.0 41.6 42.7 59.0

Number of runs 568 394 462 368 364 292
Size of runs (Gb) 9.921 6.584 7.742 5.834 5.057 4.095
Comparative (%) 100.0 66.4 78.0 58.8 50.9 41.3

Disk reads 434594 331316 381977 294669 254341 216721
Disk writes 41716 49705 54756 46330 41965 38406

Results include time to sort and temporary space required
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Table 9 Results for sorting 100 Mb created from web proxy cache log data with 37 Mb of buffer space, using no compression and using five
alternative compression techniques

No compression Huffman Bigram Quadgram Trie vargram TST vargram

Build model (s) – 0.68 0.54 6.11 2.11 5.59
Generate runs (s) 9.38 14.85 13.26 14.47 11.55 19.10
Merge runs (s) 12.72 19.43 15.10 13.33 14.89 14.92
Total time to sort (s) 22.10 34.96 28.90 33.91 28.55 39.61
Comparative (%) 100 158.2 130.8 153.4 129.2 179.2

CPU utilisation (%) 47.4 76.6 63.0 76.1 73.0 83.2

Number of runs 3 3 3 3 3 2
Size of runs (Gb) 0.101 0.065 0.077 0.056 0.044 0.035
Comparative (%) 100 64.3 76.3 55.4 43.6 34.7

Disk reads 18 151 153 156 161 156
Disk writes 214 220 242 207 187 170

Results include time to sort and temporary space required

Table 10 Results for sorting 1 Gb created from web proxy cache log data with 37 Mb of buffer space, using no compression and using five
alternative compression techniques

No compression Huffman Bigram Quadgram Trie vargram TST vargram

Build model (s) – 0.69 0.54 6.09 2.09 5.62
Generate runs (s) 125.84 162.89 140.78 152.77 125.29 176.84
Merge runs (s) 172.07 218.66 177.34 164.96 177.69 168.78
Total time to sort (s) 297.91 382.24 318.66 323.82 305.07 351.24
Comparative (%) 100 128.3 107.0 108.7 102.4 117.9

CPU utilisation (%) 39.2 67.7 57.7 69.6 64.0 82.4

Number of runs 28 19 23 18 17 13
Size of runs (Gb) 0.976 0.640 0.752 0.551 0.460 0.364
Comparative (%) 100 65.5 77.0 56.5 47.1 37.3

Disk reads 862 2351 2507 2280 2221 2142
Disk writes 2056 2342 2571 2172 1977 1784

Results include time to sort and temporary space required

Table 11 Results for sorting 10 Gb created from web proxy cache log data with with 37 Mb of buffer space, using no compression and using
five alternative compression techniques

No compression Huffman Bigram Quadgram Trie vargram TST vargram

Build model (s) – 0.68 0.54 6.03 2.05 5.51
Generate runs (s) 1257.43 1637.50 1368.51 1565.75 1308.87 1817.42
Merge runs (s) 2671.49 2408.52 2092.86 1799.51 1847.65 1818.28
Total time to sort (s) 3928.92 4046.70 3461.91 3371.30 3158.57 3641.21
Comparative (%) 100 103.0 88.1 85.8 80.4 92.7

CPU utilisation (%) 29.6 64.3 52.1 65.9 62.1 81.3

Number of runs 287 193 226 184 165 135
Size of runs (Gb) 9.918 6.569 7.694 5.738 4.810 3.918
Comparative (%) 100 66.2 77.6 57.9 48.5 39.5

Disk reads 87446 61897 76971 52156 44215 37935
Disk writes 20861 24116 26450 22496 20449 18683

Results include time to sort and temporary space required
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Table 12 Results for sorting a 10-Gb database created from TREC wt10g web data with 18.5 Mb of buffer space, using no compression and
using five alternative compression techniques

No compression Huffman Bigram Quadgram Variable - trie Variable - TST

Build model (s) – 0.39 0.29 3.10 0.96 3.15
Generate runs (s) 1262.28 1741.97 1228.75 1777.49 1277.13 1990.12
Merge runs (s) 5998.76 4789.49 4645.26 4170.47 3916.25 3142.54

Total time to sort (s) 7261.04 6531.46 5874.30 5951.06 5194.34 5135.81
Comparative (%) 100.0 90.0 80.9 82.0 71.5 70.7

Number of runs 586 387 447 382 371 333
Size of runs (Gb) 10.238 6.458 7.490 6.022 5.123 4.669
Comparative (%) 100.0 63.1 73.2 58.8 50.0 45.6

Results include time to sort and temporary space required

the amount of compression achieved becomes the dominat-
ing factor in determining the sort time.

For our hardware, with otherwise light load, the proces-
sor utilisation for sorting without compression shows that
there are spare processor cycles that can be made use of
by compression. Tables 6 to 8 show that as the volume of
data and hence I/O increases, processor utilisation changes
from 46.8% to 17.4%. From Tables 6 to 8, as we sort
from 100 Mb to 10 Gb with TST vargram compression,
processor utilisation reduces from 85.5 to 59.0%. A similar
trend can be observed as the amount of available buffer
space decreases, that is the utilisation of the processor again
decreases decreases. Then as the amount of data increases,
or the available buffer space decreases we have an even
greater margin of unused processor capacity, which may
become useful for example if the system is under heavier
load. The processor utilisation for each compression scheme
is as expected. The bit bitwise Huffman and the TST
vargram scheme required larger use of the processor, while
the simplest scheme, Bigram, had the lowest processor
utilisation. This hardware is now several years old, and it is
expected that with more modern processors, the amount of
unused processor time will increase.

Despite the greater compression achieved by Huffman
coding compared to bigram coding, the latter is always
faster. This confirms that bytewise codes are more efficient,
with the loss of compression effectiveness more than com-
pensated for by the gain in processing speed. The quadgram
and vargram compression methods had better compression
effectiveness and enough processing efficiency to give re-
sults superior to the other methods for large files. The upper
graph in Fig. 9 shows that external sorting with TST vargram
compression was the fastest. While it was not the fastest in
the lower graph, it has the steepest gradient, so it is likely
that at larger data volumes it will be the most efficient.

The tables also include the size of the resulting runs, giv-
ing an indication of the amount of compression achieved. As
discussed earlier the key is not compressed, and there is the
extra overhead of storing the number of bytes encoded in
the record, as this value is needed by the decoder. To al-
low random access, records must end on a byte boundary.
The model is only built from symbols encountered in the
first buffer, not the entire database, so the model may not be

optimal. However it is worth noting that when compressing
10 Gb of data, comparing the values in Tables 8 and 11, us-
ing 36 Mb to build the model instead of 18 Mb only resulted
in an extra 1–3% decrease in size.

Even though the degree of compression is only moderate
(compared to the best general compression schemes), from
Table 11 for Trie vargram coding, we can see that a 50.0%
saving in space due to the use of compression has resulted
in a 20% saving in time. From Table 8, for Trie vargram
coding, a 50% reduction in the size of the runs has resulted
in a 35% reduction in the sort time.

Web crawl data. Table 12 – a small buffer and a large vol-
ume of data, seen earlier to be a best case for the use
of compression – and Fig. 10 – for both buffer sizes and a
range of data volumes – contain results for experiments on
the web crawl data. Results are consistent with those dis-
cussed above. As the amount of data to sort increased, or
the amount of buffer space available decreased, compression
becomes a more effective means of reducing query times,
while also decreasing the amount of temporary storage re-
quired to execute the query. On this data the compression
effectiveness of the techniques is similar, except for the TST
vargram method, which is only slightly better than the trie
vargram method. Results for compression effectiveness are
consistent across all data volumes.

The best result is for the trie-based technique, as shown
in Table 12, in which the sort time is about 70% that of
the sort without compression. For the proxy log data, the
TST vargram method had much better compression that the
trie-based method, and achieved the best execution time, of
about 62% of the sort not using compression.

Low cardinality data.Fields with low cardinality are com-
mon in databases, so we experimented with low-cardinality
data to contrast with the previous results. Results are pre-
sented in Table 13 (again, a best case for the use of compres-
sion) and Fig. 11. The table shows that variable-bit Huffman
and the vargram schemes achieve much better compression –
runs are about half that for the other data, while the fixed
length bigram and quadgram bytewise schemes result in runs
about two thirds the size of those for the other data. Conse-
quently, the vargram compression schemes again lead to the
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Table 13 Results for sorting a 10-Gb database created from low cardinality data with 18.5 Mb of buffer space, using no compression and using
five alternative compression techniques

No compression Huffman Bigram Quadgram Variable–trie Variable–TST

Build model (s) – 0.33 0.24 1.80 1.06 1.19
Generate runs (s) 1046.86 1789.22 1613.15 1429.82 1400.99 1257.13
Merge runs (s) 6420.39 3800.79 4677.68 3473.12 3004.90 2976.32

Total time to sort (s) 7467.25 5590.34 6291.07 4904.74 4406.95 4234.64
Comparative (%) 100.0 74.9 84.2 65.7 59.0 56.7

Number of runs 615 240 388 288 144 132
Size of runs (Gb) 10.755 3.964 6.453 4.512 1.960 1.809
Comparative (%) 100.0 36.9 60.0 42.0 18.2 16.6

Results include time to sort and temporary space required

fastest execution. The best result as a percentage of the sort
time without compression was again achieved when sorting
the lager amount of data, with the smaller buffer size (56.7%
in Table 13). This execution time is the best result for all the
data, but the difference compared to the space savings is not
as great. The times for the other data are 62.2% (Table 8)
and 70.7% (Table 12). This seems to indicate that the time
to do the actual sorting during the run generation and merge
phases still consumes a large portion of the time, and will be
present in all the figures – suggesting that faster processors
will lead to further relative gains for compression.
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Fig. 10 Sort times as a percentage of the time to sort without compres-
sion for web crawl data. a With 18.5 Mb of buffer space. b With 37 Mb
of buffer space
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Fig. 11 Sort times as a percentage of the time to sort without compres-
sion for low cardinality data. a With 18.5 Mb of buffer space. b With
37 Mb of buffer space

Sorted data.To further stress-test our techniques, we now
consider a pathological case of already sorted data. Tables 14
to 17 contain results for sorting without compression and for
our two best schemes, for the task of sorting pre-sorted web
proxy cache data. In comparing these tables to the results of
the original unsorted data (Tables 6, 7, 9, and 10) several ob-
servations can be made. The merge-runs times, which make
use of heapsort, are similar. The degree of compression for
each scheme is also comparable. However, the generate-runs



Compression techniques for fast external sorting 289

times, which make use of quicksort, are much larger, and
vary greatly between columns. The values vary from 5 to
30 times larger than for the unsorted data, demonstrating the
known instability of quicksort. Comparing Table 14 to Ta-
ble 9, the sort times with compression as a percentage of
the sort without compression are much less than for the un-
sorted data; for sort with trie vargram compression, the re-
sults are 48.3% compared to 129.2%. Conversely, in com-
paring Table 17 to Table 7, the sort times with compression
as a percentage of the sort without compression are much
larger than for the unsorted data; for sort with TST vargram
compression the results are 155.8% compared to 115.7%.

The results for sorting with compression on sorted data
compared with unsorted data were sometimes much worse,
sometimes similar, and sometimes much better. In general,
sorting with compression on sorted data is likely to be less
effective. On sorted data, quicksort approaches its worst
case behavior of N 2/2 comparisons [32]. Better compres-
sion schemes allow more compressed records to fit into a
buffer, potentially greatly increasing the sort time. Also, as
the generate runs time increases, this phase will take up a
larger percentage of the overall external sort time, lessen-
ing any I/O saving gained through the use of compression.
However, as shown by these empirical results, the behavior
is difficult to predict, due to the instability of quicksort.

Table 14 Results for sorting a 100 Mb database created from sorted
sorted web proxy cache data with 37 Mb of buffer space, using no
compression and using the two best compression techniques

No compression Trie vargram TST vargram

Build model (s) – 1.82 5.26
Generate runs (s) 282.61 125.97 180.73
Merge runs (s) 12.13 14.64 15.07

Total time to sort (s) 294.73 142.43 201.06
Comparative (%) 100.0 48.3 68.2

Number of runs 3 3 2
Size of runs (Gb) 0.101 0.046 0.037
Comparative (%) 100.0 45.5 36.6

Results include time to sort and temporary space required

Table 15 Results for sorting a 100 Mb database created from sorted
web proxy cache data with 18.5 Mb of buffer space, using no com-
pression and using the two best compression techniques

No compression Trie vargram TST vargram

Build model (s) – 0.88 2.46
Generate runs (s) 155.84 138.90 261.08
Merge runs (s) 11.89 14.89 14.82

Total time to sort (s) 167.73 154.67 278.36
Comparative (%) 100.0 92.2 166.0

Number of runs 6 5 4
Size of runs (Gb) 0.101 0.052 0.041
Comparative (%) 100.0 51.5 40.6

Results include time to sort and temporary space required

Table 16 Results for sorting a 1 Gb database created from sorted web
proxy cache data with 37 Mb of buffer space, using no compression
and using the two best compression techniques

No compression Trie vargram TST vargram

Build model (s) – 1.98 4.99
Generate runs (s) 958.81 1054.54 1238.75
Merge runs (s) 156.34 163.21 162.99

Total time to sort (s) 1115.15 1219.73 1406.73
Comparative (%) 100.0 109.4 126.1

Number of runs 28 17 15
Size of runs (Gb) 0.976 0.467 0.408
Comparative (%) 100.0 47.8 41.8

Results include time to sort and temporary space required

Table 17 Results for sorting a 1 Gb database created from sorted web
proxy cache data with 18.5 Mb of buffer space, using no compression
and using the two best compression techniques

No compression Trie vargram TST vargram

Build model (s) – 1.03 2.67
Generate runs (s) 522.02 739.23 888.91
Merge runs (s) 158.31 167.63 168.29

Total time to sort (s) 680.33 907.89 1059.87
Comparative (%) 100.0 133.4 155.8

Number of runs 56 38 32
Size of runs (Gb) 0.976 0.518 0.434
Comparative (%) 100.0 53.1 44.5

Results include time to sort and temporary space required

8 Conclusions

We have developed new compression methods that acceler-
ate external sorting for large data files. The most successful,
our TST vargram method, is based on the expedient of us-
ing ternary search tries to identify common strings, which
can be replaced by bytewise codes. Our novel strategy of
using an in-memory trie (or TST) that slowly grows, thus
gradually capturing information about strings of increasing
length, means that the resulting model can be small yet rep-
resentative of a large volume of data. The technique can be
parameterised to balance memory requirements, compres-
sion efficiency, and compression effectiveness.

The TST vargram method is efficient enough in memory
and processor use to enable on-the-fly compression and
decompression during database query processing while still
providing enough compression effectiveness to reduce the
overall sorting time. In the best case, on a 10 GB file, times
were reduced by about 36% (or 44% for low-cardinality
data), and the temporary disk space requirements by
about 60% (or 80% for low-cardinality data). These results
compare well to existing general-purpose sorting routines.
The slopes on the graphs indicate that the reductions
are likely to increase as the volume of data to be sorted
increases. The gain is greatest when memory is limited,
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showing that the reduction in merging costs is a key reason
that time is saved.

For the largest files considered, most of the savings in
data volume translate directly to savings in sorting time.
This strongly suggests that more effective compression tech-
niques will yield faster sorting, so long as the other con-
straints – semi-static coding, rapid compression and decom-
pression, and low memory use – continue to be met: in the
context of database systems in which the stored data is typ-
ically a bag of independent records that can be retrieved or
manipulated in any order, we require random access to indi-
vidual records and atomic compression and decompression.
It is also likely that similar techniques could accelerate other
database processing tasks, in particular large joins.

In contrast to methods presented in previous work, the
data need not be pre-compressed and limited to read-only
querying. As the compression is used only within the
sorting algorithm, our techniques can be incorporated into
existing systems, without the difficulties presented by other
approaches in which a model must be maintained and data
must be stored compressed. That is, our methods provide a
straightforward mechanism for cutting the costs of a range
of applications involving manipulation of large volumes of
data.
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