
Compact In-Memory Models for Compression for
Large Text Databases

Justin Zobel Hugh E. Williams
Department of Computer Science, RMIT University

GPO Box 2476V, Melbourne 3001, Victoria, Australia
{jz,hugh}@cs.rmit.edu.au

Abstract

For compression of text databases, semi-static word-
based models are a pragmatic choice. They provide
good compression with a model of moderate size, and
allow independent decompression of stored documents.
Previous experiments have shown that, where there is
not sufficient memory to store a full word-based model,
encoding rare words as sequences of characters can still
allow good compression, while a pure character-based
model is poor. In addition, there are other kinds of
semi-static model that can be used for text, such as
word pairs. We propose a further kind of model that
reduces main memory costs of a word-based model: ap-
proximate models, in which rare words are represented
by similarly-spelt common words and a sequence of ed-
its. We investigate the compression available with dif-
ferent memory efficient models, including characters,
words, word pairs, and edits, and with combinations of
these approaches. We show experimentally that care-
fully chosen combinations of models can significantly
improve the compression available in limited memory
and greatly reduce overall memory requirements.

1 Introduction

Compression has several benefits for text retrieval sys-
tems. The space required for storage of text and index
is reduced, and less time is required for both index
processing and text retrieval. These gains are pos-
sible because, in the time required to access a small
block of data, a typical CPU can execute around 2–
10 million instructions, more than twenty times that of
a decade ago: CPU speeds are increasing much more
rapidly than are disk access rates. With compression,
average seek times and transferred volumes of data are
reduced, and the time saved can be used for decom-
pression, yielding a net reduction in time overall.

Both of the major components of text retrieval sys-
tems, the index and the stored text, can be effectively
compressed. Index compression techniques are typi-
cally based on efficient representation of integers by

variable-bit codes [6, 10, 12], allowing space reduction
by a factor of three to six. These compression algo-
rithms must compete for resources with other compo-
nents of the retrieval system, such as the query eval-
uator. In practical systems it is essential that the
compression algorithms can operate in limited mem-
ory: databases may be hundreds of gigabytes; there
may be hundreds of users; and memory is also required
for structures such as the accumulators needed for fast
query evaluation [12] and for caches for frequently ac-
cessed inverted lists.

For compression of the stored text, the topic of this
paper, the most attractive technique has been Huff-
man coding with a zero-order semi-static word-based
model [12], in which words and non-words are mod-
elled separately and coding alternates between the two
models. Semi-static Huffman coding has two poten-
tial disadvantages, that new words have no code in the
model and therefore cannot be represented, and that
the model size may become prohibitive, in particular
for large corpora on machines with large numbers of
users. Moffat, Zobel, and Sharman described two tech-
niques for addressing the “new word” problem: exten-
sible codes that allow representation of new words as
they arrive, without changing the codes of other words;
and an escape code method, in which new words are
coded as an escape followed by a series of Huffman-
coded characters [7]. These results showed that within
limits, both approaches have only a moderate impact
on compression efficiency. The escape method also pro-
vides a solution to the problem of model size; by impos-
ing a limit on memory allocated to the model, words
can be chosen on the basis of frequency until the model
is full, then all remaining words coded as escapes.

In this paper, we investigate whether the compres-
sion efficiency attainable within limited memory, that
is, with the restriction of a fixed model size, can be
improved. We quantify the effect of moving from a
word model to a word-pair model, and show that,
with judicious selection of pairs, some gain in compres-
sion efficiency can be achieved. We also explore two
techniques for maintaining compression efficiency given

1



strict memory limits for models, the escape model and
a generalisation, an escape model based on n-grams
rather than individual characters. A new approach
that we propose is an approximate model based on ed-
its: a rare word omitted from the model can be rep-
resented by a similar, more common word, with the
differences encoded as the edits needed to transform
the common word to the rare.

Our experiments show that edit models and escape
models used in conjunction are slightly more efficient
than escape models alone; and that limited use of word
pairs allows significant improvement in compression ef-
ficiency within a fixed model size. These gains are of
benefit in limited-memory applications: given a fixed
memory limit our techniques can reduce, for example,
a 260 Mb compressed file by a further 10 Mb. Com-
pared to previous techniques, our approaches achieve
the same compression efficiency using models that are
smaller by a factor of ten.

Test data

We have used several test collections in the experi-
ments reported in this paper. Most are drawn from
the data accumulated by the TREC experiments [3].
In this paper we report on the experiments with two of
these collections, for which the results were represen-
tative of all the collections used. The first is partwsj,
the first 63.3 Mb (1,000,000 lines of text) of the “Wall
Street Journal” component of TREC disk 1, which con-
tains approximately 10,000,000 word occurrences and
110,000 distinct words; this shows performance on a
smaller database. The second, showing performance
on a larger database, is disk2, the complete “Asso-
ciated Press”, “Federal Register”, “Wall Street Jour-
nal”, and “Ziff Publishing” collections from TREC
disk 2, amounting to 863.8 Mb, which together con-
tain about 138,000,000 word occurrences and 460,000
distinct words.

Throughout this paper, we report compression re-
sults as a percentage of original file size; thus a tech-
nique that compresses a 63.3 Mb file to 21.6 Mb has a
compression efficiency of 34.1%. For a file compressed
with Huffman coding, this figure includes both the
compressed text and a compressed representation of the
model. We also report the approximate size that the
model for words might occupy in memory during de-
coding, estimated as one byte for each character of each
distinct token in the model plus four bytes per string
for housekeeping such a terminator and pointer. (We
do not include the non-word model in this in-memory
estimate: we have not applied the same kinds of opti-
misations to it, although it would be straightforward to
do so in a production system, and for a given collection
the size of the non-word model is the same for all the
techniques described in this paper other than the un-

interesting case of a character model.) In memory, the
model is rather larger than when stored on disk, the
magnitude of the change depending on factors such as
the amenability of the lexicon to front-coding. Thus
the size of the in-memory model is only a broad indi-
cator of the space required to store the model on disk.

2 Text database compression

Semi-static Huffman coding with a zero-order model
based on words is an effective compression technique for
text databases. A zero-order model, in which the prob-
ability of occurrence of each symbol is independent of
the neighbouring symbols, is used because practicalities
such as memory limitations prohibit higher-order word-
based models. A semi-static model—in which one pass
through the data is used to accumulate statistics with
which to build a model and a second pass is used to
compress the data with respect to the model—is desir-
able for databases because it allows individual records
to be independently decoded, regardless of the order
in which they are fetched. In contrast to a semi-static
approach, in the adaptive models favoured for general-
purpose compression, records must be either decoded
in sequence or gathered into indivisible large blocks,
defeating any potential savings in retrieval time.

A word-based model for semi-static Huffman coding
provides a trade-off between model size and compres-
sion efficiency. With a model based on smaller tokens,
such as characters, compressed file size typically ex-
ceeds 60% of the original data, whereas 28% is typical
for a model based on words [12]. These figures include
the model itself: a couple of kilobytes only for a char-
acter model, and around 1% of the original data size
for a word model. For models based on word pairs, as
we show in the next section, model size overwhelms the
gains in compression efficiency.

Compression with semi-static Huffman coding not
only saves space, but can reduce query evaluation costs.
Some years ago, Zobel and Moffat observed experimen-
tally that, for sequential retrieval of data, compression
could lead to a net penalty in retrieval time, but for ran-
dom access patterns typical of text database systems
compression allowed savings [13]. However, because
of the changes in hardware since those experiments,
we would expect that compression would today always
lead to savings in retrieval time, and have observed
better throughput due to compression in the context
of index processing [10] and genomic retrieval [9].

For standard applications of compression, perfor-
mance is typically measured by the size of the com-
pressed data and by coding and decoding speed. For
Huffman-coded text databases, memory constraints
place an upper bound on the size of the in-memory
model during decoding; for a large database it may



simply be impractical to hold the ideal model in mem-
ory. (If the model is not memory-resident, decoding of
each symbol potentially requires a disk access, almost
certainly leading to unacceptable performance.) Thus
measurement of a compression technique for databases
must also consider memory usage. Also, encoding cost
is relatively unimportant, since in most contexts data
is accessed far more often than it is stored—investing
extra CPU cycles in achieving better compression can
yield a net payoff through gains in retrieval efficiency.

The compression efficiency of Huffman coding de-
pends on how the data is parsed into symbols. Zero-
order character models yield poor compression (and
slow decoding), because the variable-bit codes are
inefficient—the fractional-bit differences between the
theoretical minimum code-length [8] and the actual
code length are significant because most of the codes
are short—and because the tendency of characters to
occur in particular groupings is not represented. How-
ever, character models have very small memory require-
ments. The performance of character-based Huffman
coding is shown in the first line of Table 1.

A word model yields much better compression, at
the cost of requiring more memory. The performance
of the word model is shown in the second line of Table 1
(and in Figure 1). Word models are seen as providing
good compression efficiency for text databases [12, 13],
and Huffman coding provides compression within 1%
of the optimum because the probabilities are relatively
small. Other compression schemes, such as predictive
modelling, can yield somewhat better compression, but
are inherently slow, rely on large models [1], and are at
their best when adaptive modelling can be used.

However, as collection size increases, so does model
size. Text databases do not appear to have lexicons
with a more or less constant set of words. As new
documents appear so do new words: chemical names,
place names, and in particular typographic errors. For
example, in addition to the lexicon of disk 1 of TREC,
on average disk 2 contains a new word every 740 word
occurrences; and in addition to the lexicon of disks 1–4
of TREC, on average disk 5 contains a new word every
763 word occurrences. That is, the rate of appear-
ance of new words has barely slowed as more text is
observed. In some retrieval environments the memory
required for a word model will not be available.

One solution to this problem was described by Mof-
fat, Zobel, and Sharman [7], in which the size of the
model was reduced by omitting some words. (New
approaches to the problem of limiting model size are
described in Sections 4 and 5.) Words in the model
are represented by a Huffman code. Other words are
omitted and are each represented by an escape code,
whose length is determined by the number of times it
is used, followed by a character count and the sequence
of characters comprising the word. There is some loss

of compression efficiency, because a single word code
is generally much shorter than the combined length of
an escape, count, and sequence of characters, and rare
words tend to be long. However, distinct rare words can
comprise the bulk of the model, while the total number
of occurrences of rare words is quite small. Because
storing rare words in the model is inefficient, the es-
cape method can be used to greatly reduce model size
without any significant detrimental change in overall
compression efficiency.

Moffat, Zobel, and Sharman tested different methods
for choosing which words to omit [7]. They showed that
a reasonable method—their “method B”—is to simply
discard words on the basis of frequency of occurrence,
in effect discarding all words whose frequency is less
than some constant threshold E; varying E yields dif-
ferent lexicon sizes. However, this is not necessarily
optimal: it may be desirable to keep a long rare word
in the model (because of the cost of coding it as indi-
vidual characters) and to discard a shorter word that
is slightly more common. Their results showed that an
insignificant improvement is obtainable by iteratively
choosing words to discard—their “method C”—on the
basis of their net impact on the model and on com-
pressed file size. In this paper we have used method B,
because the very slight gain given by method C is at
substantial computational cost.

The performance of the escape model is illustrated in
the third and fourth lines of Table 1 (and in Figure 1);
in the first case only the rarest words are omitted from
the model, while in the second most words are omitted.
As can be seen, model size can be reduced by a factor
of at least four with negligible impact on compression
efficiency. However, if model size is reduced too far
compressed file size begins to grow.

An extension of the escape method—which to our
knowledge has not previously been evaluated—is to
code n-grams, or sequences of n characters, rather than
code characters individually. In comparison to the
character-based escape model, counts will be smaller
and codes should be more efficient, but for larger n
model size for the n-grams may become significant.
The use of n-grams is shown in the fifth and sixth lines
of Table 1 (and in Figure 1). These results show that
with n = 4, the size of the model of n-grams outweighs
any potential savings—compared to the escape model
with a threshold of 10, compression is much poorer
while model size has increased. Even with n = 2, com-
pression efficiency for a given volume of model memory
is not as good as under the escape model.

The results reported in this section confirm that a
word model provides good compression efficiency, and
that the escape model allows this efficiency to be nearly
maintained while model size is substantially reduced.
In the remainder of this paper we show how these re-
sults can be further improved.



Table 1: Compression efficiency (%), file size (megabytes), and in-memory model size (megabytes) for different
standard models.

partwsj disk2
Eff. Size Model Eff. Size Model

Character model 61.2 38.76 <0.01 63.3 546.74 <0.01
Word model 28.4 17.97 1.20 29.9 258.48 5.26
Escape model, E = 10 28.6 18.12 0.31 30.0 258.90 1.28
Escape model, E = 1000 39.2 24.84 0.01 33.5 288.95 0.10
Escape, 2-grams, E = 1000 38.8 24.54 0.03 33.3 287.86 0.13
Escape, 4-grams, E = 1000 34.9 22.12 0.39 32.2 277.78 1.32

3 Word pairs

A zero-order word model yields better compression ef-
ficiency than a zero-order character model, because the
probability of a given combination of characters (that
is, a word) is not simply a function of the probabilities
of the individual characters. It is therefore reasonable
to ask whether a model based on longer symbols might
be even more efficient.

A possibility is to combine each word with its follow-
ing non-word, thus yielding a larger symbol set. We
have not explored this option in detail, but do not be-
lieve that it would be valuable. Such a model is in effect
an arbitrary combination of a semantic property, that
is, words, with formatting that is not dependent on the
semantics. There may be some small saving (in partic-
ular because a single space, by far the most common
non-word, is represented inefficiently in an alternating
model), but at the cost of a much larger model overall.
On disk2 we have found that compression efficiency
falls slightly while model size roughly triples.

Another possibility is to use word pairs. Compres-
sion with word pairs would begin by tokenising the text
into word pairs and non-words (or non-word pairs),
then proceed as for a word model.

Words are easy to define—a sequence of alphabetic
characters, as in this paper, or a sequence of alphanu-
merics and perhaps characters such as apostrophe and
hyphen—but definition of word-pairs is less straight-
forward, because they overlap. Counting occurrences
of all overlapping word pairs does not yield an accurate
model. It is therefore necessary to allocate each word
to be either the start or end of a pair. If the allocation
is on the basis of order of occurrence, phrases will be
broken in different ways in different contexts; if the al-
location is on the basis of frequency of co-occurrence,
individual words may be isolated between occurrences
of pairs. Identifying the best pairings is a topic for
further research; in this paper we have used what is
probably the simplest approach, pairing words in order
of occurrence, so that the phrase

and the quick brown fox jumped over the lazy dog

is paired as

and the / quick brown / fox jumped / over the /

lazy dog

As a further simplification we only considered words
separated by white space, on the basis that most other
co-occurrences—such as between the word at the end
of one sentence with the word at the start of the next
sentence—would be more or less random.

Not surprisingly, a model based on word pairs is not
efficient. Even using our fairly restrictive definition of
pairs—alphabetic strings separated by white space—
for partwsj model size is almost as great as the total
file size for a word model, as can be seen from the
second line of Table 2. (The first line is repeated from
Table 1, for reference.) The vast majority of these word
pairs occur only rarely; even in disk2, over 60% of the
pairs occur once only and over 90% occur less than ten
times each.

However, we contend that pairs are nonetheless of
value. It is reasonable to suppose that, just as judicious
selection of words allows good compression in reason-
able memory with the escape model, so too judicious
selection of pairs may aid compression. A straightfor-
ward way of making use of pairs is to include common
pairs of words, including their linking white space, in
the word model. Defining a common pair as one that
occurs more than P times in the collection, varying P
allows the increase in model size to be traded against
compression efficiency.

Results are shown in the last two lines of Table 2 and
in Figure 1. In the figure, the effect of the escape mod-
els is at the left-hand end of the graph: varying thresh-
old E degrades compression efficiency as model size is
decreased. The pair model is at the right-hand end: by
increasing model size through inclusion of pairs, com-
pression efficiency can be improved. There is an im-
provement of over 1% of original file size, for moderate
values of P . (We have omitted points corresponding
to small values of P , because they require a graph of



different scale; these points show both model size and
compressed file size increasing rapidly.)

An alternative approach is to have a separate model
of pairs, and switch between the pair and word models
through escape characters. This approach has the ad-
vantage that a pair of words can be represented with
the same code regardless of the intervening non-word.
However, the need for an escape preceding each word or
each pair is likely to outweigh any savings, given that
the commonest white space, a single space character,
contributes around 90% of non-word occurrences.

The method described above for choosing pairs is
rather simplistic, and a better method may improve
compression. A possibility is to choose pairs that occur
more often than is indicated by their words’ frequen-
cies, a technique that is used to identify likely words
in Chinese text segmentation. In preliminary experi-
ments with such a pair selection approach we have not
been able to use it to achieve additional improvements
in compression but believe that it is worth exploring
in further work. Another option would be to choose
pairs estimated to have the most effect on overall com-
pression, considering impact on model size and code
lengths [4, 7]; we have not explored this option, but
note that it is difficult to make such estimations reli-
ably.

These results show that a model of word pairs is
not efficient. However, the use of a limited number of
word pairs allows a significant improvement in com-
pression efficiency. Even when the number of pairs is
tiny, compared to the number of words, the improve-
ment is marked.

4 Edit models

In the escape model, each rare word is represented by
an escape code, the word length n, and codes for the n
characters. We observed that many of the rarest words
are close in spelling to more common words. In par-
ticular, most new words are typographic errors, often
differing in spelling from a previous word by only a
single character.

We therefore suggest that an edit-based or approxi-
mate model may be an efficient way to represent these
words. An edit model can be used for compression as
follows. Each document is transformed by replacing
each rare word by a similarly-spelt common word. For
example, after replacing all rare words (less than 1000
occurrences in wsj) that were of similar spelling to a
common word, the text fragment

"I don’t want to suggest that we can use

infinitely high-dose TPA,
or even a modest dose for an extended

period, without the risks of

0 0.5 1

Model size (Mb)

16

18

20

22

24

C
om

pr
es

se
d 

fi
le

 s
iz

e 
(M

b)

Escape model
2-gram escape model
Pair model
Edit model
Word model

Figure 1: Compressed file size versus in-memory model
size for a range of model management schemes, for
partwsj.

bleeding," said Burton Lobel of

Washington University, St. Louis.

is transformed to1

"I don’t want to suggest that we can use

definitely high-done TPA,

or even a modest done for an extend
period, without the risk of

bleeding," said Boston Nobel of

Washington University, St. Louis.

In this example, among other changes characters 42
and 43 have been substituted, with “in” replaced by
“de”, and characters 102 and 103, “ed”, have been
deleted. Rebuilding the original requires reversal of the
replacement and insertion of “ed” after character 101.

Once the document has been approximated, an edit
table is created for each document, storing each posi-
tion at which an edit is required and the edit itself. An
edit table can be organised in several ways. One way
is a nested structure based on characters:

For each character in the alphabet,
Store a list of positions at which
that character should occur,
and for each position

Store a bit indicating whether
the character should be a
replacement or an insertion.

This scheme is similar to one developed by Williams
and Zobel for compression of genomic nucleotide
data [9]. In that case, only four characters (A, C, G,
and T) occur with frequency greater than 1%; these can
be represented with 2-bit codes. The other eleven, wild-
card characters are stored as 〈character, position-list〉
pairs, indicating the positions at which each wildcard

1The resemblance between this technique and lossy text com-
pression [11] is purely superficial.



Table 2: Compression efficiency (%), file size (megabytes), and in-memory model size (megabytes) for different
pair models.

partwsj disk2
Eff. Size Model Eff. Size Model

Word model 28.4 17.97 1.20 29.9 258.48 5.26
All pairs 37.0 23.42 17.37 32.9 284.21 110.90
Pair model, P = 10 27.1 17.14 1.88 28.6 246.86 12.26
Pair model, P = 1000 27.8 17.59 1.20 28.8 248.66 5.33

can be substituted. (A randomly-chosen nucleotide is
used as a placeholder. Pairs with an empty list are
omitted.) The particular attraction of this scheme for
nucleotide data is that the wildcard information can
often be neglected during matching, which is based on
edit distances—that is, the lossy representation can be
used as is.

Another approach is a nested structure based on po-
sitions:

For each position at which a change is
required,

Store the character to be used,
and store a bit indicating whether
the character should be a
replacement or an insertion.

or a re-organisation based on edit-type:

For each edit type, that is, for
insertions and for replacements,

Store a list of positions at which
that edit type is required,
and for each position,

store the character to be used.

Continuing the example above, with this method the
edit structure would have two lists,

42 i 43 n 60 s 86 s 148 u 149 s 154 L

for replacements and, for insertions,

101 e 101 d 126 s

This final approach is the one used in our experi-
ments because hand estimation indicated that it was
likely to be the most compact. In each of the two
lists, the positions are sorted, allowing differences to
be taken and representation with a variable-bit Golomb
code [2]; this representation of positions is the same as
is widely used for index compression [6, 10, 12]. How-
ever, in this context the positions tend to cluster, and
alternative codes may yield better compression [5]. The
characters are represented with a Huffman code.

Compared to the escape method, for some words the
edit method can potentially yield considerable savings.
Consider (in rough figures) a rare word of ten char-
acters that differs from a more common word in one
character only, in a collection with around one billion
word occurrences. In a word model, the rare word re-
quires a code of around 25 bits, corresponding to ap-
proximately 25 occurrences. In the escape method, the
rare word requires an escape code, say 14 bits, a count,
say 5 bits,2 and ten characters, in say 50 bits, giving
69 bits altogether. In the edit model, the rare word re-
quires the code for the more common word, say 18 bits,
a position, say 10 bits, and a character, say 5 bits, giv-
ing 33 bits altogether—less than half that of the escape
model and only a little more than the code length of
the original word. The longer the word, the greater
the improvement yielded by the edit model compared
to the escape method.

In small collections, it is reasonable to suppose that
most of the rare words will not have a homologue that
requires only a few edits, and the edit model would
thus yield little advantage. In larger collections, as the
number of typographic errors accrues, it should pro-
vide more benefit. Whether the edit model becomes
more efficient with increasing collection size is one of
the hypotheses tested by our experiments.

Results for the edit model on partwsj are shown
in the third and fourth lines of Table 3 (in which the
first two lines are repeated from Table 1) and Figure 1.
In these results, words were defined to be of similar
spelling if they had two-thirds or more of their charac-
ters in common. As for the escape model, a threshold
A was varied: one word was replaced by another if the
former had frequency less than A, the latter had fre-
quency greater than A, and they were similarly spelt.

2There are many heuristics that can be used to make slight
improvements in compression efficiency. One that applies here is
to use a fixed length of 5 bits to represent word length. Words
of greater than 32 characters must then be represented as a pair
of words separated by a null non-word. If words of this length
are rare, this heuristic improves compression overall efficiency. If
they are more common, as may be the case in special-purpose
databases such as of chemical names, this heuristic may not not
effective, and our estimate of number of bits for a count must be
increased.



We considered only insertions and replacements, and
in preliminary tests deletion edits appeared to be rare.
These results were disappointing; while up to half the
lexicon could be represented by an edit, these words
are such a tiny proportion of all word occurrences that
the saving compared to the escape model is negligi-
ble. The explanation for the poor performance was
somewhat subtle. First, the intuition that most of the
rare words—of say 100 occurrences or less—would be
close to a more common word was incorrect: for these
collections, only up to half of the words were suitable
for an approximate representation. Second, as A was
increased, the number of words that could be used for
approximation dropped, so that the edit model became
steadily less efficient, as illustrated by the top half of
the curve.

A modification that may allow the edit model to be
more efficient is to cluster together rare words of similar
spelling and represent them by a centroid, either an ac-
tual word or an artificial word. We have observed that
many, perhaps most, rare words are close in spelling
to other words, but these words also tend to be rare.
By creating such centroids, we believe that the edit
method’s efficiency could be greatly improved. How-
ever, it is not clear how such centroids can be identified
efficiently.

5 Combined models

The models described in the previous sections have dif-
fering effects. The word model, which is the basis of
the other models, provides good compression efficiency
and reasonable model size. The escape and edit models
allow compression efficiency to be nearly maintained,
while reducing memory requirements. The pair model
improves compression efficiency at the cost of increas-
ing in-memory model size.

However, the pair model, edit model, and escape
model can readily be combined. As shown in Table 2,
for large values of P the impact of including pairs on
model size is small, but yields a good improvement in
compression efficiency. For a database compressed with
a word model that includes a small number of pairs, the
lexicon is virtually identical to that of a model without
pairs, and the edit and escape models can be applied
without modification. By first applying the edit model,
to remove the words that can be represented by approx-
imations, then applying the escape model, it should be
possible to achieve better compression efficiency for a
given model size than is possible with any of the indi-
vidual techniques.

As illustrated in Figure 2 for disk2, combining the
techniques does indeed improve performance. The top
line is the escape model for a range of E values. The
bottom line is the combination of the pair model with

0 0.5 1 2

Model size (Mb)

240

250

260

270

280

290

C
om

pr
es

se
d 

fi
le

 s
iz

e 
(M

b)

Word model (model size 5.26 Mb)
Escape model
Edit, escape
Pair (P=1000), escape
Pair (P=1000), edit, escape
Pair (P=10,000), escape
Pair (P=10,000), edit, escape

Figure 2: Compressed file size versus in-memory model
size for a range of model management schemes, for
disk2.

edits and escapes, with fixed P and varying E = A.
(Use of fixed A = 10 and varying E produced slightly
worse results, somewhat surprisingly given the results
reported in Section 4, where A = 10 showed the best
results for the edit model.) Compared to the escape
model alone, use of pairs gives a saving of around
10 Mb, or 1.2% of original file size, across a range of
model sizes. For the smaller models, the edit model
yields a further saving of around 0.1%–0.3%. However,
these results also indicate that the value of the edit
model does not increase with collection size; in exper-
iments not reported here, we observed that it led to
substantially greater savings on partwsj.

Note that each of the parameters can be chosen auto-
matically at compression time: pairs can be accrued up
to a memory limit, words discarded down to a mem-
ory limit, and so on. While our presentation of the
algorithms has been in terms of frequency thresholds,
memory-oriented techniques should be used in practice.

Use of schemes such as escape or pair models not
only reduces the memory required during decompres-
sion, but ensures that, for a given degree of compres-
sion, the memory requirement only grows slowly with
increasing data size. For example, disk2 is over thir-
teen times larger than partwsj, and word model size is
greater by a factor of four. However, taking the com-
pression efficiency of a word model as the base case,
Figure 3 shows that, for a combined model, model size
only doubles from partwsj to disk2 for a compression
efficiency identical to that of a word model, and that
the growth is even less when some loss of compression
efficiency is allowed.

Note that the impact on decompression speed of
combined models, in particular the combination of pair
and escape modelling, without edit modelling, is likely
to be small. (To allow full experimentation with op-
tions and combinations, our modular prototype system
is built of multiple, separate components and does not
allow us to conduct representative timings; however,



Table 3: Compression efficiency (%), file size (megabytes), and in-memory model size (megabytes) for edit and
escape models.

partwsj disk2
Eff. Size Model Eff. Size Model

Escape model, E = 10 28.6 18.12 0.31 30.0 258.90 1.28
Escape model, E = 1000 39.2 24.84 0.01 33.5 288.95 0.10
Edit model, A = 10 28.5 18.02 0.67 29.7 256.86 2.76
Edit model, A = 1000 30.3 19.17 1.08 61.2 528.24 4.08

0 0.2 0.4 0.6

Model size (Mb)

90

100

110

120

130

R
el

at
iv

e 
in

ef
fi

ci
en

cy
 (

%
) WSJ

DISK2

Figure 3: Relative compression inefficiency versus in-
memory model size for combined pair, edit, and es-
cape models, on partwsj (P = 1000) and disk2
(P = 10,000). Relative compression inefficiency is with
respect to compression acheived by a word model (of
100%).

the components are simple and we foresee no difficul-
ties developing a production implementation.) Moffat,
Zobel, and Sharman showed that even reducing model
size to only 10 Kb for a 500 Mb file only degraded
speed by 22%, with marginal degradation for larger
models [7]. Introducing pairs increases the speed, since
more bytes are output per code. The edit model is
likely to have similar impact to the escape model; ex-
trapolating from the impact of edits on decode speed
for genomic nucleotide data, we would expect speed to
degrade by 10%–20%.

6 Conclusion

We have investigated a range of models for text com-
pression in the context of document databases, evaluat-
ing both compression efficiency—the ability to produce
a small compressed file—and the size of the model that
must be resident in memory during query evaluation.
Previous work has focused on word models and Huff-
man coding. We chose not to investigate alternative
coding methods, since Huffman coding provides com-
pression efficiency close to the theoretical minimum in

this context, and allows fast decompression. Our inves-
tigation of models indicates that word models are an
appropriate choice: other models provide poor com-
pression efficiency, and our techniques for refining the
word models (through pairs, edits, and escapes) led to
only moderate reductions in compressed file size.

Our suggestion that common pairs be included in
the word model provided the greatest improvement,
increasing memory requirements but improving com-
pressed file size by around 1.3%, in a typical case from
28.4% to 27.1% of original data size. We plan to in-
vestigate alternative techniques for choosing pairs to
include in the model, which we expect to lead to fur-
ther improvements in compression efficiency.

By omitting rare words from the model and coding
them in the compressed text as sequences of charac-
ters, it has previously been shown that model size can
be dramatically reduced with only moderate impact on
compression efficiency. As an alternative to this escape
model we proposed an edit model, in which rare words
are approximated by a similarly-spelt word and a cor-
recting edit instructions stored with the compressed
text. This edit model had little benefit. However, we
believe that with further work—generation of centroids
and better representation of the edits—it may prove to
be of value.

These models can be combined, yielding better com-
pression than any of the models independently. For ex-
ample, on our 860 Mb data file, combining words, pairs,
edits, and escapes allows a model of 0.5 Mb to yield
the same compression efficiency as a pure word model
that is ten times larger. Together, these techniques sig-
nificantly reduce both in-memory requirements for the
model and compressed file size.

References

[1] T.C. Bell, J.G. Cleary, and I.H. Witten. Text Com-
pression. Prentice-Hall, Englewood Cliffs, New Jersey,
1990.

[2] S.W. Golomb. Run-length encodings. IEEE Transac-
tions on Information Theory, IT–12(3):399–401, July
1966.



[3] D. Harman. Overview of the second text retrieval con-
ference (TREC-2). Information Processing & Manage-
ment, 31(3):271–289, 1995.

[4] U. Manber. A text compression scheme that allows
fast searching directly on the compressed file. ACM
Transactions on Information Systems, 15(2):124–136,
1997.

[5] A. Moffat and L. Stuiver. Exploiting clustering in in-
verted file compression. In J. Storer and M. Cohn, edi-
tors, Proc. IEEE Data Compression Conference, pages
82–91, Snowbird, Utah, 1996.

[6] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Transactions on Information
Systems, 14(4):349–379, October 1996.

[7] A. Moffat, J. Zobel, and N. Sharman. Text compres-
sion for dynamic document databases. IEEE Transac-
tions on Knowledge and Data Engineering, 9(2):302–
313, 1997.

[8] C.E. Shannon. Prediction and entropy of printed En-
glish. Bell Systems Technical Journal, 30:55, 1951.

[9] H. Williams and J. Zobel. Compression of nucleotide
databases for fast searching. Computer Applications in
the Biosciences, 13(5):549–554, October 1997.

[10] H.E. Williams and J. Zobel. Compressing integers for
fast file access, 1999. (To appear).

[11] I.H. Witten, T.C. Bell, A. Moffat, C.G. Nevill-
Manning, T.C. Smith, and H. Thimbleby. Seman-
tic and generative models for lossy text compression.
Computer Journal, 37(2):83–87, 1994.

[12] I.H. Witten, A. Moffat, and T.C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Im-
ages. Van Nostrand Reinhold, New York, 1994.

[13] J. Zobel and A. Moffat. Adding compression to a full-
text retrieval system. Software—Practice and Experi-
ence, 25(8):891–903, 1995.


