
A Scalable System
for Identifying Co-derivative Documents

Yaniv Bernstein and Justin Zobel

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia
{ybernste,jz}@cs.rmit.edu.au

Abstract. Documents are co-derivative if they share content: for two
documents to be co-derived, some portion of one must be derived from
the other or some portion of both must be derived from a third document.
The current technique for concurrently detecting all co-derivatives in a
collection is document fingerprinting, which matches documents based
on the hash values of selected document subsequences, or chunks. Fin-
gerprinting is currently hampered by an inability to accurately isolate
information that is useful in identifying co-derivatives. In this paper we
present spex, a novel hash-based algorithm for extracting duplicated
chunks from a document collection. We discuss how information about
shared chunks can be used for efficiently and reliably identifying co-
derivative clusters, and describe deco, a prototype system that makes
use of spex. Our experiments with several document collections demon-
strate the effectiveness of the approach.

1 Introduction

Many document collections contain sets of documents that are co-derived. Exam-
ples of co-derived documents include plagiarised documents, document revisions,
and digests or abstracts. Knowledge of co-derivative document relationships in a
collection can be used for returning more informative results from search engines,
detecting plagiarism, and managing document versioning in an enterprise.

Depending on the application, we may wish to identify all pairs of co-derived
documents in a given collection (the n × n or discovery problem) or only those
documents that are co-derived with a specified query document (the 1 × n or
search problem). We focus in this research on the more difficult discovery prob-
lem. While it is possible to näıvely solve the discovery problem by repeated
application of an algorithm designed for solving the search problem, this quickly
becomes far too time-consuming for practical use.

All current feasible techniques for solving the discovery problem are based on
document fingerprinting, in which a compact representation of a selected sub-
set of contiguous text chunks occurring in each document – its fingerprint – is
stored. Pairs of documents are identified as possibly co-derived if enough of the
chunks in their respective fingerprints match. Fingerprinting schemes differenti-
ate themselves largely on the way in which chunks to be stored are selected.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 55–67, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



56 Yaniv Bernstein and Justin Zobel

In this paper we introduce spex, a novel and efficient algorithm for identi-
fying those chunks that occur more than once within a collection. We present
the deco package, which uses the shared phrase indexes generated by spex as
the basis for accurate and efficient identification of co-derivative documents in a
collection. We believe that deco effectively addresses some of the deficiencies of
existing approaches to this problem. Using several collections, we experimentally
demonstrate that deco is able to reliably and accurately identify co-derivative
documents within a collection while using fewer resources than previous tech-
niques of similar capability. We also have data to suggest that deco should scale
well to very large collections.

2 Co-derivatives and the Discovery Problem

We consider two documents to be co-derived if some portion of one document
is derived from the other, or some portion that is present in both documents
is derived from a third document. Broder (1997) defines two measures of co-
derivation – resemblance and containment – in terms of the number of shingles
(we shall use the term chunks) a pair of documents have in common. A chunk
is defined by Broder as ‘a contiguous subsequence’; that is, each chunk repre-
sents a contiguous set of words or characters within the document. An example
chunk of length six taken from this document would be ‘each chunk represents
a contiguous set’. The intuition is that, if a pair of documents share a number
of such chunks, then they are unlikely to have been created independently. Such
an intuition is what drives fingerprinting-based approaches, described later.

We can conceptualise the co-derivation relationships within a collection as
a graph, with each node representing a single document and the presence or
absence of an edge between two nodes representing the presence or absence of
a co-derivation relationship between the documents represented by those nodes.
We call this the relationship graph of the collection. The task of the discovery
problem is to discover the structure of this graph. Note that, as the number of
edges in a graph is quadratic in the number of nodes, the task of discovering the
structure of the relationship graph is a formidable one: for example, a collection
of 100,000 documents contains nearly 5 billion unique document pairings.

3 Strategies for Co-derivative Discovery

There are several approaches to solving the search problem, in particular fin-
gerprinting systems and ranking-based systems. Ranking-based systems such as
relative frequency matching (Shivakumar & Garćıa-Molina 1995) and the iden-
tity measure (Hoad & Zobel 2003) make use of document statistics such as the
relative frequency of words between documents to give a score for how likely a
pair of documents is to be co-derived. In comparisons between such methods and
fingerprinting, the ranking-based methods tended to perform better, though it is
worth noting that the comparisons were carried out by the proponents of these
systems. However, the only computationally feasible algorithms for the discovery
problem to date have used the process of document fingerprinting.



A Scalable System for Identifying Co-derivative Documents 57

3.1 Fingerprinting

The key observation underlying document fingerprinting (Manber 1994, Brin et
al. 1995, Heintze 1996, Broder et al. 1997, Hoad & Zobel 2003) mirrors that be-
hind the definitions of Broder (1997): if documents are broken down into small
contiguous chunks, then co-derivative documents are likely to have a large num-
ber of these chunks in common, whereas independently derived documents with
overwhelming probability will not. Fingerprinting algorithms store a selection of
chunks from each document in a compact form and flag documents as potentially
co-derived if they have some common chunks in their fingerprints.

While fingerprinting algorithms vary in many details, their basic process
is as follows: documents in a collection are parsed into units (typically either
characters or individual words); representative chunks of contiguous units are
selected through the use of a heuristic; the selected chunks are then hashed for
efficient retrieval and/or compact storage; the hash-keys, and possibly also the
chunks themselves, are then stored, often in an inverted index structure (Witten
et al. 1999). The index of hash-keys contains all the fingerprints for a document
collection and can be used for the detection of co-derivatives.

The principal way in which document fingerprinting algorithms differentiate
themselves is in the choice of selection heuristic, that is, the method of determin-
ing which chunks should be selected for storage in each document’s fingerprint.
The range of such heuristics is diverse, as reviewed by Hoad & Zobel (2003).
The simplest strategies are full selection, in which every chunk is selected, and
random selection, where a given proportion or number of chunks is selected at
random from each document to act as a fingerprint. Other strategies pick every
nth chunk, or only pick chunks that are rare across the collection (Heintze 1996).
Taking a different approach is the anchor strategy (Manber 1994), in which
chunks are only selected if they begin with certain pre-specified combinations
of letters. Simpler but arguably as effective is the modulo heuristic, in which
a chunk is only selected if its hash-key modulo a parameter k is equal to zero.
The winnowing algorithm of Schleimer et al. (2003) passes a window over the
collection and selects the chunk with the lowest hash-key in each window. Both
the anchor and modulo heuristics ensure a level of synchronisation between fin-
gerprints in different documents, in that if a particular chunk is selected in one
document, it will be selected in all documents.

In their comparative experiments, Hoad & Zobel (2003) found that few of the
fingerprinting strategies tested could reliably identify co-derivative documents
in a collection. Of those that could, Manber’s anchor heuristic was the most
effective, but its performance was inferior to their ranking-based identity measure
system. Similarly, Shivakumar & Garćıa-Molina (1995) found that the COPS
fingerprinting system (Brin et al. 1995) was far more likely than their SCAM
ranking-based system to fail to identify co-derivative documents.

Several techniques use fingerprinting for the discovery problem:
Manber (1994) counts the number of identical postings lists in the chunk

index, arguing this can be used to identify clusters of co-derived documents in
the collection. However, as Manber points out, there are many cases in which
the results produced by his method can be extremely difficult to interpret.



58 Yaniv Bernstein and Justin Zobel

Broder et al. (1997) describe an approach in which each postings list is broken
down to a set of document-pair tokens, one for each possible pairing in the
list. The number of tokens for each pair of documents is counted and used as
the basis for a set of discovery results. While this approach can yield far more
informative results, taking the Cartesian product of each postings list means
that the number of tokens generated is quadratic in the length of the postings
list; this can easily cause resource blowouts and introduces serious scalability
problems for the algorithm.

Shivakumar & Garćıa-Molina (1999) addressed the scalability problems of the
previous algorithm by introducing a hash-based probabilistic counting technique.
For each document pair, instead of storing a token, a counter in a hashtable is
incremented. A second pass generates a list of candidate pairs by discarding
any pair that hashes to a counter that recorded insufficient hits. Assuming the
hashtable is of sufficient size, this pruning significantly reduces the number of
tokens that must be generated for the exact counting phase.

A fundamental weakness of fingerprinting strategies is that they cannot iden-
tify and discard chunks that do not contribute towards the identification of any
co-derivative pairs. Unique chunks form the vast majority in most collections,
yet do not contribute toward solving the discovery problem. We analysed the
LATimes newswire collection (see section 6) and found that out of a total of
67,808,917 chunks of length eight, only 2,816,822 were in fact instances of du-
plicate chunks: less than 4.5% of the overall collection. The number of distinct
duplicated chunks is 907,981, or less than 1.5% of the collection total.

The inability to discard unused data makes full fingerprinting too expensive
for most practical purposes. Thus, it becomes necessary to use chunk-selection
heuristics to keep storage requirements at a reasonable level. However, this in-
troduces lossiness to the algorithm: current selection heuristics are unable to
discriminate between chunks that suggest co-derivation between documents in
the collection and those that do not. There is a significant possibility that two
documents sharing a large portion of text are passed over entirely.

For example, Manber (1994), uses character-level granularity and the modulo
selection heuristic with k = 256 Thus, any chunk has an unbiased one-in-256
chance of being stored. Consider a pair of documents that share an identical 1
KB (1024 byte) portion of text. On average, four of the chunks shared by these
documents will be selected. Using the Poisson distribution with λ = 4, we can
estimate the likelihood that C chunks are selected as P (C = 0) = e−4 · 40/0! =
1.8% and P (C = 1) = e−4 · 41/1! = 7.3%. This means that a pair of documents
containing a full kilobyte of identical text have nearly a 2% chance of not having
a single hash-key in common in their fingerprints, and a greater than 7% chance
of only one hash key in common. The same results obtain for an identical 100-
word sequence with a word-level chunking technique and k = 25, as used by
Broder et al. (1997). Such lossiness is unacceptable in many applications.

Schleimer et al. (2003) make the observation that the modulo heuristic pro-
vides no guarantee of storing a shared chunk no matter how long the match.
Whatever the match length, there is a nonzero probability that it will be over-



A Scalable System for Identifying Co-derivative Documents 59

looked. Their winnowing selection heuristic is able to guarantee that any contigu-
ous run of shared text greater than a user-specifiable size w will register at least
one identical hash-key in the fingerprints of the documents in question. However,
a document that contains fragmented duplication below the level of w can still
escape detection by this scheme: it is still fundamentally a lossy algorithm.

3.2 Algorithms for Lossless Fingerprinting

We make the observation that as only chunks that occur in more than one
document contribute towards identifying co-derivation, a selection strategy that
selected all such chunks would provide functional equivalence to full fingerprint-
ing, but at a fraction of the storage cost for most collections. The challenge is
to find a way of efficiently and scalably discriminating between duplicate and
unique chunks.

Hierarchical dictionary-based compression techniques like sequitur (Nevill-
Manning & Witten 1997) and re-pair (Larsson & Moffat 2000) are primarily
designed to eliminate redundancy by replacing strings that occur more than
once in the data with a reference to an entry in a ruleset. Thus, passages of
text that occur multiple times in the collection are identified as part of the
compression process. This has been used as the basis for phrase-based collection
browsing tools such as phind (Nevill-Manning et al. 1997) and re-store (Moffat
& Wan 2001). However, the use of these techniques in most situations is ruled
out by their high memory requirements: the phind technique needs about twice
the memory of the total size of the collection being browsed (Nevill-Manning et
al. 1997). To keep memory use at reasonable levels, the input data is generally
segmented and compressed block-by-block; however, this negates the ability of
the algorithm to identify globally duplicated passages. Thus, such algorithms
are not useful for collections of significant size.

Suffix trees are another potential technique for duplicate-chunk identification,
and are used in this way in computational biology (Gusfield 1997). However, the
suffix tree is an in-memory data structure that consumes a quantity of memory
equal to several times the size of the entire collection. Thus, this technique is
also only suitable for small collections.

4 The spex Algorithm

Our novel hash-based spex algorithm for duplicate-chunk extraction has much
more modest and flexible memory requirements than the above and is thus the
first selection algorithm that is able to provide lossless chunk selection within
large collections. The fundamental observation behind the operation of spex is
that if any subchunk of a given chunk can be shown to be unique, then the
chunk in its entirety must be unique. For example, if the chunk ‘quick brown’
occurs only once in the collection, there is no possibility that the chunk ‘quick
brown fox’ is repeated. Spex uses an iterated hashing approach to discard unique
chunks and leave only those that are very likely to be duplicates.

The basic mechanics of the algorithm are shown in Algorithm 1. At the core
of spex is a pair of hashcounters – hashtable accumulator arrays – designed to



60 Yaniv Bernstein and Justin Zobel

Algorithm 1 The spex algorithm.
1: // C: Collection of chunks
2: // l: Target chunk length
3: // cn: chunk of length n
4: // cn{p . . . q}: The chunk composed of words p through q of chunk cn

5: // #(c): The hash value of chunk c
6: // hn: Hashcounter for chunks of length n
7:
8: for all c1 ∈ C do
9: h1[#(c1)]← h1[#(c1)] + 1

10: end for
11: for n ∈ [2, l] do
12: for all cn ∈ C do
13: if hn−1[#(cn{1 . . . n− 1})] > 1 and hn−1[#(cn{2 . . . n})] > 1 then
14: hn[#(cn)]← hn[#(cn)] + 1
15: end if
16: end for
17: end for

count string occurrences. Each time a string is inserted into a hashcounter, it is
hashed and a counter at that location is incremented. Collisions are not resolved.
For the purposes of the spex algorithm, we care about only three counter values:
0, 1 and ‘2 or more’. As such, each field in the hashcounter need be only two
bits wide. If the same string is inserted into a hashcounter more than once, the
hashcounter will indicate this. The hashcounter can also return false positives,
indicating a string occurs multiple times when it in fact does not. A small number
of such false positives can be tolerated by spex; the number can be kept small
because the two-bit wide fields allow for extremely large hashcounters to reside
in a relatively modest amount of memory

When a document collection is presented to spex, the first step is to sequen-
tially scan the collection and insert each word encountered into a hashcounter.
This hashcounter thus indicates (with the possibility of false positives) whether
a word occurs multiple times in the collection. Following this, we pass a sliding
window of size two words over the collection. Each two-word chunk is broken
down into two single word subchunks and compared against the hashcounter.
If the hashcounter indicates that both subchunks occur multiple times then the
chunk is inserted into the second hashcounter. Otherwise, the chunk is rejected.
After this process is complete, the second hashcounter indicates whether a par-
ticular chunk of size two is a possible duplicate chunk. For chunks of size three,
we pass a sliding window of length three over the collection and decompose the
candidate chunks into two subchunks of length two. We similarly accept a chunk
only if it is indicated by the hashcounter that both subchunks occur multiple
times within the collection. Figure 1 illustrates this process.

The algorithm can be extended to any desired chunk size l by iteration,
at each phase incrementing the chunk size by one. We only ever require two
hashcounters because the hashcounter for chunks of size n − 2 is no longer re-



A Scalable System for Identifying Co-derivative Documents 61

the quick brown

.

.

.

.

.

.

.

.

0

1

2

3

0

0

2

.

.

.

.

.

.

.

.

0

1

2

3

0

0

1

c-1 c

#

both >1 ?

#

2

the quick brown

+1

#

YES

Fig. 1. The process for inserting a new chunk into the hashcounter in spex. The chunk
“the quick brown” is divided into two sub-chunks “the quick” and “quick brown” They
are each hashed into the old hash table. If the count for both sub-chunks is greater than
one, the full chunk is hashed and the counter at that location in the new hashcounter
is incremented.

quired when searching for chunks of size n and may be reused. We are not overly
concerned about false positives, because subsequent iterations tend to have a
dampening rather than an amplifying effect on their presence. Spex is thus able
to provide an accurate representation of duplicate chunks of length u in a time
proportional to O(uv), where v is the length of the document collection.

5 The deco Package

Our deco system for co-derivative detection presents a number of innovations.
The most significant of these is the use of spex for creating shared-chunk in-
dexes. Another addition is the inclusion of more sophisticated scoring functions
for determining whether documents are co-derived. Deco operates in two phases:
index building and relationship graph generation. In the index building phase,
spex is used as described earlier. At the final iteration of the algorithm, the
chunks that are identified as occurring more than once are stored in an inverted
index structure (Witten et al. 1999). This index contains an entry for each du-
plicate chunk and a list of each document where it occurs. We call this index the
shared-chunk index.

In the relationship graph generation phase, deco uses the shared-chunk index
and an approximate counting technique similar to that proposed by Shivakumar
& Garćıa-Molina (1999) in order to identify co-derived document pairs. Several
parameters must be specified to guide this process: the most important of these
are the scoring function and the inclusion threshold. Given documents u and v,
the scoring function may at present be one of the following:

S1(u, v) =
∑

c∈u∧c∈v 1 S2(u, v) =
∑

c∈u∧c∈v 1/ min ū, v̄

S3(u, v) =
∑

c∈u∧c∈v 1/ mean ū, v̄ S4(u, v) =
∑

c∈u∧c∈v
1/fc

mean ū,v̄

where ū is the length (in words) of a document u, and fc is the number of col-
lection documents a given chunk c appears in. Function S1 above simply counts



62 Yaniv Bernstein and Justin Zobel

the number of chunks common to the two documents; this elementary scoring
method is how fingerprinting algorithms have worked up to now. Functions S2

and S3 attempt to normalise the score relative to the size of the documents,
so that larger documents don’t dominate smaller ones in the results. They are
very similar to the resemblance measure of Broder (1997) but are modified for
more efficient computation. Function S4 gives greater weight to phrases that
are rare across the collection. These scoring functions are all simple heuristics;
further refinement of these functions and the possible use of statistical models
is desirable and a topic of future research.

The inclusion threshold is the minimum value of S(u, v) for which an edge
between u and v will be included in the relationship graph. We wish to set the
threshold to be such that pairs of co-derived documents score above the threshold
while pairs that are not co-derived score below the threshold.

6 Experimental Methodology

We use three document collections in our experiments. The webdata+xml and lin-
uxdocs collections were accumulated by Hoad & Zobel (2003). The webdata+xml
collection consists of 3,307 web documents totalling approximately 35 megabytes,
into which have been seeded nine documents (the XML documents), each of
which is a substantial edit by a different author of a single original report dis-
cussing XML technology. Each of these nine documents shares a co-derivation
relationship with each of the other eight documents, though in some cases they
only have a relatively small quantity of text in common. The linuxdocs collection
consists of 78,577 documents (720 MB) drawn from the documentation included
with a number of distributions of RedHat Linux. While the webdata+xml collec-
tion serves as an artificial but easily-analysed testbed for co-derivative identifi-
cation algorithms, the linuxdocs collection, rich in duplicate and near-duplicate
documents, is a larger and more challenging real-world collection.

The LATimes collection is a 476 megabyte collection of newswire articles
from the Los Angeles Times, one of the newswire collections created for the
TREC conference (Harman 1995). This collection is used as an example of a
typical document collection and is used to investigate the index growth we may
expect from such a typical collection.

We define a collection’s reference graph as the relationship graph that would
be generated by a human judge for the collection1. The coverage of a given
computer-generated relationship graph is the proportion of edges in the refer-
ence graph that are also contained in that graph, and the density of a relationship
graph is the proportion of edges in that graph that also appear in the reference
graph. While these two concepts are in many ways analogous to the traditional
recall and precision metrics used in query-based information retrieval (Baeza-
Yates & Ribeiro-Neto 1999), we choose the new terminology to emphasise that
the task is quite different to querying: we are not trying to meet an explicit
1 Although the concept of an ‘ideal’ underlying relationship graph is a useful artifice,

the usual caveats of subjectivity and relativity must be borne in mind.



A Scalable System for Identifying Co-derivative Documents 63

information need, but are rather attempting to accurately identify existing in-
formation relationships within the collection.

To estimate the density of a relationship graph, we take a random selection of
edges from the graph and judge whether the documents they connect are in fact
co-derived. To estimate the coverage of a relationship graph, we select a number
of representative documents and manually determine a list of documents with
which they are co-derived. The coverage estimate is then the proportion of the
manually determined pairings that are identified in the relationship graph. A
third metric, average precision, is simply the average proportion of co-derivative
edges to total edges for the documents selected to estimate coverage. While it is
an inferior measure to average density, it plays a role in experimentation because
it is far less time-consuming to calculate.

7 Testing and Discussion

Index Growth Rate. In order to investigate the growth trend of the shared-chunk
index as the source collection grows, we extracted subcollections of various sizes
from the LATimes collection and the linuxdocs collection, and observed the
number of duplicate chunks extracted as the size of the collection grew.

This growth trend is important for the scalability of spex and by extension
the deco package: if the growth trend were quadratic, for example, this would set
a practical upper bound on the size of the collection which could be submitted
to the algorithm, whereas if the trend were linear or n log(n) then far larger
collections would become practical. We found that, for this collection at least, the
growth rate follows a reasonably precise linear trend. For the LATimes collection,
40 MB of data yielded 54,243 duplicate chunks; 80 MB yielded 126,542; 160
MB 268,128; and 320 MB 570,580 duplicate chunks. While further testing is
warranted, a linear growth trend suggests that the algorithm has potential to
scale extremely well.

Webdata+XML Experiments. Because the webdata+xml collection contains the
nine seed documents for which we have exact knowledge of co-derivation re-
lationships, it makes a convenient collection for proving the effectiveness of the
deco package and determining good parameter settings. Using deco to create a
shared-chunk index with a chunk size of eight took under one minute on an Intel
Pentium 4 PC with 512 MB of RAM. For this collection, we tested deco using
the four scoring functions described in section 5. For each scoring function, we
tested a range of five inclusion thresholds, named – in order of increasing value
– T1 to T5; the values vary between the scoring functions and were chosen based
on preliminary experiments. Each of the 20 generated relationship graphs were
then tested for the presence of the 36 edges connecting the XML documents to
each other.

As can be seen in Table 1, the estimated coverage values strongly favour
the lower inclusion thresholds. Indeed, for all scoring functions using the in-
clusion threshold T1, 100% of the pairings between the XML documents were



64 Yaniv Bernstein and Justin Zobel

Table 1. Coverage estimates, as percentages, for the webdata+xml collection calculated
on the percentage of XML document pairings identified. The average precision was
100% in all cases.

T1 T2 T3 T4 T5

S1 100.0 97.2 36.1 8.3 0.0
S2 100.0 100.0 83.3 58.3 25.0
S3 100.0 91.7 72.2 52.8 16.7
S4 100.0 97.2 91.7 58.3 22.2

Table 2. Coverage and average precision estimates, as a pair X/Y of percentages,
for deco applied to the linuxdocs collection, using a full shared-chunk index and for
indexes that store chunks only if their hash-key equals zero modulo 16 and 256.

T1 T2 T3 T4 T5

Full chunk indexing
S1 100/ 70 89/ 71 56/ 93 36/ 95 34/100
S2 100/ 57 100/ 75 100/ 92 89/ 94 57/100
S3 98/ 75 96/ 84 94/100 84/100 47/100
S4 99/ 83 96/ 91 94/100 78/100 30/100

Fingerprinting modulo 16
S1 90/ 72 88/ 76 56/ 94 36/ 96 34/100
S2 90/ 75 90/ 75 80/ 94 78/100 57/100
S3 88/ 82 86/ 91 74/100 74/100 47/100
S4 88/ 85 86/ 93 86/ 93 69/100 60/100

Fingerprinting modulo 256
S1 54/ 95 54/ 95 54/ 95 54/ 95 34/ 97
S2 54/ 97 54/ 97 54/ 97 54/ 97 44/ 97
S3 54/ 97 54/100 54/100 51/100 42/100
S4 54/ 97 54/100 54/100 44/100 31/100

included in the relationship graph. In all cases the average precision was also
100%. These values – 100% coverage and 100% density – suggest a perfect re-
sult, but are certainly overestimates. The nature of the test collection – nine
co-derived documents seeded into an entirely unrelated background collection
– made it extremely unlikely that spurious edges would be identified. This not
only introduced an artificially high density estimate but also strongly biased the
experiments in favour of the lower inclusion thresholds, because they allowed all
the correct edges to be included with very little risk that incorrect edges would
likewise be admitted.

Experiments on the Linux Documentation Collection. For the linuxdocs collec-
tion, we used deco to create a shared-chunk index with a chunk size of eight,
taking approximately 30 minutes on an Intel Pentium 4 PC with 512 MB of
RAM. For generation of relationship graphs we used the same range of scoring
functions and inclusion thresholds as in the previous section. We wished also
to investigate the level of deterioration witnessed in a fingerprinting strategy



A Scalable System for Identifying Co-derivative Documents 65

as the selectivity of the fingerprint increased; to this end, we experimented with
relationship graphs generated from indexes generated using the modulo heuristic
with k = 16 and k = 256. The inclusion threshold for these experiments were
adjusted downward commensurately.

To estimate the coverage of the relationship graphs, we selected ten docu-
ments from the collection representing a variety of different sizes and types, and
manually collated a list of co-derivatives for each of these documents. This was
done by searching for other documentation within the collection that referred to
the same program or concept; thus, the lists may not be entirely comprehensive.
Estimated coverage and average precision results for this set of experiments are
given in Table 2. Several trends are observable in the results. The first of these
is that in general, scoring functions S2, S3, and S4 were more effective than the
simple chunk-counting S1 scoring function Another trend is that performance
is noticeably superior with the full shared-chunk index than with the selective
shared-chunk indexes. Note in particular that, for the modulo 256 index, no con-
figuration was able to find more than 54% of the relevant edges. This is almost
certainly because the other 46% of document pairs do not have any chunks in
common that evaluate to 0 modulo 256 when hashed. This illustrates the dangers
of using lossy selection schemes when a high degree of reliability is desired.

We had insufficient human resources to complete an estimate of density for
all of the relationship graphs generated. Instead, we selected a range of config-
urations that seemed to work well and estimated the density for these configu-
rations. This was done by picking 30 random edges from the relationship graph
and manually assessing whether the two documents in question were co-derived.
The results were pleasingly high: S2/T3/1, S3/T2/256, and S4/T3/16 all scored
a density of 93.3% (28 out of 30) while S4/T3/1 and S2/T1/16 both returned an
estimated density of 100%. Other combinations were not tested.

8 Conclusions

There are many reasons why one may wish to discover co-derivation relationships
amongst the documents in a collection. Previous feasible solutions to this task
have been based on fingerprinting algorithms that used heuristic chunk selection
techniques. We have argued that, with these techniques, one can have either
reliability or acceptable resource usage, but not both at once.

We have introduced the spex algorithm for efficiently identifying shared
chunks in a collection. Unique chunks represent a large proportion of all chunks
in the collection – over 98% in one of the collections tested – but play no part in
discovery of co-derivatives. Identifying and discarding these chunks means that
document fingerprints only contain data that is relevant to the co-derivative dis-
covery process. In the case of the LATimes collection, this allows us to create
an index that is functionally equivalent to full fingerprinting but is one fiftieth
of the size of a full chunk index. Such savings allow us to implement a system
that is effective and reliable yet requires only modest resources.

Tests of our deco system, which used the spex algorithm, on two test col-
lections demonstrated that the package is capable of reliably discovering co-



66 Yaniv Bernstein and Justin Zobel

derivation relationships within a collection, and that introducing heuristic chunk-
selection strategies degraded reliability.

There is significant scope for further work and experimentation with deco.
One area of particular importance is the scalability of the algorithm. We have
demonstrated that the system performs capably when presented with a highly
redundant 700 MB collection and are confident that it can handle much larger
collections, but this needs to be experimentally demonstrated. Another impor-
tant further development is the design of an adjunct to the spex algorithm that
would make it possible to add new documents to a collection without rebuilding
the entire shared-chunk index. The difficulty of extending the index is the one
major defect of spex compared to many other fingerprinting selection heuris-
tics. However, the sensitivity, reliability and efficiency of spex make it already
a valuable tool for analysis of document collections.

Acknowledgements

This research was supported by the Australian Research Council.

References

Baeza-Yates, R. & Ribeiro-Neto, B. (1999), Modern Information Retrieval, Addison-
Wesley Longman.

Brin, S., Davis, J. & Garćıa-Molina, H. (1995), Copy detection mechanisms for digital
documents, in ‘Proceedings of the ACM SIGMOD Annual Conference’, pp. 398–
409.

Broder, A. Z. (1997), On the Resemblance and Containment of Documents, in ‘Com-
pression and Complexity of Sequences (SEQUENCES’97)’, pp. 21–29.

Broder, A. Z., Glassman, S. C., Manasse, M. S. & Zweig, G. (1997), ‘Syntactic clustering
of the Web’, Computer Networks and ISDN Systems 29(8-13), 1157–1166.

Gusfield, D. (1997), Algorithms on strings, trees, and sequences: computer science and
computational biology, Cambridge University Press.

Harman, D. (1995), ‘Overview of the second text retrieval conference (TREC-2)’, In-
formation Processing and Management 31(3), 271–289.

Heintze, N. (1996), Scalable Document Fingerprinting, in ‘1996 USENIX Workshop on
Electronic Commerce’.

Hoad, T. C. & Zobel, J. (2003), ‘Methods for Identifying Versioned and Plagiarised
Documents’, Journal of the American Society for Information Science and Tech-
nology 54(3), 203–215.

Larsson, N. J. & Moffat, A. (2000), ‘Offline Dictionary-Based Compression’,
88(11), 1722–1732.

Manber, U. (1994), Finding Similar Files in a Large File System, in ‘Proceedings of the
USENIX Winter 1994 Technical Conference’, San Fransisco, CA, USA, pp. 1–10.

Moffat, A. & Wan, R. (2001), Re-Store: A System for Compressing, Browsing, and
Searching Large Documents, in ‘Proceedings of the International Symposium on
String Processing and Information Retrieval’, IEEE Computer Society, pp. 162–
174.



A Scalable System for Identifying Co-derivative Documents 67

Nevill-Manning, C. G. & Witten, I. H. (1997), ‘Compression and Explanation Using
Hierarchical Grammars’, The Computer Journal 40(2/3), 103–116.

Nevill-Manning, C. G., Witten, I. H. & Paynter, G. W. (1997), Browsing in digital li-
braries: a phrase-based approach, in ‘Proceedings of the second ACM international
conference on Digital libraries’, ACM Press, pp. 230–236.

Schleimer, S., Wilkerson, D. S. & Aiken, A. (2003), Winnowing: local algorithms for
document fingerprinting, in ‘Proceedings of the 2003 ACM SIGMOD international
conference on on Management of data’, ACM Press, pp. 76–85.

Shivakumar, N. & Garćıa-Molina, H. (1995), SCAM: A Copy Detection Mechanism
for Digital Documents, in ‘Proceedings of the Second Annual Conference on the
Theory and Practice of Digital Libraries’.

Shivakumar, N. & Garćıa-Molina, H. (1999), Finding Near-Replicas of Documents
on the Web, in ‘WEBDB: International Workshop on the World Wide Web and
Databases, WebDB’, Springer-Verlag.

Witten, I. H., Moffat, A. & Bell, T. C. (1999), Managing Gigabytes: Compressing and
Indexing Documents and Images, Morgan Kauffman.


	1 Introduction
	2 Co-derivatives and the Discovery Problem
	3 Strategies for Co-derivative Discovery
	3.1 Fingerprinting
	3.2 Algorithms for Lossless Fingerprinting

	4 The {\sc spex} Algorithm
	5 The [\sc deco} Package
	6 Experimental Methodology
	7 Testing and Discussion
	8 Conclusions
	References

