
Techniques for Efficient Query Expansion

Bodo Billerbeck and Justin Zobel

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia

{bodob,jz}@cs.rmit.edu.au

Abstract. Query expansion is a well-known method for improving av-
erage effectiveness in information retrieval. However, the most effective
query expansion methods rely on costly retrieval and processing of feed-
back documents. We explore alternative methods for reducing query-
evaluation costs, and propose a new method based on keeping a brief
summary of each document in memory. This method allows query expan-
sion to proceed three times faster than previously, while approximating
the effectiveness of standard expansion.

1 Introduction

Standard ranking techniques in information retrieval return documents that con-
tain the same terms as the query. While the insistence on exact vocabulary
matching is often effective, identification of some relevant documents involves
finding alternative query terms. Previous work has shown that through query
expansion (QE) effectiveness is often significantly improved (Rocchio, 1971,
Robertson and Walker, 1999, Carpineto et al., 2001).

Local analysis has been found to be one of the most effective methods for
expanding queries (Xu and Croft, 2000). For those methods the original query is
used to determine top-ranked documents from which expansion terms are sub-
sequently extracted. A major drawback of such methods is the need to retrieve
those documents during query evaluation, greatly increasing costs. In other work
(Billerbeck et al., 2003), we explored the use of surrogates built from past queries
as a cheap source of expansion terms, but such surrogates require large query
logs to be usable.

In this paper, we identify the factors that contribute to the cost of query ex-
pansion, and explore in principle the alternatives for reducing these costs. Many
of these approaches compromise effectiveness so severely that they are not of
practical benefit. However, one approach is consistently effective: use of brief
summaries – a pool of the most important terms – of each document. These
surrogates are much smaller than the source documents, and can be rapidly pro-
cessed during expansion. In experiments with several test sets, we show that our
approach reduces the time needed to expand and evaluate a query by a factor of
three, while approximately maintaining effectiveness compared to standard QE.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 30–42, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Techniques for Efficient Query Expansion 31

2 Background

Relevance feedback is used to refine a query using knowledge of whether docu-
ments retrieved by this query are relevant. Weighted terms from judged docu-
ments are added to the original query, where they act as positive and negative
examples of the terms that should occur in relevant and non-relevant documents.
The modified query is then reissued, in the hope of ranking the remaining rele-
vant documents more highly (Rocchio, 1971, Ruthven and Lalmas, 2003). Inter-
active QE can significantly increase effectiveness (Magennis and van Rijsbergen,
1997), although on average – for non expert users – automatic expansion is more
likely to lead to better performance (Ruthven, 2003).

In automatic QE, also called pseudo relevance feedback, the query is aug-
mented with expansion terms from highly-ranked documents (Robertson and
Walker, 1999). An alternative (Qiu and Frei, 1993, Gauch and Wang, 1997) is to
examine the document collection ahead of time and construct similarity thesauri
to be accessed at query time. The use of thesauri in general has been shown to
be less successful than automatic QE (Mandala et al., 1999), though the two
approaches can be successfully combined (Xu and Croft, 2000).

An effective method for QE, used throughout this paper, is based on the
Okapi BM25 measure (Robertson and Walker, 1999, Robertson et al., 1992).
Slightly modified, this measure is as follows:

bm25(q, d) =
∑

t∈q

log
(

N − ft + 0.5
ft + 0.5

)
× (k1 + 1)fd,t

K + fd,t

where terms t appear in query q; the collection contains N documents d; ft docu-
ments contain a particular term and a particular document contains a particular
term fd,t times; K is k1((1−b)+b×Ld/AL); constants k1 and b respectively are
set to 1.2 and 0.75; and Ld and AL are measurements in a suitable unit for the
document length and average document length respectively. The modifications
to the original formulation (see Sparck-Jones et al. (2000) for a detailed expla-
nation) is the omission of a component that deals with repeated query terms. In
the queries we use, term repetitions are rare.

In this paper we use the expansion method proposed by Robertson and
Walker (1999) where E terms with the lowest term selection value are chosen
from the top R ranked documents:

TSVt =
(

ft

N

)rt
(

R

rt

)

where a term t is contained in rt of the top ranked R documents. The expansion
terms get added to the original query, but instead of using their Okapi value,
their weight (Robertson and Walker, 1999) is chosen by the formula1:
1 The factor of 1

3
was recommended by unpublished correspondence with the authors.

It de-emphasises expansion terms and prevents query drift, that is, “alteration of
the focus of a search topic caused by improper expansion” (Mitra et al., 1998). We
confirmed in unpublished experiments that the value of the factor is suitable.



32 Bodo Billerbeck and Justin Zobel

1
3
× log

(
(rt + 0.5)/(R − rt + 0.5)

(ft − rt + 0.5)/(N − ft − R + rt + 0.5)

)

We have shown previously that best choices of R and E depend on the collection
used and should in principle be carefully optimised (Billerbeck and Zobel, 2004);
to reduce the complexity of the experiments, in this paper we use the standard
values of R = 10 and E = 25.

Although there has been a great deal of research on efficient evaluation of
ranked queries (Witten et al., 1999, pages 207–210), there is no prior work on
efficient QE for text retrieval, the focus of this paper.

3 Query Expansion Practicalities

In most expansion methods making use of local analysis, there are five key stages.
First, the original query is used to rank an initial set of documents. This set is
then retrieved from disk and all terms are extracted from those documents.
Terms are evaluated and ranked in order of their potential contribution to the
query. The top ranked terms are appended to the query, and finally the refor-
mulated query is reissued and a final set of documents is ranked.

Each phase of the ranking process has scope for efficiency gains, but some
of the gains involve heuristics that can compromise effectiveness. In this section
we explore these options; this exploration provides a focus for the experiments
reported later in this paper. Some of the concepts introduced here – in particular,
associations and surrogates – are described in more detail in the next section.

Initial Ranking. During the first stage, documents are ranked according to the
original query. For each query term the inverted list is retrieved, if it hasn’t
been cached, and processed. For each document referenced in the list, a score is
calculated and added to a list of scores that is kept for (say) 20,000 documents
(Moffat and Zobel, 1996). Once all query terms have been processed, the top R
documents are used for the next stage.

The cost of accessing an inverted list depends on the disk access time. For a
long list, the costs are directly proportional to list size. If the list is organised
by document identifier, the whole list must be fetched for each query term.

A way of reducing the cost of retrieving and processing the inverted lists is
to cut down the volume of list information that has to be retrieved. This has
been achieved by, for example, Anh and Moffat (2002), where documents are
not stored in the order they are encountered during indexing, but in order of
the impact a term has in a particular document. For instance, a term has more
impact in a document in which it occurs twice, than another of the same length
in which it occurs once. Using this ordering means that either the processing
of lists can be stopped once a threshold is reached, or that the lists are capped
to begin with, leading to lower storage requirements, reduced seek times, and
allowing more lists to be cached in memory. We have not used impacts in our
experiments, but the gains that they provide are likely to be in addition to the
gains that we achieve with our methods.



Techniques for Efficient Query Expansion 33

Another way to reduce list length, discussed in more detail later, is to index
only a fraction of the document collection for the initial ranking. Initial ranking
is traditionally on the document collection, but there is no particular reason why
other collections should not be used. Another option, also explored later, of this
kind is to use document surrogates. A drawback of these approaches is that the
full index still needs to be available for the final ranking and thus is loaded at
the same time as auxiliary indexes. This means that some of the advantage of
using shorter lists is negated by having less space available to cache them.

Fetching Documents. Having identified the highly ranked documents, these need
to be fetched. In the vast majority of cases these documents are not cached from
a previous expansion or retrieval process (assuming a typical memory size), and
therefore have to be fetched from disk, at a delay of a few milliseconds each.

Traditionally, full-text documents are fetched. This is the most expensive
stage of expansion and therefore the area where the greatest gains are available.
We have shown previously that surrogates – which are a fraction of the size of the
documents – can be more effective than full-text documents (Billerbeck et al.,
2003). Using surrogates such as query associations is more efficient, provided
that those surrogates can be pre-computed, as discussed later.

Another approach is limiting the number of documents available for extrac-
tion of terms, which should result in higher efficiency, due to reduced cache misses
when retrieving the remaining documents and otherwise smaller seek times as
it can be expected that the limited number of documents are clustered on disk.
Documents could be chosen by, for example, discarding those that are the least
often accessed over a large number of queries (Garcia et al., 2004).

A more radical measure is to use in-memory document surrogates that pro-
vide a sufficiently large pool of expansion terms, as described in the following
section. If such a collection can be made sufficiently small, the total cost of ex-
pansion can be greatly reduced. Typically full text document collections don’t fit
into main memory, but well-constructed surrogates may be only a small fraction
of the size of the original collection. Our surrogates are designed to be as small
as possible while maintaining effectiveness.

Extracting Candidate Terms. Next, candidate terms (that is, potential expan-
sion terms) are extracted from the fetched documents. These documents need to
be parsed, and terms need to be stopped. (We do not use stemming, since in un-
published experiments we have found that stemming does not make a significant
difference to effectiveness.)

This phase largely depends on the previous phase; if full text documents
have been fetched, these need to be parsed and terms need to be stopped. In the
case of query associations, the surrogates are pre-parsed and pre-stopped and
extraction is therefore much more efficient.

The in-memory surrogates we propose can be based on pointers rather than
the full terms in memory. The pointers reference terms in the dictionary used
for finding and identifying statistics and inverted lists. They have a constant size



34 Bodo Billerbeck and Justin Zobel

(4 bytes) and are typically smaller than a vocabulary term. This approach also
eliminates the lookups needed in the next stage.

Selecting Expansion Terms. The information (such as the inverse document
frequency) necessary for calculation of a term’s TSV is held in the vocabulary,
which may be held on disk or (as in our implementation) in memory; even when
held on disk, the frequency of access to the vocabulary means that typically
much of it is cached. As a result, this phase is the fastest and can only be sped
up by providing fewer candidate terms for selection.

Query associations typically consist of 20–50 terms, as opposed to the average
of 200 or more for web documents. Use of surrogates could make this stage several
times more efficient than the standard approach. Surrogates are a strict subset
of full text documents, and usually are a tiny fraction thereof, ensuring that
selection is efficient.

Final Ranking. Finally the document collection is ranked against the reformu-
lated query. Similar considerations as in the first phase are applicable here. We
have shown previously (Billerbeck et al., 2003) that final ranking against surro-
gates is, unsurprisingly, ineffective. The only option for efficiency gains at this
stage is to use an approach such as impact-ordering, as discussed earlier.

4 Methods of Increasing Efficiency for QE

In the previous section we identified costs and plausible approaches for reducing
them. In this section, we consider the most promising methods in more detail,
setting a framework for experiments. In particular, we propose the novel strategy
of using bag-of-word summaries as a source of expansion terms.

Query Associations. Query associations (Scholer and Williams, 2002) capture
the topic of a document by associating past user queries with the documents that
have been highly ranked by that query. We have previously shown (Billerbeck
et al., 2003) that associations are effective when useful query logs are available.
A disadvantage of using associations is that an extra index needs to be loaded
and referenced during query evaluation. However, this penalty is small, as asso-
ciations are likely to be a small fraction of collection size. The advantages are
that associations are usually pre-stemmed and stopped, stored in a parsed form,
and cheap to retrieve.

Rather than indexing the associations, it would be possible in principle to
rank using the standard index, then fetch and expand from the associations, but
in our earlier work (Billerbeck et al., 2003) we found that it was necessary to
rank against the associations themselves.

Reducing Collection Size for Sourcing Expansion Terms. The intuition under-
lying expansion is that, in a large collection, there should be multiple documents
on the same topic as the query, and that these should have other pertinent terms.



Techniques for Efficient Query Expansion 35

However, there is no logical reason why the whole collection should have to be
accessed to identify such documents. Plausibly, documents sampled at random
from the collection should represent the overall collection in respect of the ter-
minology used. In our experiments, we sampled the collection by choosing every
nth document, for n of 2 and 4. Other options would be to use centroid clusters
or other forms of representative chosen on the basis of semantics. Documents
could also be stored in a pre-parsed format (such as a forward index), which we
have not tested.

In-Memory Document Summaries. The major bottleneck of local analysis is
the reliance on the highly ranked documents for useful expansion terms. These
documents typically need to be retrieved from disk. We propose that summaries
of all documents be kept in memory, or in a small auxiliary database that is
likely to remain cached. A wide range of document summarisation techniques
have been investigated (Goldstein et al., 1999), and in particular Lam-Adesina
and Jones (2001) have used summarisation for QE. In this work, representative
sentences are selected, giving an abbreviated human-readable document.

However, summaries to be used for QE are not for human consumption. We
propose instead that the summaries consist of the terms with the highest tf.idf
values, that is, the terms that the expansion process should rank highest as
candidates if given the whole document. To choose terms, we use the function:

tf.idf = log
(

N

ft

)
× log (1 + fd,t)

where N is the number of documents in the collection, ft of which contain term t,
and fd,t is the number of occurrences of t in document d.

Given these values, we can then build summaries in two ways. One is to
have a fixed number S of highly-ranked terms per document. The other is to
choose a global threshold C, in which case each summary consists of all the
document terms whose tf.idf value exceeds C. Instead of representing summaries
as sequences of terms, it is straightforward to instead use lists of pointers to the
vocabulary representation of the term, reducing storage costs and providing rapid
access to any statistics needed for the TSV . During querying, all terms in the
surrogates that have been ranked against the original query are then used for
selection. This not only avoids long disk I/Os, but also the original documents
– typically stored only in their raw form – do not need to be parsed. S or C can
be chosen depending on collection size or available memory.

Although it is likely that query-biased summaries (Tombros and Sanderson,
1998) – as provided in most contemporary web search engines – would be more
effective (Lam-Adesina and Jones, 2001), such a method cannot be applied in
the context of efficient QE, as query-biased summaries cannot be precomputed.

Other Approaches. Since the original query terms effectively get processed twice
during the ranking process, it seems logical to only process the original query
terms during the initial ranking, and then, later, process the expansion terms
without clearing the accumulator table that was used for the initial ranking.



36 Bodo Billerbeck and Justin Zobel

However, as explored previously (Moffat and Zobel, 1996), limiting the num-
ber of accumulators aids efficiency and effectiveness. To support this strategy,
query terms must be sorted by their inverse document frequency before the query
is processed. Because most expansion terms have a high inverse document fre-
quency – that is, they appear in few documents and are relatively rare – it is
important that they be processed before most of the original query terms, which
typically have lower values. (The effect is similar – albeit weaker – to that of im-
pact ordered indexes as discussed previously.) This means that the original query
must be processed again with the expansion terms for final ranking. Intuition
suggests that this argument is incorrect, and the original query terms should be
allowed to choose the documents; however, in preliminary experiments we found
that it was essential to process the original terms a second time. Processing only
expansion terms in the second phase reduced costs, but led to poor effectiveness.

Other strategies could also lead to reduced costs. Only some documents, per-
haps chosen by frequency of access (Garcia et al., 2004) or sampling, might be
included in the set of surrogates. A second tier of surrogates could be stored on
disk, for retrieval in cases where the highly-ranked documents are not amongst
those selected by sampling. Any strategy could be further improved by com-
pressing the in-memory surrogates, for example with d-gapping (Witten et al.,
1999, page 115) and a variable-byte compression scheme (Scholer et al., 2002).

Note that our summaries have no contextual or structural information, and
therefore cannot be used – without major modifications – in conjunction with
methods using such information, such as the local context analysis method of
Xu and Croft (2000) or the summarisation method of Goldstein et al. (1999).

5 Experiments

Evaluating these approaches to QE requires that we test whether the heuristics
degrade effectiveness, and whether they lead to reduced query evaluation time.
To ensure that the time measurements were realistic, we used Lucy2 as the
underlying search engine.

The test data is drawn from the TREC conferences (Harman, 1995). We used
two collections. The first was of newswire data, from TREC 7 and 8. The second
was the WT10g collection, consisting of 10 gigabytes of web data crawled in
1997 (Bailey et al., 2003) for TREC 9 and 10. Each of these collections has two
sets of 50 topics and accompanying relevance judgements. As queries, we used
the title field from each TREC topic. We use the Wilcoxon signed rank test to
evaluate the significance of the effectiveness results (Zobel, 1998).

For timings, we used 10,000 stopped queries taken from two query logs col-
lected for the Excite search engine (Spink et al., 2002); these are web queries
and thus are suitable for the WT10g runs. Since we were not able to obtain
appropriate query logs for the newswire data, we used the same 10,000 queries
2 Lucy/Zettair is an open source search engine being developed at RMIT by the Search

Engine Group. The primary aim in developing Lucy is to test techniques for efficient
information retrieval. Lucy is available from http://www.seg.rmit.edu.au/.



Techniques for Efficient Query Expansion 37

Table 1. Performance of expansion techniques of TREC queries on the TREC newswire
and WT10g collections, for TREC 8 and TREC 10 queries. Effectiveness results shown
are average precision (AvP), precision at 10 (P@10), and R-Precision (R-P). Also shown
is the average query time over 10,000 queries and the amount of overhead memory re-
quired for each method; “index” marks the need to refer to an auxiliary index during
expansion. A † marks results that are significantly different to the baseline of no ex-
pansion at the 0.10 level, and ‡ at the level of 0.05. S is the number of summary terms
used, and C specifies the cutoff threshold for the selection value.

TREC Expansion Time AvP P@10 R-P Mem
Method (ms) (MB)

8 None 23 0.221 0.442 0.260 n/a
8 Standard 211 0.247‡ 0.466 0.288‡ n/a
8 Assoc. 179 0.219 0.400 0.263 index
8 Half1 201 0.241‡ 0.436 0.283‡ index
8 Half2 185 0.235† 0.430 0.275‡ index
8 Quarter1 167 0.221 0.382‡ 0.255 index
8 Quarter2 183 0.237 0.430 0.278 index
8 Quarter3 175 0.220 0.434 0.268 index
8 Quarter4 174 0.218 0.390‡ 0.273 index
8 S = 1 46 0.231‡ 0.446 0.267‡ 6
8 S = 10 54 0.238‡ 0.438 0.271‡ 24
8 S = 25 59 0.244‡ 0.456 0.277‡ 54
8 S = 40 61 0.245‡ 0.452 0.275‡ 83
8 S = 50 64 0.243‡ 0.454 0.281‡ 102
8 S = 100 72 0.240‡ 0.450 0.282‡ 183
8 C = 1.0 58 0.243‡ 0.448 0.280‡ 56

10 None 62 0.163 0.290 0.190 n/a
10 Standard 615 0.180 0.288 0.202 n/a
10 Assoc. 835 0.180 0.272† 0.209 index
10 S = 1 139 0.138 0.218 0.150 19
10 S = 10 177 0.153† 0.227 0.169 76
10 S = 25 202 0.156 0.224 0.170 166
10 S = 28 204 0.185 0.308 0.217† 183
10 S = 50 221 0.156 0.224 0.170 296
10 S = 100 245 0.156 0.224 0.170 296
10 C = 1.0 217 0.185‡ 0.312† 0.213† 190

for this collection. The machine used for our timings is a dual Intel Pentium III
866 MHz with 768 MB of main memory running Fedora Core 1.

Results

We used the TREC 8 and TREC 10 query sets to explore the methods. Results
for this exploration are shown in Table 1. We applied the best methods found in
Table 1 to the TREC 7 and TREC 9 query sets, as shown in Table 2. The tables
detail the collection, the method of expansion, average precision, precision at
10, and r-precision values, as well as auxiliary memory required. A second index



38 Bodo Billerbeck and Justin Zobel

Table 2. As in Table 1, but showing results only for the methods that worked best on
TREC 8 and TREC 10.

TREC Expansion Time AvP P@10 R-P Mem
Method (ms) (MB)

7 None 23 0.191 0.456 0.248 n/a
7 Standard 211 0.232‡ 0.452 0.286‡ n/a
7 S = 40 61 0.220‡ 0.426† 0.279‡ 83
7 C = 1.0 58 0.215‡ 0.426† 0.272‡ 56

9 None 62 0.193 0.267 0.223 n/a
9 Standard 615 0.177 0.260 0.200 n/a
9 S = 28 204 0.161 0.269 0.176 183
9 C = 1.0 217 0.162 0.256 0.169‡ 190

is needed for the runs where associations or fractional collections are used for
initial ranking and candidate term extraction.

For TREC 8 and to a lesser extent TREC 10, standard QE improves over
the baseline, but in both cases query evaluation takes around nine times as long.
Several of the methods proposed do not succeed in our aims. Associations take as
long as standard QE, and effectiveness is reduced. For TREC 8 the surrogates
are arguably inappropriate, as the web queries may not be pertinent to the
newswire data; however, this issue highlights the fact that without a query log
associations cannot be used.

Using halves (n = 2) or quarters (n = 4) of the collection also reduces
effectiveness, and has little impact on expansion time; this is due to the need to
load and access a second index. Larger n led to smaller improvements in QE; in
experiments with n = 8, not reported here, QE gave no improvements. Reducing
R to roughly a quarter of its original size in order to cater for a smaller number of
relevant documents – as intuition might suggest – only further degrades results.
This is consistent with previous work which shows that retrievel effectiveness
especially in the top ranked documents is greater for larger collections than sub-
collections (Hawking and Robertson, 2003) which means that there is a higher
likelihood of sourcing expansion terms from relevant documents when using local
analysis QE. It was also found that QE works best when expansion terms are
sourced from collections that are a superset of documents of the one targeted
(Kwok and Chan, 1998).

However, our simple tf.idf summaries work well. Even one-word (S = 1) sum-
maries yield significantly improved average precision on TREC 8, for a memory
overhead of a few megabytes. The best cases were S = 40 on TREC 8 and S = 28
on TREC 10, where processing costs were only a third those of standard QE.
These gains are similar to those achieved by (Lam-Adesina and Jones, 2001)
with summaries of 6–9 sentences each, but our summaries are considerably more
compact, showing the advantage of a form of summary intended only for QE.
While the memory overheads are non-trivial – over 180 megabytes for TREC 10
– they are well within the capacity of a small desktop machine.

Results on TREC 7 for the summaries are equally satisfactory, with good
effectiveness and low overheads. Results on TREC 9 are, however, disappoint-



Techniques for Efficient Query Expansion 39

0 10 20 30 40 50 60 70 80 90 100
Maximum number of terms per summary

0.16

0.18

0.20

0.22

0.24

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg. precision

0

50

100

150

200 T
otal size of sum

m
aries (M

B
)overall size

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cutoff value

0.16

0.18

0.20

0.22

0.24

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg precision

0

20

40

60

80 Sum
m

ary term
s per docum

ent

avg summary size

Fig. 1. Varying average precision and associated memory cost with the number and
cutoff value of summary terms respectively. Using the TREC 8 collection and queries.

0 10 20 30 40 50 60 70 80 90 100
Maximum number of terms per summary

0.10

0.12

0.14

0.16

0.18

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg precision

0

50

100

150

200

250

300

350

400

450

500 T
otal size of sum

m
aries (M

B
)

overall size

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cutoff value

0.10

0.12

0.14

0.16

0.18

A
ve

ra
ge

 p
re

ci
si

on

no expansion
std expansion
avg precision

0

10

20

30

40

50

60

70 Sum
m

ary term
s per docum

ent

avg summary size

Fig. 2. As in previous figure, but using the TREC 10 collection and queries.

ing. We had already discovered that expansion on TREC 9 does not improve
effectiveness (Billerbeck and Zobel, 2004); our results here are, in that light,
unsurprising. The principal observation is that QE based on summaries is still
of similar effectiveness to that based on full documents.

We show only one value for the cutoff threshold, C = 1.0. This leads to
the same effectiveness for similar memory overhead. Summaries and choice of
S and C are further examined in Figures 1 and 2 for newswire and web data
respectively. These show that a wide range of S values (left figure) and C values
(right figure) lead to improved effectiveness, in some cases exceeding that of
standard QE.

6 Conclusions

We have identified the main costs of query expansion and, for each stage of the
query evaluation process, considered options for reducing costs. Guided by pre-
liminary experiments, we explored two options in detail: expansion via reduced-



40 Bodo Billerbeck and Justin Zobel

size collections and expansion via document surrogates. Two forms of surrogates
were considered: query associations, consisting of queries for which each docu-
ment was highly ranked, and tf.idf summaries.

The most successful method was the tf.idf summaries. These are much
smaller than the original collections, yet are able to provide effectiveness close
to that of standard QE. The size reduction and simple representation means
that they can be rapidly processed. Of the two methods for building summaries,
slightly better performance was obtained with those consisting of terms whose
selection value exceeded a global threshold. The key to the success of this method
is that it eliminates several costs: there is no need to fetch documents after the
initial phase of list processing, and selection and extraction of candidate terms
is trivial.

Many of the methods we explored were unsuccessful. Associations can yield
good effectiveness if a log is available, but are expensive to process. Reduced-size
collections yielded no benefits; it is possible that choosing documents on a more
principled basis would lead to different effectiveness outcomes, but the costs
are unlikely to be reduced. Streamlining list processing by carrying accumulator
information from one stage to the next led to a collapse in effectiveness. Our
tf.idf summaries, in contrast, maintain the effectiveness of QE while reducing
time by a factor of three.

Acknowledgements

This research is supported by the Australian Research Council and by the State
Government of Victoria. Thanks to Nick Lester and William Webber from the
SEG group for their help with Lucy. Thanks also to Falk Scholer for letting us
use his pre-built associated queries.

References

V. N. Anh and A. Moffat. Impact transformation: effective and efficient web retrieval.
In Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 3–10. ACM Press, New York, 2002.

P. Bailey, N. Craswell, and D. Hawking. Engineering a multi-purpose test collection for
web retrieval experiments. Information Processing & Management, 39(6):853–871,
2003.

B. Billerbeck, F. Scholer, H. E. Williams, and J. Zobel. Query expansion using associ-
ated queries. In Proc. Int. Conf. on Information and Knowledge Management, pages
2–9. ACM Press, New York, 2003.

B. Billerbeck and J. Zobel. Questioning query expansion: An examination of behaviour
and parameters. In K.-D. Schewe and H. E. Williams, editors, Proc. Australasian
Database Conf., volume 27, pages 69–76. CRPIT, 2004.

C. Carpineto, R. de Mori, G. Romano, and B. Bigi. An information-theoretic approach
to automatic query expansion. ACM Transactions on Information Systems, 19(1):
1–27, 2001.



Techniques for Efficient Query Expansion 41

S. Garcia, H. E. Williams, and A. Cannane. Access-ordered indexes. In V. Estivill-
Castro, editor, Proceedings of the 27th Australasian Computer Science Conference,
volume 26, pages 7–14, Dunedin, New Zealand, January 2004.

S. Gauch and J. Wang. A corpus analysis approach for automatic query expansion. In
Proc. Int. Conf. on Information and Knowledge Management, pages 278–284. ACM
Press, New York, 1997.

J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell. Summarizing text docu-
ments: sentence selection and evaluation metrics. In Proc. ACM-SIGIR Int. Conf.
on Research and Development in Information Retrieval, pages 121–128. ACM Press,
New York, 1999.

D. Harman. Overview of the second Text REtrieval Conference (TREC-2). Information
Processing & Management, 31(3):271–289, 1995.

D. Hawking and S. E. Robertson. On collection size and retrieval effectiveness. Kluwer
International Journal of Information Retrieval, 6(1):99–150, 2003.

K. L. Kwok and M. Chan. Improving two-stage ad-hoc retrieval for short queries.
In Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 250–256. ACM Press, 1998.

A. M. Lam-Adesina and G. J. F. Jones. Applying summarization techniques for term
selection in relevance feedback. In Proc. ACM-SIGIR Int. Conf. on Research and
Development in Information Retrieval, pages 1–9, New Orleans, Louisiana, United
States, 2001. ACM Press, New York.

M. Magennis and C. J. van Rijsbergen. The potential and actual effectiveness of interac-
tive query expansion. In Proc. ACM-SIGIR Int. Conf. on Research and Development
in Information Retrieval, pages 324–332. ACM Press, New York, 1997.

R. Mandala, T. Tokunaga, and H. Tanaka. Combining multiple evidence from dif-
ferent types of thesaurus for query expansion. In Proc. ACM-SIGIR Int. Conf. on
Research and Development in Information Retrieval, pages 191–197, Berkeley, Cali-
fornia, United States, 1999. ACM Press, New York.

M. Mitra, A. Singhal, and C. Buckley. Improving automatic query expansion. In W. B.
Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors, Proc.
ACM-SIGIR Int. Conf. on Research and Development in Information Retrieval,
pages 206–214, Melbourne, Australia, August 1998. ACM Press, New York.

A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM Trans-
actions on Information Systems, 14(4):349–379, October 1996.

Y. Qiu and H.-P. Frei. Concept based query expansion. In Proc. ACM-SIGIR Int. Conf.
on Research and Development in Information Retrieval, pages 160–169. ACM Press,
New York, 1993.

S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In Proc. Text Retrieval
Conf. (TREC), pages 151–161, Gaithersburg, Maryland, 1999. NIST Special Publi-
cation 500-264.

S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau. Okapi at
TREC. In Proc. Text Retrieval Conf. (TREC), pages 21–30, 1992.

J. J. Rocchio. Relevance feedback in information retrieval. In E. Ide and G. Salton,
editors, The Smart Retrieval System — Experiments in Automatic Document Pro-
cessing, pages 313–323. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

I. Ruthven. Re-examining the potential effectiveness of interactive query expansion.
In Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 213–220. ACM Press, New York, 2003.

I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for information
access systems. Knowledge Engineering Review, 18(2):95–145, 2003.



42 Bodo Billerbeck and Justin Zobel

F. Scholer and H. E. Williams. Query association for effective retrieval. In C. Nicholas,
D. Grossman, K. Kalpakis, S. Qureshi, H. van Dissel, and L. Seligman, editors, Proc.
Int. Conf. on Information and Knowledge Management, pages 324–331, McLean,
Virginia, 2002.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes for
fast query evaluation. In Proc. ACM-SIGIR Int. Conf. on Research and Development
in Information Retrieval, pages 222–229. ACM Press, New York, 2002.

K. Sparck-Jones, S. Walker, and S. E. Robertson. A probabilistic model of informa-
tion retrieval: development and comparative experiments. Parts 1&2. Information
Processing & Management, 36(6):779–840, 2000.

A. Spink, D. Wolfram, Major B. J. Jansen, and T. Saracevic. From e-sex to e-commerce:
Web search changes. IEEE Computer, 35(3):107–109, March 2002.

A. Tombros and M. Sanderson. Advantages of query biased summaries in information
retrieval. In Proc. ACM-SIGIR Int. Conf. on Research and Development in Infor-
mation Retrieval, pages 2–10. ACM Press, New York, 1998.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufman, San Francisco, California, United States,
2nd edition, 1999.

J. Xu and W. B. Croft. Improving the effectiveness of information retrieval with local
context analysis. ACM Transactions on Information Systems, 18(1):79–112, 2000.

J. Zobel. How reliable are the results of large-scale information retrieval experiments?
In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors,
Proc. ACM-SIGIR Int. Conf. on Research and Development in Information Re-
trieval, pages 307–314, Melbourne, Australia, August 1998. ACM Press, New York.


	1 Introduction
	2 Background
	3 Query Expansion Practicalities
	4 Methods of Increasing Efficiency for QE
	5 Experiments
	6 Conclusions
	References

