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Abstract

Splay and randomised search trees are self-balancing binary tree structures with little or
no space overhead compared to a standard binary search tree. Both trees are intended for use
in applications where node accesses are skewed, for example in gathering the distinct words
in a large text collection for index construction. We investigate the efficiency of these trees
for such vocabulary accumulation. Surprisingly, unmodified splaying and randomised search
trees are on average around 25% slower than using a standard binary tree. We investigate
heuristics to limit splay tree reorganisation costs and show their effectiveness in practice. In
particular, a periodic rotation scheme improves the speed of splaying by 27%, while other
proposed heuristics are less effective. We also report the performance of efficient bit-wise
hashing and red-black trees for comparison.

1 INTRODUCTION

A key task in constructing an index for a large text collection is gathering the distinct words in
the collection. In this paper we investigate the use of the splay and randomised search trees—
two well-known self-adjusting binary search trees—for managing a large lexicon of words of this
kind. Sleator and Tarjan [20], in their original description of the splay tree, propose heuristics for
reducing the costs of self-adjustment and note “that the practical efficiency of various splaying and
[heuristic] semisplaying methods remains to be determined”. One motivation for our work is to
augment theoretical analyses [1] by experimenting with efficiency heuristics for index construction
in large text databases. In addition, we seek to verify whether it is true that “splay trees are as
efficient as balanced trees when total running time is the measure of interest” and whether, as
claimed, “they can be much more efficient if the usage pattern is skewed” [20].

Splay and randomised search trees can be used for fast searching and insertion in index con-
struction for large text databases. In this task, a sequence of word occurrences is extracted
from the text to be indexed. The number of word occurrences greatly exceeds the number of
distinct words, but new words continue to be seen—at a rate of perhaps one in a thousand oc-
currences [25]—even after many gigabytes of text have been processed. The distribution of words
is highly skew: in typical English text around one word in twelve is “the”, and around one word
occurrence in five is one of “the”, “and”, “or”, “of”, or “a”. In a large text collection, the majority
of distinct words (which are typically typographic errors, nonsense strings, or unusual strings such
as chemical names or fragments of genomes) occur once only.

Each word occurrence in the collection is searched for in the tree structure. If the word is new, a
node is added to the tree to contain it; otherwise the information about the word is updated (since
the purpose of gathering distinct words is to collect statistics about them). In a standard splay
tree, a new or accessed node is then splayed to the root of the tree. In a randomised search tree, a
node may be rotated towards the root one or more times; this depends on a randomly-generated
priority associated with the node, and the relative priority of nodes above the new node.
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Index construction might be considered an ideal application of these trees, since the amortised
time cost over the data set is important, not the cost of an individual search or insertion. Amortised
structures are designed to be usually not much worse than the average performance of a more rigid
structure and, in applications where the the access patterns are not uniform, they are potentially
more efficient. Indeed, efficient search systems, such as the mg text database [24] and the cafe
indexed genomic search system [22], use splay trees for index construction.

The splay tree is also memory-efficient compared to other structures that might be used for
index construction. Other structures—such as the B-tree [3, 20]—have significantly more internal
structures to maintain rigid balance. The randomised search tree is less memory efficient as a
priority value is stored in each node. However, heuristic approaches that do not store priorities
have been proposed.

We report experiments in this paper with unmodified top-down splaying, existing and novel
bottom-up heuristic splaying, randomised search trees, and compare these to an unbalanced binary
tree, a red-black tree, and hashing as a method for creating and storing large lexicons. (We use
BST to denote a standard, unbalanced binary search tree throughout this paper.) We have found
that unmodified splaying and randomised search trees are typically slower than using a BST and,
moreover, randomised search trees in particular are less space-efficient. These results are despite
the strongly skewed distribution of words. Moreover, we have found that heuristics proposed by
Sleator and Tarjan [20] typically do not work better than an unmodified splay tree. However, a
simple, novel periodic rotation heuristic works well, reducing the vocabulary accumulation time
on a large collection by around 27% over an unmodified splay tree. While this heuristic means
that the worst case of the modified splay tree is little better than that of a BST, the worst case is
much less likely to arise and we do not believe that it would be a significant problem in practice.

We have compared our heuristic splay tree to hashing with a fast, uniform hash function [16].
The hash table is more than 18% faster than the splay tree for inserting data. However, in some
cases, trees may be preferred to hash tables for managing collections of words.

2 SPLAY TREES

Splay trees are binary search trees that are incrementally reorganised to avoid the worst-case linear
search and insertion time of a BST [20]. The storage costs of a standard splay tree are the same
as BSTs; no counters, pointers, or balance information need be stored.

Splay trees do not require that a tree be balanced, but rather that each access reorganises the
tree to make the tree, on average, more balanced. This process of reorganisation, or splaying,
brings each accessed node to the root of the tree, roughly halving the depth of all nodes along the
access path. The rationale is that, for data with a skew distribution, some nodes will be accessed
more often than others. With incremental reorganisation, such nodes will cluster towards the root
of the tree, reducing the traversal costs of searching the tree for common nodes; this is a similar
principle to move-to-front reorganisation of linked lists.

Splaying is implemented using rotations . The majority of rotations performed are one of two
kinds of double rotation, a zig-zag or zig-zig. Rotations are applied to a node until it is the root of
the tree. This reorganisation heuristic guarantees for m accesses that the cost of accessing a tree
of n nodes is O(m log n) in time if there are at least as many accesses as there are nodes in the
tree, that is, m ≥ n. However, the access time for a single access in a splay tree may be O(n) in
time. Thus splay trees are an amortised structure: the overall cost of accessing nodes is reduced,
but not necessarily the cost of accessing an individual node.

Rotation works as follows. A zig-zag rotation is used to move a node two levels towards the
root in two cases: when a node is the left child of its parent, and its parent is the right child of
its grandparent; and when a node is the right child of its parent, and its parent is the left child
of its grandparent. An example of zig-zag rotation is shown in Figure 1, where a node C with a
parent P and a grandparent G are zig-zagged.

A zig-zig rotation is used in the other two possible grandparent, parent, and child arrangements:
where a node is the left child of its parent, and the parent is the left child of the grandparent;
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Figure 1: Zig-zag rotation.
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Figure 2: Zig-zig rotation.
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Figure 3: Single rotation.

and where a node is right child of the parent, and the parent is the right child of the grandparent.
An example of zig-zig rotation is shown in Figure 2, where a node C with a parent P and a
grandparent G are zig-zigged.

The final class of rotation is where there is no grandparent, that is, where the node to be
rotated is the child of the root. The process of single rotation is shown in Figure 3.

Bottom-up splaying is an intuitive method of applying rotations. In bottom-up splaying, the
tree is first searched. After finding a matching node—or the point of insertion for a new value—
rotations are repeatedly applied to the node to bring it to the root of the tree. In the case of a search
where a value is not found, the last non-null node in the tree is splayed. In fast implementations,
an additional pointer from a node to its parent is stored to permit reorganisation without storing
the search path. This pointer allows significant savings, since splay trees require significant local
adjustments both during construction and—in contrast to balanced structures—with each access.
We report experiments with bottom-up splaying in Section 6; heuristic implementations of bottom-
up splaying are described in Section 4.

Sleator and Tarjan also describe a top-down splaying scheme that requires only one tree traver-
sal to both search and reorganise. Top-down splaying works as follows. First, two empty trees,
a left and right tree, are initialised. Second, the tree is traversed two nodes at a time, breaking
the links between the nodes. Third, with each two-node traversal, any subtree known to be less
than the current node is added to the bottom-right of the left tree, and any subtree known to be
greater than the current node is added to the bottom-left of the right tree. Last, if the two nodes
are traversed left-left or right-right, then a rotation is performed before adding the subtree to the
left or right trees. Details are provided by Sleator and Tarjan [20]; we report experiments with
top-down splaying in Section 6.

Splaying has found application in areas where amortised performance is important, including
in data compression [7, 10], sorting [14], and index construction [22, 24]. In addition, extended
n-ary splay trees and variants have been proposed and compared to static n-ary trees, with similar
amortised performance [12, 19]. We explore in Section 4 heuristics for fast splaying for applications
that manage large vocabularies.

3 RANDOMISED SEARCH TREES

Randomised search trees [18] are another variation of binary search trees that employ rotation
heuristics to achieve expected bounds comparable to the amortised bounds of the splay tree. (We
refer to randomised search trees as RTs in the rest of this paper.) RTs store a weight or priority in
each node that—while having additional storage cost—reduces significantly the number of required
rotations to reorganise the tree compared to a splay tree. Much as in a splay tree, rotations are
used to bring more frequently accessed nodes nearer the root of the tree and, therefore, RTs are
a candidate structure for accumulating large vocabularies. We explain how priorities are used to
control rotations in this section.
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Figure 4: Insertion of node E with a priority 5 into a treap. The treap is shown on the left
immediately after the insertion of E, where the keys are in-order correctly but the heap property
is violated. The treap shown on the right is after reorganisation so that both the heap property
and the key ordering property are correct.

RTs are based on so-called treaps, a term coined to convey both the tree and heap nature of
the structure. The underlying structure of the treap is a BST, with the usual property that the
nodes are in-order with respect to the keys; therefore, when used for vocabulary management, an
in-order traversal produces a sorted list of words in the same way as a BST or splay tree. However,
the treap also maintains heap order so that the priority value stored in a node is always less than
or equal to its parent. If the heap priority is violated by, for example, inserting a new node with
a high priority into the tree, then single rotations are applied to the new node until a parent is
assigned that has a higher priority (or the new node becomes the root of the tree).

An example treap is shown in Figure 4. The treap is shown in the left of the figure immediately
after the insertion of a new value “E” with a priority of 5. As in a BST, the node is first inserted
as a leaf node so that the ordering of keys is maintained. However, as the priority of the new node
is 5 and this is greater than the parent node “D” priority of 3, the tree must be reorganised to
maintain the heap ordering using a single rotation. The treap after application of the rotation is
shown in the right of the figure, where the heap property is now regained without violating the
tree property.

An RT is a treap where the priorities are independently assigned, identically distributed random
values1. Random priorities are assigned when a node is inserted, and a new priority is also
generated each time a node is accessed as the result of a successful search. When searching, if the
new priority generated is greater than the current priority of the node, the new priority is assigned
to the node and the tree rotated so that the treap property is maintained.

If a node is accessed frequently, its priority will be the maximum of the values generated at
each access. Therefore, the expected depth of a node in the RT will be of O(log(1/f)) where f
is the access frequency of the node. In other words, the depth of a node in the RT is inversely
proportional to the number of accesses of that node, ascribing to the structure the self-adjusting
property needed for accumulation of skewed data sets.

Several heuristics have been proposed [13, 18] to reduce time or space bounds of RTs. For
example, parent pointers are proposed to reduce reorganisation costs and permit implementing
an efficient non-recursive bottom-up algorithm. For space reduction, three heuristics to avoid
explicitly storing priorities are proposed: first, it is suggested a hash function be used to generate
a pseudo-random number using the node key as an input for generating a priority as required;
second, nodes can be stored in an additional pointer array in a random order and the array position
used as the priority; and, last, the node priority can be assigned as a function of the size of the

1Ideally, the random values should also be continuous, that is, there should be no nodes with identical values.
However, in practice, the expected performance is not affected if only a few nodes contain identical values.
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node’s subtree. We do not discuss space heuristics in detail here and have not tested space-efficient
RTs; however, we would expect that the space saving would be offset by the additional time cost
of generating priorities.

We report experiments with RTs in Section 6.

4 HEURISTICS FOR FAST SPLAYING

Sleator and Tarjan [20] propose heuristics for splaying that are intended to reduce the restructuring
required, while maintaining the amortised cost of accesses. We explore one class of these heuristics,
which Sleator and Tarjan refer to as semi-adjusting, and we explore a novel class of heuristics which
we call limit-splaying. These heuristics involve splaying only sometimes when a search or insertion
occurs. Our heuristics can be applied easily to bottom-up splaying; it is unclear how they might
be applied to top-down schemes.

The first limit-splaying technique is to splay after each n insertions or accesses, for a fixed value
n. We call this heuristic periodic-rotation. The rationale of this approach is to reduce the
total rotation cost, and in particular unnecessary churning of nodes near the root of the tree, while
approximately maintaining the clustering of frequently accessed nodes near the root. Without this
heuristic, the tree is splayed on each access; with the heuristic each node in a large collection will
be splayed on average n times less. For small values of n, periodic-rotation approximates
splaying, while for large values of n, periodic-rotation approximates a BST. A similar variant,
where rotations are performed when a probability is exceeded was recently proposed by Furer [5];
this method has not been tested in practice.

The second heuristic, a semi-adjusting scheme proposed by Sleator and Tarjan, is to splay until
a threshold m is reached, and then to stop splaying. We call this stopsplay. Possible choices of a
threshold m include until a fixed number of words are processed, a percentage of the collection has
been inserted, or a threshold is reached and the tree is approximately balanced; fast measurement
of balance in incomplete trees is a difficult problem that we do not discuss here. The rationale is
again to reduce the overall cost of rotation through ceasing rotation when the tree has frequently
accessed nodes close to the root. For small values of m, stopsplay should approximate a BST.
For large values of m, where splaying is maintained for a significant fraction of the insertions,
stopsplay should closely approximate splaying. The drawbacks of this approach—as noted by
Sleator and Tarjan [20]—are that splaying may be stopped when the tree is inefficiently organised
or, after stopping splaying, the access frequencies to words may change rendering the tree an
inefficient structure.

The third heuristic is a limit-splaying heuristic to maintain counters of node accesses for each
node and to splay a node when a threshold l is exceeded; this approach is related to RTs, but
counters are used instead of priorities, and nodes are splayed to the root of the tree on each access.
There are many possible choices for threshold. For example, the threshold may be a fixed value l,
or relative to the total frequency of words processed in the collection. Additionally, after splaying,
the node may be marked for splaying on each access, or the counter l reset. We call this scheme
count.

As in the previous schemes, the aim of count is to reduce the overall cost of rotation while
maintaining clustering of frequently accessed nodes near the root. The difference is that only
frequently-accessed nodes are brought to the root. For low values of l, the scheme approximates
splaying; for large values of l the scheme approximates a BST. A disadvantage of this scheme is
the necessity of storing a counter for each node, a cost that depends on the maximum value to be
stored; a simple space-efficient variant is to store a single-byte counter and splay when this value
reaches 256 and reset to 0.

A second, distinct class of bottom-up splaying heuristic is discussed in detail by Sleator and
Tarjan [20] and more recently by Furer [5]. In this variant—which is referred to as semi-splaying—
an accessed node is not restructured so that it becomes the root but, rather, is moved only part of
the way towards the root. We have experimented with variants of semi-splaying, such as splaying
half-way to the root, semi-splaying one level, and with metrics based on frequency. In all cases,
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we have found that semi-splaying performs worse than all other variants described in this paper,
including RTs. For this reason, we do not report detailed results here.

The great strength of splay trees, in contrast to BSTs, is their worst case. For this application,
in the worst case the average access cost is logarithmic in the number of distinct words, regardless
of the characteristics of the text. In contrast, in BSTs the average cost of individual accesses can
be linear in the number of distinct words, a problem that can easily arise in practice, if a text
collection commences with a sorted list of words for example.

None of the heuristics described above preserve the good worst-case characteristics of standard
splay trees. With the periodic-rotation scheme, for example, if every nth word occurrence is
a new word that is greater lexicographically than all previous words, and if all other occurrences
are words that are less lexicographically than all previous words, search costs will be close to the
worst case of a BST. However, we would not expect such patterns to arise in practice. Even in
cases where such patterns were observed over a region of the text, the impact on total costs would
only be serious if the region were very extensive.

5 OTHER TECHNIQUES

In our experiments, we compare RTs, splay trees, and heuristic splaying approaches to other
candidate data structures. Specifically, we have implemented a red-black tree, an efficient bit-wise
hash table, and a BST. We discuss these approaches briefly here. There are, of course, many other
structures that could be used for this task, such as other balanced tree structures, or skiplists.

Skiplists would be unlikely to be efficient in this application, because as noted by Pugh [15]
they require more key comparisons than do splay trees. Additionally, balanced tree structures are
not the focus of this work and, as such, we have implemented only red-black trees as a comparison
point. As we discuss later in Section 6, we would not expect balanced trees to be well suited to
accumulating skewed data sets; balanced trees are as likely to have rare words stored in the leaves
as common words, and no adaptation to the locality or probability of occurrence of words occurs.

Red-black trees [2, 8] are a variation on BSTs, with an additional bit stored in each node to
“colour” the node either red or black. The significant difference is that the tree is balanced so
that the depth of a node at the leaf is at most 2 logn for a tree of n nodes. Individual access time
to nodes is guaranteed to be O(log n) by rotating nodes on insertion so that three properties are
maintained:

1. Every path from the root to a leaf has the same number of black nodes

2. No red parent node has a red child

3. The root node is black

All tree maintenance is a constant overhead: there are at most two rotations per insertion, and m
key insertions require at most m changes of node colour. Moreover, no rotations occur as a result
of searches.

The hash table we have implemented is efficient for in-memory management of vocabularies.
The hash table is an array of a fixed number of slots, with chained pointers from each array slot
to a linked-list of nodes containing the keys stored in the slot (and a pointer to the next node).
Words are allocated to slots (and then stored in the linked lists chained from the array slots) by
applying a hash function to the word.

The choice of hash function is crucial to the performance of the hashing scheme. We use an
efficient “bit-wise” hashing function that behaves much like a traditional “radix” hash function [17]
but avoids the use of computationally-expensive modulo and multiplication operations. The bit-
wise scheme uses only shift and exclusive-or operations [16].

Notionally hashing—like BSTs—has a worst case of linear access cost on each search, should
each word hash to the same slot. However, this worst case is absurdly improbable [6]; for chained
tables, the longest chains are at worst a few times greater than the average. For example, the
likely worst case in practice of one million strings hashed into a chained hash table of one million
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slots with a uniform hash function is a chain of around 10 nodes [16], with an average search cost
of around 1.3 comparisons.

We would not expect unbalanced BSTs to be generally suited to accumulating vocabularies.
The vocabulary of a text collection can vary, for example if the language of the documents changes.
In such cases, in some documents none of the words searched for would be close to the root. In
contrast, self-adjusting trees should rapidly adjust to the new vocabulary; indeed, most individual
documents to some extent have an idiosyncratic vocabulary, such as the places or names referred
to in a particular news item, and a self-adjusting tree should adjust to such local properties. As we
discuss in the next section, our test data includes documents in several languages, predominantly
English but with many documents in German, and thus this problem is a factor in the performance
of the BST.

However, in the case of text collections all in one language, the BST can be expected to perform
reasonably well. Statistically, common words such as “the” or “of” are likely to occur early in the
collection, and thus will be high in the tree. Indeed, for this reason techniques such as red-black
rebalancing are likely to be ineffective, since their average effect is to move common words down
the tree.

The choice of string comparison function was another important factor in the efficiency of all
the schemes tested in this paper. The standard strcmp() string-comparison function provided
with both Solaris and Linux proved to be highly inefficient; replacing it with a simple iterative
function with the same specification as standard strcmp() yielded, for example, a reduction in
total time of around 20% for periodic-rotation-based splaying2

6 RESULTS

We tested the data structures described by applying them to a collection of around 1 Gb of
world-wide web text data derived from the TREC [9] Very Large Collection. TREC is an ongoing
international collaborative experiment in information retrieval sponsored by NIST and ARPA. In
all, the collection contains 171,397,973 word occurrences3 of 1,973,187 distinct words in 616,944
documents, with an average of 3.2 new words per document. This collection is typical of a
collection managed by a text database system: it shows the well-known Zipfian distribution of
word frequencies [23]; it has occurrence locality [24], where many words occur frequently in small
regions of the data; and new words appear with an average frequency of around three per document.

All experiments are carried out on an Intel Pentium II 266 MHz dual processor machine with
320 Mb of main-memory running the Linux operating system under light load, where the machine
is otherwise largely idle. Reported times are for the complete process of reading and parsing text
and other housework, as well as processing of the data structures themselves. The time required
for the housework alone is approximately 264 seconds.

6.1 SPLAY TREE HEURISTICS

Figure 5 shows the results of applying our periodic-rotation scheme to the TREC data. The
effect of using periodic-rotation is twofold; the number of rotations performed drops dramat-
ically as rotation frequency n is increased, while the number of string comparisons slowly rises.
For small values of n the combined effect is to greatly reduce costs. For example, splaying after
each 11th tree traversal can reduce the costs to 80% of efficiently-implemented bottom-up splay-
ing. This improvement in speed can be attributed to the around 90% reduction in total rotations

2Standard strcmp() has one assignment, one pointer subtraction, one inequality test, and a pointer increment per
character comparison. Our implementation has one equality test, one inequality test, and two pointer increments per
character comparison, and one pointer subtraction per string. Our scheme reduces pointer subtractions significantly
and saves an assignment per character (this saving is significant compared to the per-character cost of an extra
pointer increment and equality test).

3Non-words, including punctuation, special characters, SGML and HTML markup, sequences of ASCII char-
acters containing more than two digits or beginning with a digit, and sequences of ASCII characters containing
special characters were removed.
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Figure 5: Rotation heuristic for splaying. In this approach, a node found or inserted is splayed
after each n tree accesses for a fixed value of n. Rotation each n = 11 times or more reduces the
time cost to around 80% of unmodified bottom-up splaying.

with only a moderate 17% increase in string comparisons. This improved speed with periodic-
rotation remains roughly consistent for all values greater than n = 11; for high values of n total
rotations are reduced further, a benefit balanced by the cost of more string comparisons as the
tree becomes less balanced and has poorer adaptation to local changes in the frequency of words.

Figure 6 shows the performance of the stopsplay scheme, which is less effective than periodic-
rotation. In this approach, we splay on each access as normal until m documents have been
processed, and then cease splaying. In this figure, the horizontal axis is the value of m, the vertical
is the total time to process the full collection for that value of m. The rotation cost is depen-
dent on the threshold m and, for low values of m, the rotation cost is insignificant. However,
the time cost of processing the collection closely follows the total string comparison cost, which
varies significantly depending on when splaying is stopped. By using a fixed value of m splaying
may or may not be stopped when common words are clustered near the root; as can be seen,
similar values of m lead to highly different total processing times. For some small values of m,
stopsplay works slightly better than a BST but for all values of m greater than around 12% of
the collection size stopsplay is worse. The stopsplay scheme might be improved by stopping
and starting splaying depending on two thresholds, or measuring completeness and balance of the
tree. However, even with modifications, we believe that it is unlikely that stopsplay will be
better than the periodic-rotation scheme.

As shown in Figure 7, the count heuristic is unsuccessful in reducing the costs below that of
a BST. To implement count, we have added a counter to each node in the tree, where a node
is splayed when the count exceeds a threshold l. As in other schemes, a reduction in rotation
costs and an increase in string matching costs are the result of less splaying. The count scheme
does not work well because new words are inserted as new leaf nodes and are not splayed until
the threshold l is exceeded; this prevents the splay tree from fast adaptation to changes in word
occurrence frequencies where, for example, a new word will appear frequently only for a few
documents.

However, we have found in preliminary experiments that variations of count that compare
counts as a precondition to rotation—much like the preconditions using priorities in RTs—yield
some improvements in performance. We have observed similar improvements through combina-
tions with the periodic-rotation approach. We plan to experiment further with these composite
approaches. A drawback of this class of approaches are the small costs of maintaining and testing
counters.
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Table 1: Results with top-down and bottom-up splaying, heuristic bottom-up splaying, a red-black
tree, an RT, a BST, and a hash table on five 1 Gb web document collections. The heuristic splaying
scheme used is the best available scheme, that is, periodic-rotation after every 11th insertion. A
paired t-test at the 5% significance level confirms the relative ordering of the schemes from slowest
(top-down splaying) to fastest (hashing).

Heuristic Mean Time Mean Rotations
Seconds (S.D.) (S.D.)

Top-down splaying 1118.8 (52.6) 625× 106 (29× 106)
Bottom-up splaying 1003.3 (45.1) 1, 841× 106 (84× 106)
Randomised Search Tree (RT) 976.4 (33.9) 59× 106 (3× 106)
Red-black tree 843.0 (39.6) 1× 106 (0× 106)
Binary Search Tree (BST) 808.2 (35.8) —
Periodic-rotation 790.0 (35.8) 200× 106 (8× 106)
Hashing 669.4 (42.2) —

6.2 COMPARISON OF STRUCTURES

11cm
Overall results comparing self-adjusting structures to a BST, red-black tree, and hashing are

shown in Table 1. In these experiments, we present average results with five different text col-
lections of around 1 Gb in size derived from the TREC [9] Very Large Collection web data. The
hash table is moderate in size, containing 220,000 slots. All self-adjusting trees tested use parent
pointers for fast tree reorganisation, and all structures use our implementation of strcmp(). We
use the C library function rand() to generate priorities in the RT4. For our results, a paired t-test
supports at the 5% level the hypothesis that the differences in speed shown in the table for the
different schemes are statistically significant.

The results support the conclusion that BSTs are faster than standard splaying for storing
large lexicons. The BST has performed surprisingly well, despite the presence of a significant
volume of non-English text in the test data. It appears that common words are indeed stored near
the root, by virtue of their occurrence early in the test data, and the cost of searching deeper in
the tree, on average, than the splay tree is more than offset by the lack of rotations. Each rotation
(zig-zig or zig-zag) requires about six comparisons and ten assignments, a significant cost.

The results also show that RTs are 3% faster than bottom-up splaying and 21% slower than
a BST. Relative to bottom-up splaying, the RT rotates 30 times less often but uses computa-
tionally expensive random-number generation. Additionally, because splaying reorganises a tree
significantly—as opposed to no reorganisation or some local reorganisation—splaying is likely to
make less effective use of the CPU cache for reading and requires more writes to main-memory.

The results also illustrate why balanced-tree schemes such as red-black trees are less efficient for
this application. For periodic-rotation with n = 11, the average number of string comparisons
per access is 14.4. However, there are almost two million distinct strings, and thus in a balanced
red-black tree (where common strings have the same likelihood as other strings of being held at
the leaves) the average number of string comparisons is over 20.

A surprising result is that in practice—and in contrast to the analysis of Sleator and Tarjan [20]
and popularly held wisdom [21]—we have found top-down splaying is slower than bottom-up
despite the smaller number of rotations in the former. While top-down splaying has at most one
rotation per accessed node and bottom-up splaying has exactly two, the slowness of top-down
splaying is due to the reorganisation costs associated with pointer reassignment. In addition,
despite the costs in bottom-up splaying of the additional tree traversal required per reorganisation,
parent-pointers reduce pointer assignment costs significantly. Interestingly, possibly because of

4While other random-number generators may be more efficient and generate values that are closer to ran-
dom [11], we have found empirically that other random-number generators do not markedly affect the overall speed
of vocabulary accumulation.
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our use of parent pointers, our results are in contrast to a previously-reported empirical study by
Pugh [15] that found that bottom-up splaying was less efficient than top-down splaying. Another
contrast was that Pugh’s experiments used integer keys. If strings are used as keys, the cost of
key comparison is a much greater component of total costs, outweighing savings that might be
available.

Our results are also in contrast to those of Gopal and Bell [4], whose comparative study of
splay trees and other tree structures found that that bottom-up splay trees are many times slower
than BSTs and that top-down splaying is faster than bottom-up splaying. These results, however,
were determined in a very different test environment. The data set itself was small enough that
the whole 48 Kb tree could fit into the cache of a typical CPU, and was the case in Pugh’s work
based on integer keys. Another crucial difference was that real data does not behave like the
randomly-generated data used by Gopal and Bell; for example, in real data, the occurrences of
search terms, even real search terms, cluster. Their results are not applicable to large data sets or
to sets of string data.

Of the heuristics we have explored for improving bottom-up splaying, the only one that is con-
sistently successful is the periodic-rotation scheme: it is more than 27% faster than efficiently-
implemented bottom-up splaying but just 3% faster than a BST. However, the worst-case of
an unbalanced BST is a practical possibility, and thus for some applications splaying is clearly
preferable.

Hashing is the fastest of the schemes we tested for index construction, and is more than 15%
faster than periodic rotation; the improvement in speed with hashing is due to the reduction in
the number of string comparisons, as well as due to use of the efficient shift-based hash function.
We have recently investigated variations of hashing for accumulating vocabularies and reported
these results elsewhere [26]. With other string hashing functions, all versions of trees were faster.
However, a disadvantage of hashing is that sorting of the vocabulary is required to support, for
example, range or prefix queries; in applications where sorted access is required, our periodic-
rotation scheme is preferable.

7 Conclusions

We have investigated self-adjusting trees for storing large lexicons in text database index construc-
tion. In experiments on large text collections we have shown that a heuristic splay tree—where the
splay tree is splayed periodically rather than on each access—is on average around 27% faster than
efficient bottom-up splaying. Over five separate text collections we have found several surprising
results: first, top-down splaying is slower than bottom-up splaying in practice; second, bottom-up
splaying is around as fast as a self-adjusting randomised tree (RT), but in general around 25%
slower than a BST; and, last, the most efficient heuristic splaying scheme is only 3% faster than
a BST.

Despite the skew distribution of terms in our data sets, in contrast to the conjecture of Sleator
and Tarjan [20] we have not found that “[standard] splay trees are as efficient on any sufficiently
long sequence of accesses as any form of dynamically updated search tree”, but that they are
rather less efficient than an unbalanced BST. In addition, we have shown that hashing is faster
than efficient trees for index construction, but only with an appropriate choice of hash function.

We conclude that for index construction either our periodic rotation splay tree or hashing
should be used. While a BST is nearly as efficient as heuristic splaying, the possibility of worst-
case performance means that it should not be used; such worst-case performance is unlikely with
heuristic splaying.
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