
Guidelines for Presentation and Comparison of Indexing Techniques

Justin Zobel
Dept. of Computer Science, RMIT, GPO Box 2476V, Melbourne 3001, Australia

Email: jz@cs.rmit.edu.au

Alistair Moffat
Dept. of Computer Science, The University of Melbourne, Parkville 3052, Australia

Email: alistair@cs.mu.oz.au

Kotagiri Ramamohanarao
Dept. of Computer Science, The University of Melbourne, Parkville 3052, Australia

Email: rao@cs.mu.oz.au

Abstract

Descriptions of new indexing techniques are a com-
mon outcome of database research, but these descrip-
tions are sometimes marred by poor methodology and
a lack of comparison to other schemes. In this paper
we describe a framework for presentation and com-
parison of indexing schemes that we believe sets a
minimum standard for development and dissemina-
tion of research results in this area.

1 Introduction

Papers describing new indexing techniques are a reg-
ular feature of database journals and conferences. As
referees of indexing papers we have, for a variety of
reasons, found many difficult to evaluate. We were
therefore motivated to construct a clear framework
for development, presentation, and comparison of in-
dexing schemes, to help guide future work in the area.

There are several specific areas of failing that we
have observed in papers submitted to us for evalu-
ation. For a technique to be of interest the reader
must learn how it compares to other leading tech-
niques; but such comparison is often lacking. Where
comparisons are made they are rarely adequate: im-
portant criteria are frequently disregarded, and some
comparisons are biased in favour of the new method.
Another failing is the use of simplifying assumptions,
often to allow tractable analysis, that are unrealistic
and distort the results.

Lack of suitable comparison is perhaps the most
serious of these failings. We outline the criteria on
which we believe comparison should be made, and
discuss the four principal methods by which index-
ing techniques can be compared with regard to these

criteria: direct argument, mathematical modelling,
simulation, and experimentation.

The methodology we suggest was in part driven by
our desire to undertake a formal comparison of sig-
nature files and inverted files for text indexing.1 In
that work we applied the guidelines described here to
one particular problem; but felt the guidelines them-
selves to be interesting enough to warrant separate
description.

Criteria by which indexing techniques should be
compared are discussed in Section 2. It is our hope
that authors and referees of indexing papers will use
this section as a checklist—and that any omission of
evaluation criteria be justified. The four methodolo-
gies for comparison are described in Section 3. Some
of the pitfalls of comparison are discussed in Sec-
tion 4. Conclusions are presented in Section 5.

2 Criteria for comparison

An index is a data structure that identifies the loca-
tions at which indexed values occur. In the context
of a database, an index identifies which records con-
tain which values. Each kind of index is associated
with query evaluation algorithms that access this in-
formation, and update algorithms that maintain it.
When the utility of an index is being evaluated it is
not just the data structure that is being considered,
but the structure in conjunction with the necessary
algorithms.

There are many criteria by which indexing tech-
niques can be compared. We need at a minimum

1J. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted
files versus signature files for text indexing”, Technical Report
TR-95–5, Collaborative Information Technology Research In-
stitute, Melbourne, Australia, 1995.



to consider overall speed, space requirements, CPU
time, memory requirements, measures of disk traffic
such as numbers of seeks and volume of data trans-
ferred, and ease of index construction. In a dynamic
system we should also consider index maintenance in
the presence of addition, modification, and deletion
of records; and implications for concurrency, trans-
actions, and recoverability. Also of interest for both
static and dynamic databases are applicability, exten-
sibility, and scaleability. All of these considerations
will be in the context of assumptions made about the
properties of the data and queries.

Assumptions To make a contribution to the study
of indexing, it is not sufficient to simply describe a
new indexing technique. It is also necessary to pro-
vide a demonstration of the value of the method, and
place it in the context of other established meth-
ods. This demonstration will be based on several
constraints and assumptions: the class of data, the
class of queries, characteristics of the application—
whether updates must be online, for example—and
characteristics of the supporting hardware. For ex-
ample, it is remarkable how many papers on indexing
do not include a description of the class of queries to
be supported.

Readers will judge the success of a new technique
according to its performance on the basis of the stated
assumptions—if the assumptions are perceived to be
flawed, the demonstration will not be regarded as
valid. It is therefore necessary to establish a convinc-
ing basis for the demonstration. Assumptions should
not only be claimed to be reasonable, they should
be argued for, and, where possible, demonstrated as
being reasonable. They should not be selected or de-
signed to favour the indexing technique being demon-
strated. If the assumptions are questionable, then so
too will the results be questionable.

For example, there needs to be a clear argument
that the class of test queries is in some way represen-
tative. Although real data is often available, sources
of real queries are less common—and may simply not
exist for new applications—so of necessity test queries
are often artificial. But the onus is on the author to
persuade the reader that test queries are realistic.

Similarly, assumptions about hardware should cor-
respond to current technology or likely future im-
provements. The performance of the hardware should
be related to well-known benchmarks, to allow com-
parison with familiar systems and to convey the im-
pression that the technique will be of value on prob-
able hardware—rather than, as we saw argued in one
case, on a machine with limited memory but massive
arrays of parallel disks.

Applicability Different indexing schemes support
different classes of queries; contrast for example in-
verted files with quad trees. The functionality of an
index should always be considered in any comparison.

No indexing scheme is all-powerful. For even sim-
ple databases (for example, relations of numerical
data) there are classes of query that are difficult to
support via an index, such as queries to fetch records
where one attribute value is a function of another at-
tribute value. In these cases the only option is to scan
the database, and the index is irrelevant.

Extensibility The usefulness of an indexing tech-
nique will be limited by the range of query types it
can support, and by the degree to which it can be ex-
tended to support further query types. An indexing
scheme that allows further forms of query, or which
can be modified to provide additional functionality,
is of more value than an indexing scheme that is oth-
erwise equivalent in power, or possibly even better in
some respects, but cannot be so extended.

Scaleability Given that the volume of disk space
available for a given cost is rapidly increasing, and
that databases are growing correspondingly, index-
ing techniques need to be able to scale up. To ex-
amine scaling it is probably most helpful to consider
both average costs as well as best and worst cases.
An asymptotic analysis may be interesting—readers
should not only learn what might happen with twice
as much data as experimented with, but should learn
what might happen with twenty or one hundred times
as much data.

Scaling can change relative performance of compo-
nents of an algorithm, particularly algorithms that
utilise disk. Having larger datasets can reduce the
chance of sequential seeks to the same block or cylin-
der; can increase data fetch costs, even relative to
seek costs (because the former are typically linear in
database size); and can even affect the proportion of
records that are answers.

Query evaluation speed Perhaps the single cru-
cial test of an indexing scheme is its ability to identify
answers to queries in reasonable time. Index speed
can only be discussed in the context of a class of
queries—specifying a query class and a method of
evaluation for those queries is how the performance
of an index is measured.

Speed is not always an easy quantity to measure or
estimate, since it depends on many parameters: CPU
speed, disk capabilities, system load, buffer space
available, and so on. Nonetheless some absolute in-
dication of speed should be part of the description of



any new indexing scheme, and percentage improve-
ments need an absolute reference point. If possible
speed should be described in terms of the perfor-
mance of some commonly available hardware; and if
not, some thumbnail sketch of the hardware in terms
of clock speed, disk access time, and so on, should be
given. Thus a query might be described as “typically
evaluated, for our test data, in around one second
on a lightly loaded Sun SPARC 10 Model 512”, and
preferably even more detail should be supplied.

Speeds that are estimated based upon a mathe-
matical model of computation, or extrapolated from
other experiments, should be clearly identified as
such; the reader should be able to know immediately
whether presented results are the result of actual ex-
periments or of some form of simulation.

When measuring speed in an experiment, tests
should always have a “cold start”—that is, execute
as if previous tests have not loaded crucial data into
system caches. Iteration of experiments is essential to
determining of average times, but buffers and caches
should be cleared between runs.

Disk space Measuring the disk space consumed by
an indexing scheme is straightforward, but it is im-
portant to be careful about what is included and what
is excluded. For example, the cost of address ta-
bles (to convert record identifiers to record addresses)
should usually be included when describing schemes
in which they are required, because there are schemes
that do not require address tables; and items held
in memory during query processing should also be
counted if they must be stored on disk when the
database is not active.

CPU time CPU time can be traded against mem-
ory, disk space, and disk accesses, and so needs to
be considered in conjunction with these properties.
For example, memory space and disk traffic can be
reduced if data is stored compressed, but CPU time
may be increased because of the cost of decompres-
sion. In many applications CPU time is insignifi-
cant compared to other costs and can therefore be
regarded as negligible, but it should not be ignored
altogether: there needs to be some evidence that it
is negligible. In some cases it may also be helpful to
consider the asymptotic complexity of the processes
involved.

Memory requirements Memory requirements
are a highly fluid quantity, because they can often
be traded directly against disk traffic. The most con-
structive approach is to indicate how memory can be

used by an indexing scheme, and the impact of mem-
ory use on other factors.

At one extreme, an entire index can be held in
memory. For current hardware, this suggestion is
only slightly outrageous: a typical machine has 10
to 1,000 times more disk than memory, and for some
indexing techniques the index may occupy only a few
percent of the space required for the data. Assum-
ing, however, that this is not the case, memory can
be used for search structures and for buffers, both of
which can allow big reductions in query evaluation
time and update complexity.

Disk traffic Disk costs have two components, the
time to fetch the first bit of requested data (seek time)
and the time required to transmit the requested data
(transfer rate). Transfer rates are more or less stable
but seek times are highly variable, as they depend on
whether the disk head is at the current track, and,
if not, the distance to the requested data. It can
therefore be convenient to consider two kinds of seeks,
“random” accesses to an arbitrary block of a file, and
sequential accesses to the next block of a file. There
is also a third kind of access, refetching a block, in
which case there is some likelihood that the block will
be held in a system cache.

It is increasingly common for disk drives to incor-
porate optimisations such as reading and buffering
whole tracks in response to each block read request;
such optimisations make any kind of modelling or pre-
diction approximate at best. The operating system
is also a complicating factor, as it intervenes in the
reading process in several ways: fetching header and
index blocks, caching, swapping, and so on. Broad
approximations, close to correct over a long run of
accesses, will often be the only realistic way of de-
scribing disk performance.

Index construction We have seen many papers
in which the index simply “is”, without discussion
of how it was created. But for a indexing scheme
to be useful it must be possible for the index to be
constructed in a reasonable amount of time, and so
papers describing complex indexing methods should
also describe and analyse a mechanism whereby the
index can be built. Where possible, index construc-
tion costs should be described as a function of the
size of the database. Scaleability is of concern during
index construction as well as during query processing.

Temporary space requirements during index con-
struction are a consideration that is easy to over-
look. A space-economical index is not cheap if large
amounts of working storage are required to create it.



Insertion, modification, and deletion When a
database is updated—by insertion, deletion, or mod-
ification of records—the index must also be updated
to reflect the change. Index update costs are often the
major component of these operations. For example,
in a text database insertion of a record might result
in one or more disk accesses to the index for every
term that appears in the record. Immediate update
is not always required and ameliorations can often be
used to reduce update costs. If such strategies are
supposed, the assumption should be made clear, and
the cost of immediate update also discussed.

Implications for concurrency, transactions and
recoverability An index must be consistent with
the indexed data. In a production system that ma-
nipulates dynamic data there will be intermediate in-
consistencies during update, and there will be times
at which the index itself is inconsistent. It is also pos-
sible in a dynamic system for several updates to be
in progress simultaneously. How easy it is to recover
from system failure, or even to maintain consistency
during parallel access, is another measure of the use-
fulness of an indexing technique.

3 Comparison of indexing techniques

There are four principal ways of comparing algo-
rithms such as indexing techniques: by direct argu-
ment, by mathematical modelling, by simulation, and
by experiment. In this section we sketch the charac-
teristics of each of these approaches.

Direct argument It is sometimes possible to con-
struct a formal proof that an algorithm has a certain
property, for example that it will always outperform
another algorithm in a given respect. Such arguments
can be powerful because they imply performance re-
gardless of circumstance. To make such an argument
it is necessary to have a clearly stated hypothesis,
including a precisely defined model of computation.

This analytic approach has wide currency in the
area of algorithm design and analysis, where asymp-
totic behaviour is of great interest; but is of lesser
practicality for database systems, where it is usually
unreasonable to ignore constant factors. Neverthe-
less, the possibility of a comparison using this ap-
proach should not be ignored.

Mathematical modelling A model is a mathe-
matical description of a system, based on a small
number of independent parameters. Given a descrip-
tion of database size, hardware performance, and the

query class, a model should provide an estimate of
likely query evaluation time, perhaps in the form of
details such as CPU time and number of disk ac-
cesses. The model may also provide information such
as approximate index size.

Modelling and simulation (described in the next
section) both rely on estimation of system perfor-
mance. For many indexing techniques there are a few
simple parameters that can be used: CPU speed, seek
time, and disk transfer rate. We suggest that these
be estimated by tests on actual hardware, thus allow-
ing at least ballpark comparisons with experimental
results. Use of actual parameters will also allow the
model to be verified by implementation. Such sim-
ple parameters are however an approximation, and
researchers should be aware of their limitations. It
is difficult, and probably unnecessary, to construct a
model that is an exact description of performance.

An implementation of a model is not an experi-
ment. Encoding a model in a program and, for exam-
ple, using it to demonstrate variation in performance
as a function of database size can be informative, and
can confirm that the model has certain properties.
But it does not confirm that the model is an accu-
rate reflection of the proposed indexing scheme, nor
does it provide any kind of experimental test.

Simulation A simulation is usually an implemen-
tation or partial implementation of an algorithm,
complete enough to allow measurement of perfor-
mance (thus approximating real performance) but
easier to undertake than a full-scale experiment. A
simulation is less convincing than an experiment, but
implementation of at least the skeleton on the method
being tested can give a good indication of likely per-
formance in practice.

A simulation is conducted in more of a “white
coats” environment than is an experiment. Extra-
neous factors can be controlled or eliminated, which
is often not possible when testing a real system.

Experiment An experiment is an implementation
tested with real, or at least realistic, data. Ex-
periments should be designed to yield unambigu-
ous results—with other explanations eliminated and
external factors minimised. Ideally, an experiment
should be conducted in the light of predictions made
by a model: it should confirm (or otherwise) some
expected behaviour.

Experiments should be reproducible, which means
that not only should they be conducted rigorously
but that their description should be sufficiently com-
prehensive that others can reproduce the conditions



and verify the claimed results. Where possible, ex-
periments should be based on benchmarks such as
standard sets of data and queries; use of such bench-
marks allows easy comparison with other work.

Choose your weapon In practical situations a
combination of two or more of these methods might
be warranted. For example, one might make a direct
argument that the space required by one method is
less than the space required by another, for example
if it stores a subset of the data. For the same two sys-
tems number of disk accesses required by each might
be calculated as the result of mathematical models,
and the per-record CPU time required during query
processing estimated by applying the relevant opera-
tions to every record in the database and then divid-
ing by the number of records. Alternately, all of these
factors might be measured during an experiment.

Where possible, the approaches should be used to
support each other: if certain behaviour is predicted
by a mathematical model, and an implementation
is also described, then an experiment should be de-
signed to verify that behaviour. Of course, the exper-
iment might not confirm the model; and discrepancies
should be accounted for rather than ignored.

4 How not to compare

A comparison between two indexing schemes, or in-
deed between any two methods of achieving the same
ends, should above all be fair. In this section we
examine some practices that do not yield fair com-
parison, drawn from our experience of refereeing and
reading indexing papers. These practices are easy
to fall into; we have several times ourselves drawn a
conclusion about some behaviour or another, only to
have some remark from a colleague or referee draw
our attention to the unreasonableness of our claims.
Some of the examples are drawn from work on in-
verted files and signature files, an area where we be-
lieve many unfair comparisons have been made.

Fool’s paradise As discussed in Section 2, assump-
tions should be reasonable and realistic. For example,
an indexing technique for text databases was tested
by demonstrating it on conjunctive Boolean queries
of ten to thirty terms, the implicit assumption being
that such queries are likely. But if query terms ap-
pear randomly in 10% of the records—and few words
other than stopwords are in this category—then six
words provides a selection rate of 1 in 1,000,000.
Actual queries with semantically related terms will
have more matches, but even so the supposition that

conjunctive Boolean queries can have as many as
thirty terms seems, at best, dubious. The assump-
tions about the query set can be improved by stating
explicitly that the indexing technique is only suit-
able for queries involving dozens of terms, in which
case the readers will judge for themselves whether the
technique is of interest.

Use of simplifying assumptions can be used to make
analysis tractable, but can also result in an unrealistic
model. Authors should ensure that their models are
a reasonable approximation.

Another example of unrealistic assumptions is the
use of complexity analysis to condemn B-trees. While
it is true that key lookup in a B-tree of n keys has
log2 n CPU cost, disk costs dominate, and in terms
of disk accesses the base of the log is the branching
factor of the tree—typically in the hundreds for com-
mon database applications. With such large branch-
ing factors, only the leaves of the tree will reside on
disk, so that (on current hardware) the principal cost
of key lookup is likely to be a single disk access.

Moving targets To compare two systems, what is
being compared must be clearly defined.

It is crucial to avoid shifting the grounds as com-
parison as made. For example, a signature file index
is variable in size, and so it is not incorrect to claim
that signature files can result in very small indexes;
and nor is it incorrect to claim that false match rates
using a signature file index can be kept arbitrarily
low. But the two claims are mutually inconsistent.

Shifting of grounds can arise in subtle ways. For
example, signature files can be improved by stopping
common words; but inverted files should not then be
criticised on the grounds that they give poor perfor-
mance on common-word queries.

Sauce for the gander A researcher developing
a new algorithm is naturally enthusiastic about the
work, and will often propose a series of minor refine-
ments and improvements to their method—not sig-
nificant enough to be of interest by themselves, but
certainly worth mentioning in the context of the de-
scription of the main algorithm. But what is often
not considered is that these minor refinements can
apply equally well to rival algorithms.

It is unreasonable to make allowances on behalf
of one method but not make similar allowances on
behalf of the other. If, for example, one method uses
a little more memory than the other, to deliberately
set the maximum buffer space to fall between the two
memory requirements is not fair practice. It is best
to err on the side of generosity to the rival technique.



Chalk and cheese Like should be compared with
like. For example, an advocate of signature files could
point out that extending a bitsliced scheme to sup-
port adjacency queries (in which query terms must
be adjacent in answers) results in only a small in-
crease in the size of the index, whereas extending in-
verted files to support adjacency requires increasing
the index size by a factor of three or four. But such
a comparison is only fair if it can be demonstrated
that the other power that comes with extending the
inverted index—support for proximity and word po-
sition queries—is for some reason not of interest.

Sometimes the claim is made that two systems are
incomparable: that they are apples and oranges. In
some senses this claim is not unreasonable; there are
many ways of trading off between the criteria listed
in Section 2. But comparisons can always be made
by fixing values for some criteria and comparing on
those that remain, and also by ranking the criteria
in order of desirability. In the majority of practical
database systems, query evaluation speed is the most
important measure of performance, and in typical sit-
uations it is valuable to simply compare speeds.

Fish in a barrel When describing the performance
of a new technique, it is helpful to compare it to a
well-known standard. But there are dangers in this
approach, since something that is well known may
not be recent work, and may be regarded by other
researchers as poor by current standards. For ex-
ample, some researchers still judge—and denigrate—
inverted files by reference to two older papers: one,
written in 1981,2 that estimated that inverted files
require 50%–300% of the space required for the data;
and another, written in 1975,3 that estimated that
each term occurrence requires up to 80–110 bits of
index. These papers no longer reflect the capabilities
of inverted files, and should not be used as a basis of
comparison. Likewise, signature files should not be
condemned on the basis of bitstring techniques.

Furthermore, it is not reasonable to characterise a
rival technique by an implementation that has unrep-
resentatively poor performance. Comparisons should
be to a competent, pragmatic implementation. In-
deed, one should actively seek the best rival imple-
mentation.

Proof of the pudding Ultimately, claims should
be “sensible” and capable of being verified by

2R.L. Haskin, “Special purpose processors for text re-
trieval”, Database Engineering , 4(1):16–29, 1981.

3A.F. Cárdenas, “Analysis and performance of in-
verted data base structures”, Communications of the ACM ,
18(5):253–263, 1975.

other researchers, preferably by a variety of mech-
anisms. Experiments should be blind, and not over-
parameterised. It is not acceptable, for example, to
develop a system that requires that values be spec-
ified for a variety of parameters and constant co-
efficients, tune the values for those parameters to
give excellent performance on one particular set of
test data, and then claim that similar performance is
likely on any data set.

Finally, lack of comparison to any other actual
system is always a weakness. Vague claims that
“the method performs well” are insufficient defence
against the most important question of all: does the
proposed method improve the state of the art in some
useful and interesting manner.

5 Conclusions

This paper has been a chance for us to articulate a
range of observations accumulated over an extended
period of time. We have been frustrated by being
asked to judge the work of others, and finding that
insufficient information was provided to allow that
work to be fairly evaluated.

In some of the other fields of computing, frame-
works for comparison are well established. For exam-
ple, one would not hope to present a new algorithm to
the algorithms community without a rigorous proof
of correctness and an asymptotic analysis that ex-
plicitly states the conditions under which the new
method might hope to be superior.

For database indexing this formality, even were it
observed, is not always sufficient, since most methods
are asymptotically linear or near-linear and constant
coefficients must be involved in all arguments as to
superiority. We hope that the various points of com-
parison we have listed will be adopted and perhaps
extended, and that authors of future papers on index-
ing will take care to answer the questions explicitly
and implicitly raised in our list of points. We be-
lieve that adoption of such a “comparison checklist”
will benefit all the members of this diverse research
community.

Acknowledgements

We would like to thank the Multimedia Database
Systems and Deductive Database groups at the Col-
laborative Information Technology Research Institute
CITRI. This work was supported by the Australian
Research Council.


