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Abstract Ranked queries are used to locate relevant documents in text databases. In a ranked query a list
of terms is specified, then the documents that most closely match the query are returned—in decreasing order
of similarity—as answers. Crucial to the efficacy of ranked querying is the use of a similarity heuristic,
a mechanism that assigns a numeric score indicating how closely a document and the query match. In
this note we explore and categorise a range of similarity heuristics described in the literature. We have
implemented all of these measures in a structured way, and have carried out retrieval experiments with a
substantial subset of these measures.

Our purpose with this work is threefold: first, in enumerating the various measures in an orthogonal
framework we make it straightforward for other researchers to describe and discuss similarity measures;
second, by experimenting with a wide range of the measures, we hope to observe which features yield good
retrieval behaviour in a variety of retrieval environments; and third, by describing our results so far, to
gather feedback on the issues we have uncovered. We demonstrate that it is surprisingly difficult to identify
which techniques work best, and comment on the experimental methodology required to support any claims
as to the superiority of one method over another.

1 Introduction

It is now commonplace for large document databases to be queried using content-based ranked queries, and
generally accepted that the alternative mechanisms for searching for information (such as Boolean queries
and hierarchical subject descriptors) do not in general provide the same levels of retrieval effectiveness.
The implementation of ranked querying is also now well understood [Frakes and Baeza-Yates 1992; Witten
et al. 1994; Korfhage 1997], and as a consequence of the spur provided by the trec project [Harman 1995]
there are several publicly-available retrieval systems that support fast ranking on document collections in
the multi-gigabyte range.

This leads to the question as to what similarity calculation should be used for each type of query, or type of
document, or type of desired performance (high precision versus high recall being one obvious distinction);
or even whether such categorisations are possible or meaningful. It is extremely difficult—as illustrated
by the results of this paper—to identify a single all-encompassing “best” similarity measure, and we do
not propose one here. What we do observe, however, is that there has been convergence towards a small
number of good measures, in particular, those that perform well in the trec environment, and that there
is considerable doubt as to what components of those formulae are responsible for the good performance.

In this note we take a fresh look at the various facets of a similarity measure, proposing an eight-way
orthogonal decomposition into factors that in one form or another appear consistently in most of the
measures we have found in the literature. The decomposition allows similarity measures to be specified as
points in the eight-space, and so permits the space of similarity measures to be explored in systematic and
coherent manner. We believe that our eight-way categorisation is sufficiently general that most measures
can be described in the same framework.

Having identified these eight components we are able to regard each component as a dimension that can
be explored. To allow each formulation to be tested we extended the public-domain text database system
mg [Moffat and Zobel 1994; Witten et al. 1994; Bell et al. 1995; MG-software 1995] to permit each of the eight
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components to be modified independently. That is, we developed a version of mg that, at database creation
time, is parameterised by a Q-expression, an eight-position string specifying the similarity computation to
be performed. At query time the mg system now allows a Q-expression to be specified; if the various index
and weights files required to evaluate the specified Q-expression have not been created then the software
will print as an error diagnostic the command line or lines that should be executed to create the necessary
files.

Using this version of mg we explored a large number of variant measures to test whether particular
formulations for some components work well regardless of the combination in which they are used, and
whether there are new combinations that are more effective than the measures in common use. We used two
test collections and three sets of queries, giving six experimental domains. The breadth of experimentation
was deliberate; one of the goals of the investigation was to measure the extent to which good performance
in one domain implies good performance in another.

Intrinsic to these experiments is the notion that performance can be compared in a reliable way. A
standard method of comparison is to use a recall-precision average, but in the context of the trec data
recall-precision cannot be completely evaluated because the number of relevant documents is unknown [Zobel
1998]. Recall-precision is even less reliable when used to gauge subcollections as there are proportionately
fewer relevance judgements. For this reason we also used as measures of performance the precision at a fixed
(and relatively small) number of documents retrieved, and the rank of the first relevant document retrieved.
These latter measures are important when, for example, a single screenful of top-ranked documents is to be
returned to a user as the answer to an information search.

We expected in this experimental phase of our investigation to confirm that standard formulations of
similarity measures are effective, and indeed this is what occurred. What was surprising, however, was that
there was no overall winner, and most of the techniques that worked well in one of the six experimental
domains worked poorly in at least one of the other five. Nor did good performance according to one metric
necessarily correspond to good performance according to another. The results of the experiments were
sufficiently contradictory that we used statistical tools to ensure that the variations being observed were
the reflection of genuine differences in behaviour, and not the result of random fluctuation.

2 Similarity Measures

Many similarity measures have been proposed, based on the vector space model and the probabilistic model
as well as naive co-occurrence of terms between document and query. In this section we describe several
standard similarity measures, mostly based on the vector space model, in a consistent framework and
notation. We have used a range of sources but are particularly indebted to van Rijsbergen [1979]; Salton
and McGill [1983]; Salton [1989]; and the various authors that contributed to Frakes and Baeza-Yates [1992].
Interested readers are referred to the bibliographies of these books for citations to original publications. We
have also made use of the proceedings of the first five trec conferences.

Our work is, in many ways, an extension of a previous taxonomy due to Salton and Buckley [1988]. They
examined a variety of ways for assigning weights to terms in documents and queries, supposing throughout
that the cosine combining mechanism was used to derive a final similarity score. Salton and Buckley used
five smaller test collections—the best that were available prior to the trec initiative—and listed results for
eight good combinations. In their six-dimensional space they describe alternative formulations that admit
(3× 3× 3)2 = 729 different similarity measures. The placement of their methods in our scheme is discussed
further below.

Atomic components A collection is a body of information, usually, but by no means always, consisting
of text. A document is the smallest unit of access within the collection, for example, one newspaper article.
A term is some identified concept within a document. For text documents the terms are commonly taken
to be the words of the document, after stemming and similar transformations; but a term might also be a
word pair, a phrase, or an externally assigned descriptor that does not appear in the document at all.

A general property of almost all similarity measures is that each is a combination of simple statistics, or
primitive information, about the document collection, including:

• the number N of documents;



• the number n of distinct terms used in the collection;

• for each term t and each document d containing t, the frequency fd,t of t in d;

• for each term t, the total number Ft of occurrences of t in the collection;

• the number ft of documents containing term t;

• for each term t, the frequency fq,t of t in query q;

• for each document d, the value fd = |d|, the number of term occurrences in d;

• for each document d, fm
d , the largest fd,t of any term in d; and

• fm, the largest ft in the collection.

Documents and terms are then gathered into sets that restrict the domain of the operations used to combine
the statistics into similarity values. We denote these various sets as:

• the set D of documents;

• for each term t, the set Dt of documents containing t;

• the set T of distinct terms in the database; and

• the set Td of distinct terms in document d, and similarly Tq for queries, and Tq,d = Tq ∩ Td.

Thus ft = |Dt| and Ft =
∑

d∈Dt
fd,t. Note that fd ≥ |Td|.

The basic statistics are combined in different ways by different similarity measures, and are detailed
below. There are, however, three important monotonicity assumptions that are present in all formulations,
and it is worth stating these explicitly. They are that rare terms are no less important than frequent terms;
that multiple appearances of a term in a document are no less important than single appearances; and that,
for the same quantity of term matching, long documents are no more important than short documents.

Combining functions The similarity Sq,d of a document to a query, which we refer to as the combining
function, is usually derived from wd,t, wq,t, Wd, and Wq, which correspond respectively to the importance of
each term in the document, the importance of that term in the query, the length or weight of the document,
and the length of the query. All of these quantities are defined in detail below. The similarity measures
Sq,d we consider are shown in Table 1. In all cases Sq,d is intended to numerically indicate how close the
document d and query q are in their information content. High scores indicate substantial overlap in term
usage, and low scores indicate dissimilar term usage. When Tq,d is empty all of these Sq,d formulations yield
zero. The formulations have been assigned alphabetic labels for later reference.

Term weight Terms that appear in many documents in the collection should be discounted compared
with terms that appear in only a few documents. Thus, it is usual to take into account a term weight (also
known as an inverse document frequency or IDF ), denoted here as wt. Many methods have been suggested
for calculating term weight; the formulations we consider are shown in Table 2. Term discrimination [Salton
and McGill 1983] is also of interest, but we are not aware of a practical method of computing it. Salton and
Buckley [1988] describe three different term weighting rules, and also allow the weight to differ between the
document and the query. Their three weighting rules are noted in Table 2 with the acronym “SB” and the
code assigned by Salton and Buckley to that combination.

Document-term and query-term weights Given a term weight, the next decision is the specification
of where it should be used—in constructing the document-term weight denoted wd,t, the query-term weight
denoted wq,t, in neither, or in both. When it is used it biases the relative term frequency rd,t, defined in
the next paragraph. The two alternative methods for doing this are shown in Table 3.

The quantities wd,t and wq,t are derived from other calculated values; nevertheless, it is useful to distin-
guish them. Doing so allows whichever formulation of wt is chosen to be applied selectively to either or
both of query terms and document terms. This allows a wider range of possibilities than when wt = 1 is
used, the first formulation in Table 2.



Description Formulation
A Inner product.

Sq,d =
∑

t∈Tq,d

(wq,t · wd,t)

B Cosine measure.
Sq,d =

∑
t∈Tq,d

(wq,t · wd,t)

Wq ·Wd

C Simple probabilistic measure. The variable C
is a tuning constant, set to 0 in this
context [Frakes and Baeza-Yates 1992,
p. 369].

Sq,d =
∑

t∈Tq,d

(C + wt)

D More sophisticated probabilistic measure.
Variable C is again a tuning constant set to
0.

Sq,d =
∑

t∈Tq,d

(C + wt) · rd,t

E Alternative inner product.
Sq,d =

∑
t∈Tq,d

wd,t

Wd

F Dice formulation. (Ozkarahan [1986, p. 496]
and Salton and McGill [1983, pp. 202–3] use
Wx =

∑
t∈Tx

wx,t rather than W 2
x , for Dice,

Jaccard, and overlap.)

Sq,d =
2

∑
t∈Tq,d

(wq,t · wd,t)

W 2
q + W 2

d

G Jaccard formulation.
Sq,d =

∑
t∈Tq,d

(wq,t · wd,t)

W 2
q + W 2

d −
∑

t∈Tq,d
(wq,t · wd,t)

H Overlap formulation.
Sq,d =

∑
t∈Tq,d

(wq,t · wd,t)

min(W 2
q , W 2

d )

Table 1: Combining functions Sq,d

Relative term frequency Most ranking rules attempt to emphasise the effect of terms that are frequent
in either document or query or both. This quantity—denoted rd,t in the document and rq,t in the query—
is known as the relative frequency, or relative term frequency. The formulations of relative frequency we
consider are shown in Table 4. The table shows rd,t; values of rq,t are calculated in a corresponding manner
based upon fq,t. Either (or both) of these values are sometimes known as the TF component, and so
similarity formulations that are described as TF-IDF make use of a relative term frequency and an inverse
document frequency somewhere in their calculation. Salton and Buckley [1988] made use of three different
relative term frequency formulations; these are noted in the table.

Document and query length Some formulations of document length Wd and query length Wq are
shown in Table 5, which are often (but not always) derived from the wd,t and wq,t values respectively.
Here the desire is to allow for long documents, which may contain many appearances of query terms but
be no more relevant than a succinct document containing only a few appearances. Thus, Wd and Wq are
used in the calculation of the combining function (Table 1); Table 5 describes some of the many possible
ways of quantifying the length of a document. For example, the first formulation might be of use when
documents are known to be of fairly uniform length, perhaps in a bibliographic retrieval system that stores
title and author but not abstract. The last formulation—the pivoted method—is a means of adjusting the
cosine method to account for experimentally-determined bias [Singhal et al. 1996], and can be applied to
any of the non-unit measures. For orthogonality we also list pivoting as being applicable to the unit length
calculation. Analogous formulations are used for Wq, but note that there is no query-length equivalent of
pivoting. Salton and Buckley [1988] described two length calculations for each of documents and queries.



Description Formulation
A Formulation used for binary match.

SB = x wt = 1

B Logarithmic formulation.
SB = f wt = loge

(
1 +

N

ft

)
C Hyperbolic formulation.

wt =
1
ft

D Normalised formulation.
wt = loge

(
1 +

fm

ft

)
E Another normalised formulation.

SB = p wt = loge

N − ft

ft

These formulas define noise and entropy,
where nt is the noise of t and st is the signal. nt =

∑
d∈Dt

(
−fd,t

Ft
log2

fd,t

Ft

)

st = log2(Ft − nt)

Using these measures, possible definitions of
wt are as shown. The last of these is the
entropy measure.

F. wt = st

G. wt =
st

nt

H. wt =
(

max
t′∈T

nt′

)
− nt

I. wt = 1− nt

log2 N

Table 2: Term weights wt (inverse document frequencies)

Description Formulation
A TF-only formulation.

wd,t = rd,t

B Standard formulation, TF-IDF.
wd,t = rd,t · wt

Table 3: Document-term weights wd,t and query-term weights wq,t



Description Formulation
A Formulation used for binary match.

SB = b rd,t =
{

1 if t ∈ Td

0 otherwise
B Standard formulation.

SB = t rd,t = fd,t

C Logarithmic formulation.
rd,t = 1 + loge fd,t

D Normalised formulation.
rd,t =

fd,t

fm
d

E Alternative normalised formulation. Variable
K is a tuning constant, with reported
optimums 0.3 and 0.5 [Frakes and
Baeza-Yates 1992, page 370]. A similar
formulation can be used for query terms,
with fm

q in the denominator [Frakes and
Baeza-Yates 1992, page 375]. In our
experiments K = 0.5 was used.
SB = n

rd,t = K + (1−K)
fd,t

fm
d

F Okapi formulation [Robertson et al. 1995].
Not defined for query terms. rd,t =

fd,t

fd,t + Wd/avd∈D(Wd)

Table 4: Relative term frequencies rd,t and rq,t

Putting it all together Tables 1 to 5 provide for a bewildering array of query-document similarity
measures. There are eight possible combining functions (Table 1), nine ways of choosing term weights
(Table 2), two ways of choosing document-term weights and query-term weights (Table 3), six ways of
setting relative term frequencies for the document and another five for the relative term frequencies in the
query (Table 4), and so on. These options are summarised in Table 6, which describes the composition
of an eight-character Q-expression that selects one possible combination of options. Table 6 also gives as
an example, the calculation that corresponds to the Q-expression BB-ACB-BAA, where the hyphens in the
Q-expression serve to separate the global selection of combining method and term weight from the three
factors that affect each of document terms (in the middle group) and query terms (in the final group).

The simplest Q-expression is AA-AAA-AA, which scores a document according to the number of the query
terms that are present without incorporating any frequency or weight information—an approach sometimes
known as co-ordinate matching. In a similar way, the Q-expression BB-BBB-BBB describes a method using the
cosine similarity coefficient, TF-IDF calculation of term weights in both document and query, and document
and query weights calculated as the Euclidean length of vectors in n-space—in other words, the traditional
stock-standard cosine vector-space rule. The best formulation investigated by Salton and Buckley—in their
terms the measure t f c · n f x—would be described in our notation by the Q-expression BB-BBB-BEA.

Each other 8-character Q-expression describes a variation. In total there are more than 1,500,000 combi-
nations. However, not all choices give distinct measures. For example, all methods AA-A**-A** (where a *
indicates an unspecified or “doesn’t matter” position) are mathematically identical, since combining func-
tion A is independent of both Wd and Wq, and wt = 1 makes the two alternative formulations for both wd,t

and wq,t identical. Similarly, some of the formulations are logically identical, since they result in the same
ranking. For example, in the cosine formulations BB-BBB-BB* the query weight (which for a given query
is a constant) serves only to scale the final similarity values, and so does not alter the effectiveness score
for a particular experiment. There are other families of equivalent formulations, and, while we have not
attempted to exactly determine the number of different measures, estimate it to be of the order of 100,000.



Description Formulation
A Unit length.

SB = x Wd = 1

B Vector space formulation.
SB = c Wd =

√∑
t∈Td

w2
d,t

C Approximate formulation.
Wd = |Td|

D Another approximate formulation.
Wd =

√
|Td|

E Yet another approximate formulation.
Wd = log2 |Td|

F Byte size. (Alternatively, Wd = bd can be
used, where bd is the length of d in bytes.) Wd = fd

G Further alternative approximate formulation.
Wd =

√
fd

H–N Pivoted cosine method (used only for
document weights), where W ′

d is calculated
using another length formulation such as
method A (to get method H) or method B
(to get method I) and where s is the slope,
typically about 0.7.

Wd = (1 − s) + s · W ′
d

avd∈DW ′
d

Table 5: Document lengths Wd and query lengths Wq

3 Experiments

We now describe the experimental investigation that was pursued. Our aim was to identify successful
combinations—similarity measures that give good effectiveness—and to determine whether there were com-
ponents, such as particular term weightings, that worked well in all combinations. The space of similarity
measures can be partially explored by the various Monte Carlo search mechanisms such as simulated an-
nealing, genetic algorithms, and so on. These methods rely upon the presence of continuity in the objective
function, so that “better” solutions are likely to be found in the neighbourhood of “already good” solutions.
In early experiments we used a primitive hill-climbing method to attempt to search for the best combina-
tions, but it became clear that the space of similarity measures had a highly irregular topology, and the
assumption that immediate neighbours of a combination would have similar performance is unwarranted.
Changing any element of a combination can have, and indeed usually does have, a non-trivial effect.

Another method of search is to undertake an exhaustive enumeration, examining every combination. For
small search spaces this is tractable, but for large spaces it is implausibly expensive. Each of the experiments
we sought to run would require 5–10 minutes of CPU time for each query set to be tested, and an exhaustive
search over even 100,000 similarity heuristics with six experiments to run would thus take as long as ten
years. We chose instead to investigate a subspace of combinations that were likely to work well, limiting
the dimensions of the search space to make exhaustive evaluation possible. These limits were chosen by
identifying a small number of measures that are known to be effective, then allowing all possible mix-and-
match combinations that could be derived from these measures. In imposing such limits we have, of course,
closed off parts of the search space. Some of the excluded regions will be explored in future work.



Component Position Number of Sample Sample
Variants Q-expression Calculation

Combining function for document d and query q:
Sq,d 1 8 B Sq,d =

(∑
t∈d∩q wq,t · wd,t

)
/(Wd ·Wq)

Weight of term t:
wt 2 9 B wt = loge(1 + N/ft)

Weight of term t in document d:
wd,t 3 2 A wd,t = rd,t

Relative frequency of term t in document d:
rd,t 4 6 C rd,t = 1 + loge fd,t

Weight of document d:

Wd 5 7 + 6 B Wd =
√∑

t∈d w2
d,t

Weight of term t in query q:
wq,t 6 2 B wq,t = rq,t · wt

Relative frequency of term t in query q:
rq,t 7 5 A rq,t = 1

Weight of query q:
Wq 8 7 A Wq = 1

Table 6: Example similarity measure BB-ACB-BAA

Choice of similarity formulations We fixed one of the eight dimensions to what we believed to be a
reasonable value, and tested a subset of each of the other seven dimensions. The search space explored is
described by the regular expression

[AB][BDI]-[AB][CEF][BDIK]-[AB][ACE]A .

That is, we considered combining functions A and B (Table 1); term weight formulae B, D, and I (Table 2);
and so on. The only factor that was fixed was the query length Wq. This generated a total of 720
legal mechanisms,1 containing several mechanisms that are known to work well and a good proportion of
mechanisms that are at least in theory likely candidates. At about 5–10 minutes per mechanism for each of
the six experimental domains (2–4 seconds per query per collection) our experiments took about four weeks
of computation.

We made the search-space restrictions with some trepidation, but also in the belief that doing so would
not substantially handicap our findings. For example, we expected the cosine combining function (a B in
the first position) to be important, in which case the mechanism used for calculating the query weight has
no effect upon the performance. Most of the mechanisms that have been successful at trec do lie within
the space we explored. We also included pivoting [Singhal et al. 1996] and several variant mechanisms for
calculating Sq,d and wt.

Database and relevance judgements We used two databases in our experiments. In order to have
the maximum number of queries that could be tested, we focussed on the collections on disk 2 of the trec

data. Disk 2 has been part of the testing for several years, and there are 300 queries for which disk 2
1Combinations **-*FB-*** and **-*FI-*** are not viable, since the average document length is used. This is why the

number of combinations is less than 2 × 3× 2× 2× 3× 4× 2× 3 = 864.
Note also that some of the combinations can be equivalent for some query sets; in particular, in-query frequency has no

effect for the queries based on titles, in which query terms are not repeated. Others are mathematically equivalent, thus giving
ties in the rankings shown later.



relevance judgements are available. Disk 2 contains four document collections, and we partitioned these to
make two experimental collections: a collection of newspaper articles (ap2 and wsj2); and a collection of
non-newspaper text (fr2 and ziff2). Table 7 gives some statistics for these two collections.

Queries Of the various trec topics, those numbered from 1 to 300 (excluding 201) have relevance judge-
ments against the data of disk 2. Of these, topics 51–200 have been used extensively in previous trec-related
work as long queries; and they can also be used in two shorter forms—by taking the title section only, and
by taking the narrative section only. These are what we used in our experiments. Table 8 shows an example
of each of the three categories of query, namely those derived from trec topic 200. Table 9 lists some
information about the query sets.

Measurement of retrieval effectiveness For each query, each collection, and each similarity measure
the top 1,000 ranked documents were identified, and a postprocessing program (trec_eval, available from
ftp://cs.cornell.edu) used to obtain statistics about the relative performance of that mechanism. Of
the many effectiveness measures reported by that program, those used in our experiments were the 11-
point recall-precision average at 1,000 retrieved documents (averaging the precision attained at 0%, 10%,
20%, . . . , 100% recall levels); the precision at 20 retrieved documents; and (after modifying trec_eval)
the average value of 1/r1, where r1 is the rank of the first relevant document returned. The use of three
different effectiveness metrics added a final dimension to our burgeoning collection of statistics.

Results Tables 10, 11, and 12 show a partial summary of the data that was collected. Each of the six
sections in each of the tables shows one of the six experimental domains: title, narrative, or full queries;
and one of the two document collections. Inside each section there are 15 rows of data. The first of these,
marked ZZ-ZZZ-ZZ, is discussed below. The next 10 rows show, for that combination of query set and
collection, the best 10 of the 720 similarity measures that were explored, where best in Table 10 is judged
by average 11-point recall-precision average over the query set, best in Table 11 is assessed by considering
the average precision-at-20 value for the query set, and best in Table 12 is scored by average reciprocal rank
of the first relevant document retrieved. The final four rows in each section of the tables show in snapshot
fashion the extent to which the effectiveness degrades further down the ordering.

Each section of the three tables also contains a row marked ZZ-ZZZ-ZZZ. The score associated with this
measure for each query is the best score achieved by any of the tested measures for that query. That is, each
of the ZZ-ZZZ-ZZZ scores reflects the average (over the query set) of the best (over the 720 formulations)
performing heuristic, and so represents the score that a clairvoyant user of the system—one able to decide
in advance what formulation is best suited for each query—would obtain. The ZZ-ZZZ-ZZ measure gives an
indication of the “goodness” (or otherwise) of the performance of the non-clairvoyant (and hence practical)
mechanisms listed in the three tables.

It is obvious from these results that there is no measure that is a clear winner. There is little overlap
between the successful measures in the eighteen cases—not only are different measures best for the different
queries and data sets, but recall-precision yields somewhat different results to precision-at-20 and top-rank.
For example, of the 20 factors we tested, just one of them (formulation E for the relative document frequency,
Table 4) does not appear in a “top 10” measure listed in the three tables, and 87 different combinations
appear amongst these “top 10” tables.

Furthermore, it would be incorrect to try and draw conclusions such as that certain measures work well
in certain domains—as the results for the synthetic ZZ-ZZZ-ZZ measure show, none of the measures is
particularly good for either a certain data set, a certain style of query, or a certain effectiveness metric.
Particular measures do seem to work well for individual queries, but it is likely to be extremely difficult to
recognise in advance which combinations will work in which cases.

These results not only make it difficult to identify successful measures, but also to identify and explain
successful components. For example, pivoting is valuable some of the time but not all of the time; and it is
not possible to categorically state that any particular weighting scheme is valuable. However, some trends
do emerge. Not surprisingly, document length is important—combining function A is highly ranked only
with relative term frequency F, the only relative term frequency to incorporate document length; and it
seems as if the A*-*F formulations are better for the short queries (except when effectiveness is measured



ap2wsj2 fr2ziff2

Size (megabytes) 479.3 384.8
Documents 154,439 76,780
Average document length (kilobytes) 3.2 5.1
Maximum document length (kilobytes) 133.0 1,836.5

Table 7: Statistics of document collections

Query set Example query
Title impact foreign textile imports textile industry

Narrative impact positive negative qualitative may include expansion
shrinkage markets manufacturing volume influence methods
strategies textile industry textile industry includes production
purchase raw materials basic processing techniques dyeing
spinning knitting weaving manufacture marketing finished goods
research textile field

Full impact foreign textile imports textile industry foreign textiles
textile products influenced impacted textile industry qualitative
shrinkage markets manufacturing volume influence methods
strategies textile industry textile industry production purchase
raw materials basic processing techniques dyeing spinning
knitting weaving manufacture marketing finished goods research
textile field

Table 8: Examples of the three query sets

Collection Query Set
Title Narrative Full

Number
ap2wsj2 150 150 150
fr2ziff2 101 101 101

Average terms
ap2wsj2 78.6 31.8 3.8
fr2ziff2 79.0 33.5 3.7

Average answers
ap2wsj2 90.4 90.4 90.4
fr2ziff2 17.7 17.7 17.7

Table 9: Statistics of query sets



Collection Title Narrative Full

ap2wsj2

1
2
3
4
5
6
7
8
9

10

100
200
400
720

Q 11-pt
ZZ-ZZZ-ZZZ 0.312
AI-AFD-BCA 0.265
AI-AFD-BEA 0.265
AI-BFD-ACA 0.265
AI-BFD-AEA 0.265
AI-AFD-BAA 0.265
AI-BFD-AAA 0.265
AI-AFK-BCA 0.263
AI-BFK-ACA 0.263
AI-AFK-BEA 0.262
AI-BFK-AEA 0.262

AI-ACK-BCA 0.246
BB-BCI-AEA 0.240
BB-ACI-AEA 0.206
BI-AED-AAA 0.074

Q 11-pt
ZZ-ZZZ-ZZZ 0.342
BI-BCK-BCA 0.288
BI-BCI-BCA 0.286
BI-ACI-BCA 0.282
BB-BCK-BCA 0.280
BI-BCD-BCA 0.280
BD-BCK-BCA 0.280
BB-BCI-BCA 0.279
BD-BCI-BCA 0.279
BD-ACI-BCA 0.277
BB-ACI-BCA 0.277

AI-BCB-BCA 0.232
AB-BCI-BEA 0.204
AB-BCI-ACA 0.161
AI-ACK-AAA 0.046

Q 11-pt
ZZ-ZZZ-ZZZ 0.426
BI-ACI-BCA 0.362
BB-ACI-BCA 0.362
BD-ACI-BCA 0.362
BI-BCI-BCA 0.356
BI-BCK-BCA 0.355
BB-BCI-BCA 0.353
BD-BCI-BCA 0.353
BB-BCK-BCA 0.350
BD-BCK-BCA 0.350
BI-ACD-BCA 0.350

BB-BEK-ACA 0.298
BB-BEK-AEA 0.270
BD-BFD-AAA 0.226
AI-ACK-AAA 0.077

fr2ziff2

1
2
3
4
5
6
7
8
9

10

100
200
400
720

Q 11-pt
ZZ-ZZZ-ZZZ 0.349
AB-BFD-BAA 0.231
AB-BFD-BCA 0.231
AB-BFD-BEA 0.231
AD-BFD-BAA 0.230
AD-BFD-BCA 0.230
AD-BFD-BEA 0.230
AB-BFK-BAA 0.228
AD-BFK-BAA 0.228
AB-BFK-BCA 0.228
AB-BFK-BEA 0.228

AD-BEB-BCA 0.194
AI-AEB-BCA 0.190
AI-BCD-AAA 0.161
BI-AED-AEA 0.054

Q 11-pt
ZZ-ZZZ-ZZZ 0.415
BB-BCI-BCA 0.241
BD-BCI-BCA 0.241
BD-BFK-BCA 0.237
BB-BFK-BCA 0.236
BD-BCD-BCA 0.232
BB-BCD-BCA 0.232
BI-BCI-BCA 0.230
BB-BCI-BEA 0.229
BD-BCI-BEA 0.229
BD-BFK-BEA 0.218

BI-BEI-BEA 0.164
BI-BCI-AEA 0.133
AD-BED-AAA 0.091
BI-AED-AAA 0.033

Q 11-pt
ZZ-ZZZ-ZZZ 0.472
BD-BFK-BCA 0.294
BB-BFK-BCA 0.293
BB-BCI-BCA 0.281
BD-BCI-BCA 0.281
BI-BFK-BCA 0.275
BD-ACI-BCA 0.274
BB-ACI-BCA 0.274
BI-BCI-BCA 0.270
BD-BCD-BCA 0.266
BB-BCD-BCA 0.266

BI-BCB-ACA 0.201
BD-AFD-BAA 0.158
AD-BEB-AEA 0.103
BI-AED-AAA 0.049

Table 10: Eleven-point recall-precision average at 1,000 documents returned

by precision and the collection is fr2ziff2), while B*-[AB] formulations handle the long queries better.
But these two observations are about all that can be claimed.

In other experiments, not detailed here, we tested apparently trivial variants to the weighting schemes
such as varying the base of the logarithm in relative term frequency C. These changes (from say log2 to
loge) could have substantial effect on recall-precision. While testing mg we have at times been puzzled by
our inability to exactly reproduce the results obtained by other researchers. It is now apparent that large
differences in results can easily be the consequence of minor variations to the similarity measures such as the
base of logarithms, and whether, as in another case we encountered, the “+1” addition takes place before
or after the logarithms are taken.

Tables 13, 14, and 15 further illustrate this volatility. By normalising each recall-precision, precision-
at-20, and top-rank score to a percentage of the ZZ-ZZZ-ZZZ score for that experimental domain, a set of
“same unit” quantities can be calculated and further combined in different ways. Table 13 averages these
scores over collections and effectiveness metrics, to show any trend that might be a result of the different
characteristics of the three query sets; Table 14 averages the raw scores over collections and query sets,
to identify any influences that can be attributed to the use of different effectiveness metrics; and Table 15
completes the third leg of the analysis, showing combined scores broken down by collection. In any of these
three tables similarity formulations that work consistently well for that combination of parameters should
appear near the top of a list of overall percentage, while those that are variable in their behaviour will



Collection Title Narrative Full

ap2wsj2

1
2
3
4
5
6
7
8
9

10

100
200
400
720

Q pr@20
ZZ-ZZZ-ZZZ 0.505
AB-AFD-BAA 0.405
AB-AFD-BEA 0.405
AB-BFD-AAA 0.405
AB-BFD-AEA 0.405
AI-AFK-BAA 0.405
AI-AFK-BCA 0.405
AI-AFK-BEA 0.405
AI-BFK-AAA 0.405
AI-BFK-ACA 0.405
AI-BFK-AEA 0.405

AD-BCK-AAA 0.400
AB-BCB-BCA 0.377
AI-AEI-AEA 0.342
BI-AED-AEA 0.143

Q pr@20
ZZ-ZZZ-ZZZ 0.556
BI-ACI-BCA 0.448
BB-ACI-BCA 0.447
BD-ACI-BCA 0.447
BI-ACK-BCA 0.436
BI-BCK-ACA 0.436
BB-ACK-BCA 0.432
BB-BCK-ACA 0.432
BD-ACK-BCA 0.432
BD-BCK-ACA 0.432
BI-ACI-BEA 0.432

AD-BFD-BCA 0.382
BB-BFD-AEA 0.349
BB-BEB-BEA 0.297
AI-ACK-AAA 0.134

Q pr@20
ZZ-ZZZ-ZZZ 0.636
BI-ACI-BCA 0.521
BB-ACI-BCA 0.519
BD-ACI-BCA 0.519
BI-ACD-BCA 0.514
BI-BCD-ACA 0.514
BB-ACD-BCA 0.511
BB-BCD-ACA 0.511
BD-ACD-BCA 0.511
BD-BCD-ACA 0.511
BB-ACK-BCA 0.509

BD-BCB-AEA 0.459
BI-BCI-AAA 0.430
BI-BEI-AAA 0.379
AI-ACK-AAA 0.186

fr2ziff2

1
2
3
4
5
6
7
8
9

10

100
200
400
720

Q pr@20
ZZ-ZZZ-ZZZ 0.195
BD-ACK-BAA 0.139
BD-ACK-BCA 0.139
BD-ACK-BEA 0.139
BD-BCK-AAA 0.139
BD-BCK-ACA 0.139
BD-BCK-AEA 0.139
BB-ACK-BAA 0.139
BB-ACK-BCA 0.139
BB-ACK-BEA 0.139
BB-BCK-AAA 0.139

AB-AFD-BCA 0.125
AI-AEB-BCA 0.118
AB-ACD-BAA 0.093
BI-AED-AEA 0.048

Q pr@20
ZZ-ZZZ-ZZZ 0.218
BB-BCI-BCA 0.150
BD-BCI-BCA 0.150
BB-BCI-BEA 0.148
BD-BCI-BEA 0.148
BB-BFK-BCA 0.146
BD-BFK-BCA 0.145
BI-BCI-BCA 0.143
BB-BCB-BEA 0.140
BB-ACB-BCA 0.140
BB-BCD-BCA 0.140

BI-ACI-BCA 0.108
BB-AEI-BAA 0.088
AD-AEI-BCA 0.049
AI-ACK-AAA 0.031

Q pr@20
ZZ-ZZZ-ZZZ 0.256
BB-ACB-BCA 0.184
BD-ACB-BCA 0.184
BB-BFK-BCA 0.180
BD-BFK-BCA 0.180
BD-BCI-BCA 0.177
BB-BCI-BCA 0.176
BI-BCI-BCA 0.174
BB-ACB-BEA 0.170
BD-ACB-BEA 0.170
BB-BCD-BCA 0.169

BB-BFD-BAA 0.142
BB-AEI-BAA 0.117
AB-BEB-ACA 0.060
AI-ACK-AAA 0.035

Table 11: Precision at 20 documents returned

appear lower.
The most striking feature of the three tables is again the poor performance. Even if we were lucky enough

to select the right “best” measure for a combination of collection, effectiveness metric, and query set, that
best mechanism would still only do roughly two thirds as well as if we could somehow include as a further
parameter the actual query to be processed.

Finally, Table 16 averages the relative scores over all factors, to arrive at a single ranking of similarity
functions. Given the lack of consistency in the individual experiments, the fairness of giving a single score
to each mechanism is, however, debatable. The BB-ACB-BAA mechanism illustrated in Table 6 is ranked
88th of the 720 mechanisms, with a score of 57.1%.

Statistical significance One obvious possibility is that the volatility of the results is a consequence not
of fundamentally altered behaviour, but of random fluctuation. To be sure that this was not the case, we
applied the correlated t test [Graziano and Raulin 1993, p. 373] to the individual query results for pairs
of measures. The results were unequivocal. For example, consider measures BI-BCI-BCA and BB-BCI-BCA
on the full queries and the ap2wsj2 collection. These methods both score highly (Table 10), differ in just
one factor, and differ in performance by just 0.003 averaged over the 150 queries. Yet the first measure
outperforms the second on 99 queries, while the second is better on only 49; and this difference is enough
to give a t value of 2.58, which is equal to the 99% confidence for this many observations. That is, the



Collection Title Narrative Full

ap2wsj2

1
2
3
4
5
6
7
8
9

10

100
200
400
720

Q rank
ZZ-ZZZ-ZZZ 0.840
AB-AFK-AAA 0.644
AB-AFK-ACA 0.644
AB-AFK-AEA 0.644
AD-AFK-AAA 0.644
AD-AFK-ACA 0.644
AD-AFK-AEA 0.644
AI-AFK-AAA 0.644
AI-AFK-ACA 0.644
AI-AFK-AEA 0.644
AI-ACB-BAA 0.642

AI-BCD-BAA 0.622
BD-BCK-AEA 0.590
AD-BEB-BAA 0.533
BI-AED-AAA 0.308

Q rank
ZZ-ZZZ-ZZZ 0.936
BI-ACK-BCA 0.676
BI-BCK-ACA 0.676
BI-ACI-BEA 0.670
BD-ACI-BCA 0.669
BB-ACI-BCA 0.669
BB-ACK-BCA 0.667
BB-BCK-ACA 0.667
BD-ACK-BCA 0.667
BD-BCK-ACA 0.667
BI-ACI-BCA 0.666

BD-BCK-AAA 0.600
BI-BEK-BCA 0.568
BI-AFD-ACA 0.506
AI-ACK-AAA 0.257

Q rank
ZZ-ZZZ-ZZZ 0.966
BD-ACI-BCA 0.746
BB-ACI-BCA 0.746
BI-ACI-BCA 0.739
BB-ACK-BCA 0.734
BB-BCK-ACA 0.734
BD-ACK-BCA 0.734
BD-BCK-ACA 0.734
BB-ACI-BEA 0.733
BD-ACI-BEA 0.733
BI-ACI-BEA 0.732

BI-AEI-BEA 0.685
BB-AEK-ACA 0.653
AB-BED-BEA 0.591
AI-ACK-AAA 0.338

fr2ziff2

1
2
3
4
5
6
7
8
9

10

100
200
400
720

Q rank
ZZ-ZZZ-ZZZ 0.662
AD-AFD-BAA 0.400
AD-AFD-BEA 0.400
AD-BFD-AAA 0.400
AD-BFD-AEA 0.400
AB-AFD-BAA 0.400
AB-AFD-BEA 0.400
AB-BFD-AAA 0.400
AB-BFD-AEA 0.400
AD-AFD-BCA 0.399
AD-BFD-ACA 0.399

AI-BEB-BEA 0.377
AD-BEB-BEA 0.361
BD-BCD-BCA 0.317
BI-AED-AAA 0.121

Q rank
ZZ-ZZZ-ZZZ 0.758
BB-BCI-BCA 0.467
BD-BCI-BCA 0.467
BB-BCI-BEA 0.449
BD-BCI-BEA 0.448
BI-BCI-BCA 0.447
BD-BFK-BCA 0.437
BB-BFK-BCA 0.436
BD-BCD-BCA 0.424
BB-BCD-BCA 0.423
BD-ACI-BCA 0.419

BD-AFK-BCA 0.365
BB-BEB-AEA 0.304
AD-AFD-BEA 0.203
BI-ACK-AAA 0.123

Q rank
ZZ-ZZZ-ZZZ 0.801
BI-BCI-BCA 0.490
BB-ACB-BCA 0.489
BD-ACB-BCA 0.489
BI-BFK-BCA 0.488
BB-BCI-BCA 0.483
BD-BCI-BCA 0.482
BB-BFK-BCA 0.482
BD-BFK-BCA 0.482
BB-ACB-BEA 0.476
BD-ACB-BEA 0.476

BB-BFK-BAA 0.407
BI-BCK-BEA 0.336
AB-AEB-BCA 0.224
BI-ACK-AAA 0.135

Table 12: Average (reciprocal) rank of first relevant document

superiority of BI-BCI-BCA over BB-BCI-BCA is almost certainly significant on collection ap2wsj2 and the
full queries with effectiveness measured by 11-point recall-precision average at 1,000 documents retrieved.

Table 17 reports six more pairwise tests, comparing on each of the three types of query the three “best”
mechanisms (for recall-precision on ap2wsj2) in a “home and away” competition. The first of the three
sections in the table shows that AI-AFD-BCA is clearly better than either BI-BCK-BCA or BI-ACI-BCA when
the queries are short; while the remaining two sections show that AI-AFD-BCA should very definitely not
be used for long queries on this collection—in each case the high calculated t values indicate that random
chance has nothing to do with the relative performance of the various methods.

Similar confidence scores are calculated when the the fr2ziff2 best methods are compared with their
partners in ap2wsj2, again using recall-precision as the effectiveness metric. For example, using the title
queries, AI-AFD-BCA is better than AB-BFD-BAA with a confidence of t = 2.53 in ap2wsj2, and in fr2ziff2
AB-BFD-BAA is better than AI-AFD-BCA with a confidence of t = 2.40, which both exceed the 95% confidence
limit of 2.0. Changing from one effectiveness metric to another gives similar chaotic results. Using ap2wsj2
and the title queries, an 11-point recall-precision comparison between AI-AFD-BCA and AB-AFD-BAA (which
is the best according to the precision metric) gives a score of t = 3.57.

That is, the choice of retrieval mechanism is governed not just by the characteristics of the queries
being processed, but also by the characteristics of the data that is being handled (even for the same query



Title Narrative Full

1
2
3
4
5
6
7
8
9

10

100
200
400
720

ZZ-ZZZ-ZZZ 100.000
AI-BFD-BAA 70.926
AI-BFD-BEA 70.852
AD-AFD-BEA 70.821
AD-BFD-AEA 70.821
AB-AFD-BEA 70.814
AB-BFD-AEA 70.814
AD-AFD-BAA 70.811
AD-BFD-AAA 70.811
AB-AFD-BAA 70.803
AB-BFD-AAA 70.803

AB-BCB-BEA 65.516
AB-AEB-BEA 63.887
AD-AEI-AAA 58.685
BI-AED-AAA 24.498

ZZ-ZZZ-ZZZ 100.000
BB-BCI-BCA 68.153
BD-BCI-BCA 68.129
BI-BCI-BCA 67.398
BD-ACI-BCA 66.037
BB-ACI-BCA 65.992
BB-BCI-BEA 65.814
BD-BCI-BEA 65.790
BD-BCD-BCA 64.895
BB-BCD-BCA 64.884
BD-ACB-BCA 64.384

BD-BEK-ACA 54.835
BI-BCB-AAA 48.594
AD-BEB-BAA 37.517
AI-ACK-AAA 19.428

ZZ-ZZZ-ZZZ 100.000
BD-ACI-BCA 70.916
BB-ACI-BCA 70.877
BD-BCI-BCA 70.425
BD-ACB-BCA 70.418
BB-BCI-BCA 70.401
BB-ACB-BCA 70.397
BI-BCI-BCA 70.162
BD-BFK-BCA 68.480
BB-BFK-BCA 68.479
BI-ACI-BCA 68.182

BI-AEB-BCA 58.996
BB-BEB-ACA 52.762
BD-AEK-AEA 42.283
AI-ACK-AAA 22.099

Table 13: Mechanisms with best overall performance when grouped by query type

Eleven-point average Precision at 20 Rank of first relevant

1
2
3
4
5
6
7
8
9

10

100
200
400
720

ZZ-ZZZ-ZZZ 100.000
BD-ACI-BCA 67.873
BB-ACI-BCA 67.828
BB-BCI-BCA 67.167
BD-BCI-BCA 67.157
BI-BCI-BCA 67.093
BD-BCK-BCA 66.501
BB-BCK-BCA 66.482
BD-BCD-BCA 65.904
BB-BCD-BCA 65.899
BI-ACI-BCA 65.629

BD-BCK-AEA 54.078
BB-BCD-AAA 49.760
AI-AEB-BEA 41.814
BI-AED-AAA 18.740

ZZ-ZZZ-ZZZ 100.000
BD-ACI-BCA 71.180
BB-ACI-BCA 71.156
BD-BCI-BCA 70.358
BB-BCI-BCA 70.357
BI-BCI-BCA 70.044
BI-ACI-BCA 69.194
BB-BCI-BEA 68.735
BD-BCI-BEA 68.725
BD-ACI-BEA 68.266
BB-ACI-BEA 68.247

BB-BCI-AAA 59.352
BD-AEB-BEA 54.232
BI-BED-ACA 47.367
BI-AED-AAA 28.173

ZZ-ZZZ-ZZZ 100.000
BD-ACI-BCA 64.507
BB-ACI-BCA 64.490
BI-ACI-BCA 62.260
BD-ACI-BEA 61.588
BB-ACI-BEA 61.566
BB-BCI-ACA 61.535
BD-BCI-ACA 61.513
BB-BCI-BCA 61.426
BD-BCI-BCA 61.412
BI-BCI-BCA 61.207

BB-BCB-BCA 54.659
BD-BFD-ACA 52.312
AI-BEB-ACA 48.346
BI-AED-AAA 32.139

Table 14: Mechanisms with best overall performance when grouped by effectiveness metric

characteristics), by the effectiveness metric that is being used (even for the same query characteristics and
same database), and by the terms present in those queries (even for the same query characteristics and same
database and same effectiveness metric).

4 Conclusions

We commenced this investigation with several aims. First, we wished to enumerate previously articulated
similarity functions and cast them into a uniform framework with systematic nomenclature. This alone we
felt to be worthwhile, and we believe that others will find our notation and formulations useful and worth
adoption.

Our second goal was to experiment with these measures, explore the space they define, and identify
good measures and good components. We did not achieve this goal—indeed, we now suspect that it is
unattainable. The measures do not form a space that can be explored in any meaningful way, other than
by exhaustion. Even restricting ourselves to a subspace including several measures that were thought to
work well, we not only failed to find any particular measure that really stood out but discovered that no



ap2wsj2 fr2ziff2

1
2
3
4
5
6
7
8
9

10

100
200
400
720

ZZ-ZZZ-ZZZ 100.000
BD-ACI-BCA 78.273
BB-ACI-BCA 78.268
BI-ACI-BCA 78.258
BI-ACK-BCA 77.388
BI-BCK-ACA 77.388
BD-ACK-BCA 77.074
BD-BCK-ACA 77.074
BB-ACK-BCA 77.071
BB-BCK-ACA 77.071
BI-ACI-BEA 75.996

AB-BCK-BCA 69.376
BD-AEI-BCA 64.005
AD-AEI-BCA 57.391
BI-AED-AAA 34.827

ZZ-ZZZ-ZZZ 100.000
BD-BCI-BCA 59.279
BB-BCI-BCA 59.268
BI-BCI-BCA 57.953
BB-BCD-BCA 57.457
BD-BFK-BCA 57.453
BB-BFK-BCA 57.449
BD-ACI-BCA 57.433
BD-BCD-BCA 57.419
BB-ACI-BCA 57.382
BB-BCI-BEA 57.269

BI-BCD-BAA 46.080
BD-ACK-BCA 40.729
AB-AEI-BAA 34.829
BI-AED-AAA 17.874

Table 15: Mechanisms with best overall performance when grouped by collection

Overall

1
2
3
4
5
6
7
8
9

10

100
200
400
720

ZZ-ZZZ-ZZZ 100.000
BD-ACI-BCA 67.853
BB-ACI-BCA 67.825
BB-BCI-BCA 66.317
BD-BCI-BCA 66.309
BI-BCI-BCA 66.114
BI-ACI-BCA 65.694
BB-BCI-BEA 64.189
BD-ACI-BEA 64.185
BB-ACI-BEA 64.165
BD-BCI-BEA 64.165

BB-BFK-BAA 55.947
BB-BFD-BEA 52.169
BD-BED-BCA 46.260
BI-AED-AAA 26.351

Table 16: Mechanisms with best overall performance

measure consistently worked well across all of the queries in a query set. Both average-case performance and
individual-case performance is poor for even the best measures overall. Likewise, no component or weighting
scheme was shown to be consistently valuable across all of the experimental domains; that is, success in
one domain was a poor predictor for success in another. Moreover, variations such as choice of base for a
logarithm could have as profound an effect as more principled modifications; it is thus difficult to assess
whether “improvements” are the result of better understanding of the problem of information retrieval, or
are simply the chance peaks that arise in complex domains.

It is, however, clear that better performance can be obtained—by choosing a similarity measure to suit
each query on an individual basis. But it seems implausible to suppose that a mechanism for making such a
choice could be found, or that the weights for a grand combination-of-evidence mechanism could be sensibly
chosen. When evaluating a query, the type of data, the type of query, the query itself, the evaluation metric,
and as far as we know the type of answer, all matter. Looked at another way, the variability is sufficiently
great that no single method attains better than about two thirds of what we now know can be attained by
an ideal mechanism.

This work is not complete, but we cannot see any clear route forward that would allow us to bring it to
a satisfactory conclusion. Indeed, in many ways the contradictory and confusing results we have achieved



Correlated t test results
Query set Title Title
Formulation AI-AFD-BCA BI-BCK-BCA AI-AFD-BCA BI-ACI-BCA
Mean value 0.265 0.245 0.265 0.247
Wins 96 54 94 56
Calculated t 3.4 3.5

Query set Narrative Narrative
Formulation BI-BCK-BCA AI-AFD-BCA BI-BCK-BCA BI-ACI-BCA
Mean value 0.288 0.211 0.288 0.282
Wins 118 31 73 76
Calculated t 9.2 1.3

Query set Full Full
Formulation BI-ACI-BCA AI-AFD-BCA BI-ACI-BCA BI-BCK-BCA
Mean value 0.362 0.296 0.362 0.355
Wins 123 27 88 62
Calculated t 9.8 1.4

Table 17: Significance results using the correlated t test. All entries refer to eleven-point recall-precision
average (Table 10) and the ap2wsj2 collection

discourage us from hoping that a “silver bullet” for information retrieval can ever be found. We welcome any
suggestions that you may have that might help us discern the patterns in this apparently chaotic behaviour.
In the meantime, when in doubt, use BD-ACI-BCA.

Data The retrieval effectiveness results summarised in Tables 10, 11, and 12 are available in full at
http://www.cs.mu.oz.au/~alistair/exploring/. We hope that other researchers will avail themselves
of this resource.
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