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ABSTRACT
Large-scale web and text retrieval systems deal with amounts of
data that greatly exceed the capacity of any single machine. To
handle the necessary data volumes and query throughput rates, par-
allel systems are used, in which the document and index data are
split across tightly-clustered distributed computing systems. The
index data can be distributed either by document or by term. In this
paper we examine methods for load balancing in term-distributed
parallel architectures, and propose a suite of techniques for reduc-
ing net querying costs. In combination, the techniques we describe
allow a 30% improvement in query throughput when tested on an
eight-node parallel computer system.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content analysis and
indexing – indexing methods; H.3.2 [Information Storage and Re-
trieval]: Information storage – file organization; H.3.3 [Information
Storage and Retrieval]: Information search and retrieval – search
process; H.3.4 [Information Storage and Retrieval]: Systems and
software – performance evaluation.

General Terms
Efficiency, performance, algorithms.

1. INTRODUCTION
The amount of data that must be handled by a large-scale in-

formation retrieval system greatly exceeds the capacity of any sin-
gle machine. For example, web search engines manage collections
measured in the terabyte range; if this volume of data were to be
stored and indexed on a single computer, queries would take many
tens of seconds to evaluate with even the most efficient index rep-
resentations and query resolution methods.

To handle the necessary data volumes and query throughput rates,
parallel systems are used, in which the document and index data are
split across tightly-clustered distributed computing systems. For
example, in a document-distributed system, each processing node
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stores the index corresponding to a subset of the documents; queries
are processed in parallel at all nodes; and collated back into a single
combined answer when all nodes have completed their local pro-
cessing. Every node participates in the resolution of every query.

An alternative is to use a term-distributed index, in which each
of the processing nodes maintains complete index information for
a subset of the terms in the collection, and each query is referred to
the subset of the nodes that hold relevant information. In a standard
term-distributed query resolution method, a receptionist receives a
query, requests the index information for the query terms from the
pertinent nodes, and processes this information centrally. Com-
pared to document-distributed parallelism, such term-distributed
indexing has the drawback of a severe bottleneck at the receptionist.
An alternative is the pipelined term-distributed evaluation strategy
of Moffat et al. [2005], where the query processing is distributed
across the nodes. Document-partitioning achieves more even load
balancing than does pipelining, but has the disadvantage of requir-
ing more disk accesses, because the index information for each
term is stored across multiple machines.

In this paper we examine methods for load balancing in pipelined
term-distributed architectures, and propose a suite of techniques for
reducing net querying costs. In particular, we explore the load dis-
tribution behavior that pipelining displays, and show that the imbal-
ances can be addressed by techniques that include predictive index
list assignments to nodes, and selective index list replication.

In combination, the techniques we describe allow a 30% im-
provement in query throughput when tested on an eight-node par-
allel computer system, and result in a term-distributed implementa-
tion of parallel querying that approaches the query throughput rates
of a document-distributed system, with lower total CPU workloads.

2. DISTRIBUTED RETRIEVAL
In a standard monolithic retrieval system, a collection of docu-

ments and an index for the documents are stored on the same server.
An efficient representation of an inverted index consists of a vocab-
ulary of indexed terms and, for each term, an inverted list of infor-
mation about which documents contain the term. The inverted list
might also contain information such as within-document frequen-
cies, and word positions in the document. Queries are resolved by
fetching the inverted lists corresponding to the query terms, and
using the list information to incrementally build a set of accumu-
lators that, by the time the last term has been processed, store the
similarity of each document to the query. Through careful run-time
pruning of documents with low similarity [Lester et al., 2005], the
set of accumulators can be kept small, with no more than one accu-
mulator for every 100 indexed documents.

A parallel, or tightly distributed, retrieval system is one in which
responsibility for the management of the collection of documents
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is partitioned, under centralized control, over multiple computers
sharing a high-bandwidth network.

Other types of distributed system include meta-search systems,
where queries are processed centrally but the individual document
collections are independent; and peer-to-peer systems, in which
there is no central coordination, possibly low-bandwidth network
connectivity, and unknown amounts of document duplication. We
do not consider these kinds of distributed system here. While tech-
niques developed for meta-search, such as collection selection, have
some appeal as a way of reducing costs in the document-distributed
systems described below, the fact that they are less effective than
fully indexed systems make them attractive only when other ap-
proaches cannot cope.

Nor do we consider mirroring – building of multiple copies of
the complete system so as to correspondingly multiply throughput.
Our concern here is with retrieval environments in which there is
so much data that storing it all on a single machine would be ei-
ther impossible, because of hardware limitations; or impractical,
because of excessive response times to queries.

Two principal distribution paradigms have been developed. One
approach is to have a document distributed index and a correspond-
ing query processing regime. In a document-distributed system, the
collection is split across the k available processors (or nodes), so
that each node is responsible for approximately 1/k th of the col-
lection. Nodes then build local indexes for those partitions, and
answer queries against them. Queries to the system as a whole are
routed to all of the k nodes in the network, each of which evaluates
the query and returns a set of r results to the coordinating machine
(the receptionist). The receptionist then collates the rk answers
into a final list, and returns the top r of them to the user.

Document distribution has a number of natural advantages, not
the least of which is that each machine is in essence managing
a smaller monolithic collection – an arrangement for which in-
dex construction and query processing mechanisms are well un-
derstood. Document distribution also ensures a relatively stable
balance of workload across the k machines, since each is process-
ing the same queries, at the same time, at roughly equal cost. In
addition, document distribution provides natural support when the
documents themselves are to be supplied to the user – they can be
retained on the machine that indexed them.

The alternative is term-distribution. In a term-distributed in-
dex, each processor stores index information about a subset of the
terms, rather than a subset of the documents. When the reception-
ist receives a query it requests index information from the relevant
nodes, and combines that information to form a list of overall an-
swers. Only nodes that store information relating to a term in that
current query are required to take any action.

The key advantage of term-based distribution is that there are
fewer disk accesses, because index information for each term is
now stored in just one location. Term-distribution also implies that
less main memory is required for storage of redundant vocabulary
information, freeing up memory for useful caching; in a document-
distributed system, each node must maintain vocabulary informa-
tion for every term within its partition, and a large number of terms
appear in more than one partition.

Term-based distribution does, however, have a major disadvan-
tage – in the simple form described here, the receptionist becomes
a bottleneck, and, because the bulk of the actual computation is
performed using the index lists, starves the other nodes of useful
work. In effect, the nodes become little more than inverted list
servers; Moffat et al. [2005] show that standard term distribution
is unable to obtain significant gains in throughput when additional
machines are made available. Moreover, even if the inverted lists

do not contain word positions they can be long, meaning that sig-
nificant network traffic might be incurred.

Since the nodes are doing little work, while the receptionist is
at full load, there is a severe load imbalance. The issue of load
balancing is central to our contributions in this paper. The next sec-
tion describes a pipelined approach to query evaluation in a term-
distributed environment, and then Section 4 returns to the issue of
load balancing.

3. THE PIPELINED APPROACH
In a term-distributed system, an obvious way to eliminate the

bottleneck at the receptionist is to have multiple query evaluators,
one at each node. Each node can then request term information as
needed from other nodes, and return completely evaluated queries
to the receptionist. However, such an approach has two disadvan-
tages. One is that the movement of term lists creates a significant
amount of network traffic. The second is that the caching behav-
ior at each node is poor, as memory is used both for the lists held
at that node and for lists that have been imported from elsewhere.
Our experience with monolithic and document-distributed systems
is that effective use of memory as a cache of recently processed
lists – there tends to be high temporal locality in use of query terms
– is critical to achieving high throughput.

An alternative approach to eliminating the bottleneck is to use
pipelining [Moffat et al., 2005]. In this approach, the query is eval-
uated in stages by the sequence of nodes that hold the inverted lists
corresponding to the query terms. The key idea is that rather than
pass around inverted lists, a partially evaluated query – represented
by the set of accumulators, or document-similarity contributions
corresponding to the terms that have already been processed – is
circulated to the relevant nodes. Each node that receives the query
package applies the updates generated by one or more of the query
terms, and then passes the package to the next addressee on the
routing list that accompanies it.

In the pipelined approach, the query evaluation strategy is term-
by-term. For example, suppose that there are k = 8 nodes, and
that a query has four terms, t1, t2, t3, and t4, with the inverted
lists held on nodes A (t1), B (t2 and t3), and C (t4). Evaluation of
the query begins on node A, which processes the list corresponding
to term t1 to produce an initial set of accumulators. This set is
passed to node B, which processes the lists for t2 and t3 against
these accumulators to produce a modified set. The modified set
is passed to node C, which applies the updates generated by the
index list for t4 to produce a final set of accumulators, and from
them extracts the top r answers to return to the receptionist. The
only work the receptionist need do is receive each query, plan its
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Figure 1: Example of pipelined query evaluation.
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path through the nodes, and return the answer lists to the user, as is
shown in Figure 1.

In pipelining, each node needs to have enough memory set aside
for accumulators for each of a fixed number of threads (the number
of simultaneous threads needs to be capped to a reasonable level to
prevent thrashing), so the impact on caching is lower than the first
version of distributed query evaluation outlined above. The net-
work traffic is limited to the accumulator structures that are passed
around between nodes.

However, experiments with pipelining revealed shortcomings in
the method [Webber and Moffat, 2005, Moffat et al., 2005]. The
most acute was load balance – a small number of query terms con-
tributed a significant fraction of the total workload. These were not
necessarily the most common terms in the collection, but rather,
were terms whose product of their frequency in the collection and
their frequency in the query stream meant that a disproportion-
ate proportion of total processing effort was being spent on them.
The nodes that held the index information for these high-workload
terms were busier than the remainder, leading to load imbalance.
Over short sequences of queries, this problem could be exacerbated
by phenomena such as locally high repetition of particular query
terms. While these problems could potentially be ameliorated by,
for example, caching answers to recent queries, even without repe-
tition of queries the problem would remain.

In the next section we describe alternative approaches to load
balancing in a pipelined distributed retrieval system, and in the sub-
sequent section report on our experiments measuring the impact of
these approaches.

4. LOAD BALANCING
In their summary of the pipelined approach, Moffat et al. [2005]

conclude that a lack of natural load balancing in the pipelined ap-
proach is a serious handicap, and that a random assignment of terms
to processing nodes risks serious bottlenecks emerging. In partic-
ular, if two relatively high workload terms are placed on the same
machine, then it is hard for other machines to operate at full effi-
ciency, and overall throughput suffers.

Moffat et al. define workload as follows: for a term t that ap-
pears in a query batch Qt times, and has an inverted list that is Bt

bytes long (using some appropriate representation, including com-
pression), the workload Lt associated with that term in that batch
is given by

Lt = Qt × Bt .

The workload associated with a processing node is the sum of the
workloads of the terms assigned to that node. That is, the workload
of a node is the total length of compressed inverted lists that must
be processed at that node during the execution of a query stream.

To investigate the problem of load balance, we used a version of
the Zettair search engine1 to index the 426 GB GOV2 crawl of the
.gov domain used in the TREC Terabyte Track since 2004. All
the experiments in this paper are on this data. Zettair was modified
by us to support document-distributed and pipelined distributed re-
trieval; with a necessary part of the modification being the addition
of multi-threaded query evaluation. For these initial experiments
with load, we used a set SYNQ of queries that have been artificially
adapted to the GOV2 crawl to give term-frequency, repetition, and
answer-frequency properties close to those of real queries (the Ex-
cite97 query log) on general web data (the TREC wt10g collection)
[Webber and Moffat, 2005].

Table 1 illustrates the nature of the load balancing problem. To
1See http://www.seg.rmit.edu.au.

Processor
Batch

2 3 4 5 6
1 0.64 0.56 0.66 0.69 0.56
2 1.00 1.00 1.00 1.00 1.00
3 0.55 0.58 0.54 0.64 0.73
4 0.46 0.57 0.56 0.56 0.46
5 0.51 0.46 0.51 0.57 0.55
6 0.69 0.61 0.69 0.57 0.60
7 0.56 0.40 0.44 0.40 0.48
8 0.57 0.51 0.61 0.67 0.64

Imbalance 1.61 1.70 1.59 1.57 1.59

Table 1: Load imbalance for the pipelined retrieval system when
terms are assigned to nodes using a single random assignment.
Each batch reflects a simulated evaluation of the workload asso-
ciated with 10,000 SYNQ queries, across k = 8 processors. The
last row shows the ratio of the largest load to the average load, over
that batch. The larger that value, the greater the imbalance.

prepare the table, a set of 60,000 SYNQ queries was broken into six
batches each of 10,000. A random assignment of term lists to pro-
cessors was effected via a hash function, and then the workloads
of the query batches evaluated with respect to the term assignment,
by simply calculating values for Lt and then summing them, with-
out actually answering the queries. For each query batch, the node
assigned the heaviest workload in this simulated environment was
normalized to a value of 1.0, and the workload at all of the other
nodes assigned pro-rata values between 0.0 and 1.0.

The resulting normalized workload ratios for a single random
assignment is shown in Table 1. For reasons that are explained
shortly, results are not shown for batch one. The table clearly shows
that, by luck, processor two has been assigned a combination of
terms that results in it having the heaviest workload in all five of the
batches for which results are given; on the other hand, processors
four, five, and seven are half-idle.

The final row of Table 1 shows the factor by which the work-
load on the node with the heaviest load in each batch exceeds the
average across all eight processors. The larger this value, the more
likely it is that there will be nodes on the network that are being
starved of useful computation. In turn, starvation results in lowered
overall throughput; in an ideal situation, the peak:average work-
load ratio would be 1.0, and all nodes would share the workload
equally. The imbalance of around 1.6 shown in Table 1 represents
a starting point for the investigation reported in this paper, and a
crystallization of the effect noted by Moffat et al. [2005].

5. REDUCING IMBALANCE
To smooth the workload across the processors, it is necessary

to ensure that no one processor is responsible for an excessive
number of high-workload terms. Two separate strategies suggest
themselves: distributing the inverted lists such that the workload is
evenly balanced; and duplicating inverted lists such that the same
high-workload term is managed by multiple processors.

There are several possible approaches to an even-balance dis-
tribution of inverted lists. An obvious approximation is to base
the term-to-processor assignment on the set of term frequencies ft,
on the assumption that the number of pointers in each inverted list
roughly corresponds to the workload generated by that list when
queries are being answered. This mechanism has the advantage of
being query independent.
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Strategy
Batch

Avg
2 3 4 5 6

Random 1.45 1.44 1.46 1.50 1.48 1.47
Using ft 1.43 1.20 1.23 1.40 1.42 1.34
Past Lt 1.14 1.26 1.23 1.19 1.17 1.20
Current Lt 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Estimated load imbalances with different term assignment
strategies. Each batch reflects a simulated evaluation of the work-
load of 10,000 SYNQ queries, across k = 8 processors, as a ratio
of the largest workload to the average workload, for that strategy.
Imbalances for the “Random” row are the averages over 1,000 ran-
dom assignments of terms to nodes. The last column shows the
average imbalance over the five query batches.

Alternatively, the distribution can be based on the workload Lt,
computed in arrears for some previous part of the query stream. In
this “past Lt” method, workload assessment is computed at the end
of each query batch, and assumed to generate a term assignment
that is then used through the whole of the next query batch. (This
is why no results are reported for query batch one in any of the
tables – in this approach, batch one is used as the workload model
for batch two, and so on.)

As an exploration of the potential gains available through redis-
tribution, it also makes sense to consider a hypothetical “current
Lt” system that knows (perhaps via an oracle of some sort) the
workload distribution for each batch at the beginning of that batch.

Once per-term workload estimates have been prepared, there is
also the question as to how to use them. The obvious approach is
to assign terms to processors in a round-robin manner, to guarantee
that the heaviest workload terms do not reside on the same machine.
However, while such an approach puts equal numbers of terms on
each machine, it does not result in balance. To see why, imagine
that the heaviest term is temporarily held back, and all of the other
terms assigned to nodes, starting from node two. If the round-robin
approach yields a balanced set of workloads, this process should
result in a balanced workload; but when the first term is then as-
signed to node one, significant imbalance must result. That is, the
round-robin method does not in fact give balanced workloads.

Instead, we employed a fill smallest approach that considered
each term in turn, from heaviest workload through to least, and
assigned it to the machine that had (through until this moment)
been assigned the least total workload. This approach results in
nodes hosting different numbers of terms, but having very similar
total workloads.

Table 2 shows simulated workload imbalance numbers for these
strategies, compared to the starting point of random assignment
(one example of which is shown in the last row of Table 1). As
these results show, although the term frequency ft is a significant
component of the inverted list length Bt, which in turn is a factor
in Lt, the query frequency count Qt wields a much stronger in-
fluence. A static assignment of terms to nodes based on ft alone
provides performance only slightly better than a random assign-
ment. At the other extreme, the “Current Lt” approach (naturally)
attains a simulated workload imbalance average of 1.00.

A confounding issue is that it is possible for one term in the query
stream to be so common that, even its inverted list were placed on a
machine by itself, the workload would not be balanced. Splitting of
lists across more than one machine, by separating them into parts,
is not a satisfactory solution, as it increases network traffic. A more
attractive option is to replicate lists, so that the receptionist is able

Strategy
Batch

Avg
2 3 4 5 6

Duplicate 1 1.26 1.20 1.10 1.17 1.11 1.17
Duplicate 10 1.06 1.29 1.17 1.18 1.16 1.17
Duplicate 100 1.09 1.14 1.10 1.13 1.15 1.12
Duplicate 1000 1.08 1.09 1.07 1.19 1.09 1.10
Multi-replicate 1.05 1.12 1.09 1.16 1.12 1.11

Table 3: Estimated load imbalances with different amounts of in-
dex list replication. All assignment is via the fill smallest term as-
signment strategy based on the “Past Lt” approach (see Table 2).
When multiple servers host a query term, a random choice is made
between them by the receptionist. Results can be compared with
the third row of Table 2.

to choose between alternative routings for a high-workload query,
and so that the effort associated with processing a given list can be
shared across multiple machines.

Replicating every list is unlikely to be satisfactory. Doing so
would require doubling the storage at each machine, and would un-
dermine the effectiveness of caching, as twice the volume of index
data is active at each node. Moreover, most of the benefit of replica-
tion is likely to be observed by considering only the high-workload
terms. We thus propose selectively replicating the inverted lists of a
small number of high workload terms, potentially halving the peak
workload associated with each copy of the list.

A first issue is the number of lists to replicate. Table 3 shows the
effect of duplicating the lists of the highest-workload 1 to 1,000
terms. The final “multi-replicate” row shows a more complex ar-
rangement in which the most frequent index term is placed on all
eight processors; then another nine terms are placed on four of
them; then another ninety terms are placed on two processors. As
Table 3 shows, replication can indeed lead to better (simulated)
workload balance. Replication is not guaranteed to improve per-
formance, as can be seen by comparing the rows “Duplicate 1” and
“Duplicate 10”.

Another potential problem in Table 3 is that making a random
choice (when choice is available) for the query routing may not be
ideal. Rather, it makes sense to route each query to the alternative
host that has the smallest workload, so that the system is adaptive to
the balance of query terms in the current batch. Having the recep-
tionist track assigned workload in this way represents a temporal
equivalent of the “fill smallest” approach, and allows unexpected
interactions between terms to be at least partially allowed for. That
is, when a choice of routing is available, a better strategy is to send
the query to the processor that has had the least volume of query
work assigned to it so far.

Table 4 shows the effect of making this change. As can be seen,
load-based query routing combined with replication can lead to al-
most perfect (simulated) load balance. Multi-replication appears to
be unnecessary for this data and queries, but might be important
if there were still serious load imbalances not addressed by mere
replication. Nor does it seem likely that replicating every list would
lead to further improvements in balance.

Replication does, of course, add to the total storage required by
the index, especially since it is exactly the high-frequency terms
that get duplicated. The next section reports on actual query through-
put results for some of these options, including the additional stor-
age cost incurred.
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Strategy
Batch

Avg
2 3 4 5 6

Duplicate 1 1.26 1.20 1.09 1.17 1.11 1.17
Duplicate 10 1.03 1.16 1.07 1.07 1.09 1.08
Duplicate 100 1.01 1.02 1.01 1.03 1.02 1.02
Duplicate 1000 1.00 1.00 1.00 1.00 1.01 1.00
Multi-replicate 1.01 1.00 1.00 1.00 1.01 1.00

Table 4: Estimated load imbalances with different amounts of in-
dex list replication, using SYNQ queries. All assignment is via the
smallest-first term assignment strategy based on the “Past Lt” ap-
proach (see Table 2). Load tracking (rather than random choice) is
used to set the routing when queries contain replicated terms. Re-
sults can be directly compared with the matching rows of Table 3.

6. LIVE EXPERIMENTATION
A simulation is never better than the assumptions on which it

is based, and sometimes much worse. We also implemented a
document-distributed system, and the “Duplicate 100” distributed
system, using as a starting point for both a carefully engineered
version of the Zettair retrieval system.

The hardware used in all the experiments described in this sec-
tion is a Beowulf-style cluster of 8 computers, each a 2.8 GHz Intel
Pentium IV with 1 GB of RAM and 250 GB local SATA disk, sup-
ported by a dual 2.8 GHz Intel Xeon with 2 GB RAM running De-
bian GNU/Linux (sarge), with a 73 GB SCSI disk for system files
and twelve 146 GB SCSI disks for data in a RAID-5 configuration.
An important aspect of measurement in this area is to allow the ma-
chines to operate as efficiently as possible, and to this end all of the
software used allows multi-threaded operation, with as many as 32
queries concurrently active at any given time.

We also paid particular attention to file placement on disk, hav-
ing noted in previous work [Webber and Moffat, 2005] that vari-
ability in the way in which files were allocated could generate con-
siderable volatility in experimental measurements. A dedicated
“experimental” partition of the right size was maintained on the
local disk of each of the nodes, and the relevant index file copied
into it at the start of each experiment, so as to ensure that disk speed
did not become a factor in the experiments.

To carry out each experiment, a query stream (one batch) was
processed from beginning to end, after the previous batch was exe-
cuted in non-timed mode as a warm-up. The top r = 1,000 scoring
documents for each query were identified, and their TREC docu-
ment identifiers output. All words and numbers in the source col-
lection were indexed, and entered in a document-level index with-
out ordinal word positions. The software system Zettair makes
use of a byte-based compression regime that provides a compro-
mise between compression effectiveness and decoding speed. The
document-distributed index required 18.3 GB, including all vocab-
ulary files; the term-distributed index occupied 16.1 GB; and the
“Duplicate 100” term-distributed index required 16.7 GB.

Table 5 shows normalized query throughputs, measured in units
of terabyte queries per machine second. We use this unit of normal-
ized throughput as our yardstick (rather than unnormalized through-
put, measured in queries per second), because it takes into account
the two key factors that affect query rates in a scaling sense, namely,
the size of the collection, and the number of machines applied. For
example, if a cluster of k = 8 machines working with the GOV2 col-
lection processes a batch of 10,000 queries in 115 seconds (a typi-
cal run time for our experiments), then the unnormalized through-
put rate is 87.0 queries per second, and the normalized through-

Strategy
Batch

Avg
2 3 4 5 6

Hashed 4.04 4.05 4.29 4.34 4.10 4.16
Duplicate 100 5.09 5.00 5.28 5.34 5.41 5.22
Doc-distributed 5.36 5.50 6.02 6.07 5.82 5.75

Table 5: Measured query throughput rates on a Beowulf-style clus-
ter of 8 computers, each a 2.8 GHz Intel Pentium IV with 1 GB of
RAM and 250 GB local SATA disk, where each batch consists of
10,000 SYNQ queries executed against the GOV2 collection to iden-
tify the top r = 1,000 matching documents, and where the num-
bers reported are in units of terabyte queries per machine second.
As many as 32 simultaneous query threads were permitted. The last
column shows the average throughput over the five query batches.

Strategy
Batch

Avg
2 3 4 5 6

Hashed 4.66 4.60 4.69 4.59 4.36 4.58
Duplicate 100 6.13 5.84 5.83 5.91 6.00 5.95
Doc-distributed 7.86 7.87 7.90 7.89 7.81 7.87

Table 6: Measured sum of busy loads on processors, not including
the receptionist, for SYNQ queries.

put rate (taking into account collection size and number of proces-
sors in use) is 4.52 terabyte queries per machine second. If we
had wished to be even more precise, we could have replaced “ma-
chines” in this computation by “total processing gigahertz”; how-
ever, all the machines in our cluster have the same speed, and we
use the simpler computation.

The results in Table 5 show that selective replication based on
past workload, combined with load-based query routing, is a clear
improvement on random unreplicated term assignments. However,
despite the 30% gain in performance, pipelining still falls short
of the consistently high throughput rates achieved by document-
distributed indexing.

To try and understand why, Table 6 shows the sum, across the
eight processors (not including the receptionist), of the measured
busy time while each query batch is being processed, where “busy”
includes all non-idle activities. A value of 8.0 in this table would
indicate that the entire system was completely saturated with com-
putation throughout the processing, an outcome that would only be
attainable if all nodes were busy all of the time. Values below 4.0
indicate that more than half of the available processing resource is
wasted, and that nodes are being starved of work. As can be seen,
in document distribution the machines come very close to being
fully utilized, while for “Duplicate 100” pipelining the utilization
is just under 75%.

Table 7 shows the measured workload imbalance for the three
distributed retrieval schemes that were tested. These results show

Strategy
Batch

Avg
2 3 4 5 6

Hashed 1.63 1.67 1.59 1.67 1.75 1.66
Duplicate 100 1.06 1.06 1.07 1.05 1.10 1.07
Doc-distributed 1.01 1.01 1.01 1.00 1.02 1.01

Table 7: Measured workload imbalance across the eight proces-
sors, for SYNQ queries.
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Strategy
Batch

Avg
2 3 4 5 6

Hashed 1.82 1.82 1.86 1.84 1.83 1.83
Duplicate 100 2.21 2.14 2.25 2.17 2.20 2.19
Doc-distributed 2.21 2.25 2.24 2.31 2.27 2.26

Table 8: Measured query throughput rates for GOVQ queries. Other
details are identical to Table 5.

that our earlier simulations – which were used to help determine
which systems were worth full-scale implementation and testing –
were indicative but not completely accurate. Unreplicated pipelin-
ing was worse than predicted, while replication achieved slightly
better performance than we anticipated. These experiments illus-
trate that simulation is no substitute for live measurement, as the
impact of factors such as caching is extremely difficult to model.

Another possible limitation in our experiments was the use of
artificial queries, despite the care with which these queries were
constructed [Webber and Moffat, 2005]. We also had access to a
collection GOVQ of queries provided to us by Microsoft Search;
these are queries extracted from their search log for which one of
the top three ranked document was in the .gov domain. This log is
also somewhat artificial (due to possible selection bias); nonethe-
less it is a set of real queries that can be used for interrogating the
GOV2 crawl. The queries in the log were stopped to remove all
occurrences of the commonest six terms in the collection, and a
further stoplist of 310 words was used to stop all queries except for
those that would be reduced below three words.

Table 8 is identical in structure to Table 5, but uses these GOVQ

queries. The results are broadly consistent. Note that, due to the
different distribution of query terms and frequencies, throughput is
much lower than for the SYNQ queries.

The reason why the replicated pipelined method is unable to bet-
ter the document-distributed mechanism, even though the CPUs are
less busy, comes back down to load balancing, but now on a burst
level rather than a batch level, where a “burst” is defined to be a
short sequence of queries, perhaps a second’s worth. Over short
spans of time there are micro-imbalances in workload caused by
random chance in the query stream, with the query routings for
each burst often colliding at one or the other of the nodes han-
dling them. Figure 2 plots the average busy load over bursts of 100
queries at a time for a sequence of 2,000 queries, and the busy load
for one of the nodes. The average busy load is relatively steady,

5 10 15 20

Query burst number

0.0

1.0

2.0

Lo
ad

Load imbalance
Busy load node 1
Mean busy load

Figure 2: Busy load measured locally for twenty query “bursts”
each containing 100 queries, plotted for a single node and com-
pared to the average busy load across all 8 nodes. The upper line
shows the load imbalance in that query burst.

but the single machine uses a variable amount of CPU time during
each of the query bursts.

To allow for this volatility, we also tested a “decaying workload”
variant of the system, in which the estimates of total node workload
that were used as the basis for the routing decisions were slowly
eroded over time, so that the receptionist gives recent information
more weight, thereby perhaps eliminating localized hotspots. How-
ever, we were unable to substantially improve on the throughput
rates already reported. It would appear that workload imbalance
at the micro level remains an issue in the pipelined approach, even
after the workload imbalance at the macro level has been addressed.

7. SCALABILITY
One issue that is potentially very hard to deal with is that of

scalability. Linear growth in resource consumption as problem size
increases is a desirable attribute of any algorithm, but is something
that requires delicate argument when both data sizes and processing
power are simultaneously being increased. For example, it may not
be appropriate to show scalability by taking a fixed (even if large)
amount of data and showing that the time taken to solve a problem
is proportional to 1/k when k processors are used – the speed up
might, for example, have been achieved solely as a function of there
being more main memory (across the pool of machines) in which
fixed-size data structures can be accommodated.

More useful is to grow data volume and processor numbers at
the same rate, and ask whether performance can be maintained
at the previous levels. This approach is in contrast to the results
reported in Section 6, where the maximum amount of available
data is applied across the whole set of available machines. Ta-
ble 10 shows another view of distributed processing using the two
methods (document-distributed and pipelining using the “Dupli-
cate 100” approach). To construct the table, fractional collections
were indexed on subsets of the processors, and query throughput
rates measured. (Note that, to avoid excessive index rebuilding,
we made one simplification to the pipelined system, and instead of
building the index for each batch of 10,000 queries based on the
“Past Lt” approach, we built a single index based on the workloads
measured in the first batch of 10,000 queries, and then used that
term assignment for all five subsequent batches.)

Down the lead diagonal in each part of the table, data volume
grows in proportion to the number of processors, and in each of
those four experiments, each machine has a constant-sized set of
index information to manage. Normalized throughput is roughly
constant, indicating that the communications overhead with either
method is small.

Conversely, across the bottom row of each part of the table, a
fixed number of processors is used to index a growing total amount
of data, so that the amount handled on each machine also grows.
In these rows normalized throughput increases, showing that on a
single machine there are economies of scale to be obtained as data
volumes increase. For very small collections (when each node has
426/64 = 6.7 GB), the pipelined system outperforms the document-
distributed one, but at a relatively low normalized throughput rate.
If the number of simultaneous query threads is increased, pipelin-
ing also gains a relative advantage. For example, when 64 threads
are active the throughput of the pipelined system in the “k = 8,
1/1” entry of Table 10 rises to 6.48 terabyte queries per machine
second, compared with 6.42 for the document-distributed system.

Moving in the other direction, it is then interesting to speculate
as to which factors become important as data volumes and proces-
sor numbers increase beyond the levels at which we are able to
experiment. We do this via a two-stage “thought experiment”, in
which we first suppose that 10 times as much data (4.3 TB rather
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Processing When data volume increases 10-fold When data volume increases 100-fold, and k increases 10-fold
mode
Doc-
distributed

Each node has 10 times as many documents, and node
response takes 10 times longer. Unnormalized throughput
drops by a factor of 10; normalized throughput is unchanged.
Receptionist handles 1/10 as many queries, and spends the
same time on each one. Network traffic also drops by a factor
of 10. Summary: query response time = ×10, normalized
throughput = ×1.

Each node has 10 times as many documents, and node
response takes 10 times longer. Unnormalized throughput
drops by a factor of 10; normalized throughput is unchanged.
Receptionist handles 1/10 as many queries, but spends 10
times longer on each one. Network traffic is unchanged.
Summary: query response = ×10, normalized throughput =
×1.

Pipelined Each node has 10 times as much index data for the same
number of terms, so node processing times increase by a
factor of 10. Unnormalized throughput drops by a factor of
10; normalized throughput is unchanged. Receptionist
handles 1/10 as many queries, and spends the same time on
each one. If query package size grow linearly with collection
size, network traffic is unchanged. Summary: query response
= ×10, normalized throughput = ×1.

Each node has 100 times as much index data for 1/10 as
many terms, so node processing times increase by a factor of
100. Unnormalized throughput drops by a factor of 10;
normalized throughput is unchanged. Receptionist handles
1/10 as many queries, and spends the same time on each one.
If query packages grow linearly with collection size, network
traffic increases by a factor of 10. Summary: query response
= ×100, normalized throughput = ×1.

Table 9: Scalability options: in the first column, data volume alone is assumed to increase by a factor of 10; in the second column an
additional 10-fold growth in data volume (100-fold in total) is coupled with a simultaneous 10-fold increase in the number of processing
nodes. Note that query response time estimates assume that the system is not operating at peak throughput.

Strategy
Total collection size

1/8 1/4 1/2 1/1
Document-distributed
k = 1 5.89 – – –
k = 2 – 5.81 – –
k = 4 – – 5.86 –
k = 8 3.19 4.35 5.22 5.75
Duplicate 100
k = 1 5.89 – – –
k = 2 – 5.96 – –
k = 4 – – 5.69 –
k = 8 4.07 4.50 4.91 5.24

Table 10: Query throughput on fractional collections and processor
subsets, with 32 query threads active. Each value is the average
(over batches 2–6) of the normalized throughput, measured in units
of terabyte queries per machine second. Term assignments in the
pipelined method were based on batch one alone, rather than the
immediately prior batch.

than 426 GB) is to be indexed on the same k = 8 machines as
used in our experiments; and then, in a second stage of growth, that
another factor-of-10 increase in data, to 43 TB, is accompanied by
a corresponding growth in processors, to make k = 80. We sup-
pose throughout this discussion that the query mix is unchanged,
and that users continue to expect the system to respond with a list
of the r most highly ranked documents. In the sense of Table 10,
the two steps are represented as a further move to the right starting
at the bottom element in the last row, and then, in the second step,
a diagonal move down from that new point.

The question is this – what happens to overall query throughput
rates? Are there aspects of either document-distributed or pipelined
systems that become problematic? Table 9 summarizes our beliefs
in this regard, and highlights a key issue with the pipelined ap-
proach – because queries are processed sequentially, there is no
gain in response time to individual queries from parallelism. That
is, when the data size grows by a factor of 10 or 100, so too must
the response time to queries, regardless of how many processors
are applied. This behavior is in contrast to the performance of the

document-distributed system, where adding more processors to a
system has the benefit of reducing individual query response times.

There is one important caveat to be added to this discussion, and
that is to note that response times can only be low in either system
if they are operating at less than their peak throughput rates. When
any system is heavily loaded, with a queue of pending queries,
the latency between initiation and completion of each query is di-
rectly proportional to the number of query threads that are simul-
taneously active, and inversely proportional to the unnormalized
throughput. That is, per-query response time is an unhelpful con-
cept in a maximally-loaded system taking inputs one-by-one from
a queue of waiting queries.

8. PREVIOUS WORK
There is a substantial literature on distribution methods. Most of

these papers concern document distribution. Harman et al. [1991]
describe a document-distributed system that was successfully de-
ployed in practice. Cahoon and McKinley [1996] and Cahoon et al.
[2000] found that increasing the number of nodes used to manage
a fixed-size collection can improve response, with diminishing re-
turns; however, increasing the number of nodes without increasing
the collection size leads to results that cannot be meaningfully in-
terpreted, and that is the approach we have also taken here. A par-
ticular issue with much of the previous experimentation is that, due
to the many non-linear properties of such systems, the behavior as
collection size is increased is unknown.

Probably the best-known document-distributed system is Google
[Barroso et al., 2003], in which the a cluster of nodes maintain a
document-distributed index and other nodes store information such
as the documents themselves. The document distribution provides
fast response time; replication of clusters provides high throughput.

Some distribution methods can be categorized as hybrids. Pipelin-
ing [Moffat et al., 2005] has already been described. Another hy-
brid method is that of Xi et al. [2002a,b], where each inverted list is
broken into k fixed-size chunks and one chunk is held on each node.
A difficulty with this approach is that it has disadvantages com-
pared to both document distribution (where each node completely
indexes a sub-collection, so processing can be node-oriented) and
term distribution (where the number of disk accesses is minimized).
Whether there are advantages is unclear. Similar methods based on
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architectures such as connection machines [Cringean et al., 1990,
Stanfill, 1990] have the same issues.

Much of the literature on term-distributed methods consists of
papers comparing the term- and document-distributed approaches.
Unfortunately, this literature is inconsistent. Using artificial data,
Jeong and Omiecinski [1995] found in favor of document distri-
bution. On real data, but only 50 queries – insufficient to show
caching effects – MacFarlane et al. [2000] found the same result.
However, Tomasic and Garcı́a-Molina [1996] found that replica-
tion was needed for improvement in throughput. Contradicting all
of these results, both Ribeiro-Neto and Barbosa [1998] and Badue
et al. [2001] found that term distribution is superior.

However, much of the previous work is open to question. Arti-
ficial or small sets of data or queries are not likely to be predictive
of real-world behavior, and simulations designed to estimate time
must deal with a great many complex variables – including caching,
relativities of CPU speed, network bandwidth, network delay, disk
properties, term skew, and query skew – if they are to be realistic.
For example, such issues undermine the results of Cacheda et al.
[2004], who use simulation to compare distribution with replica-
tion, but neglect caching effects.

Hawking [1997], Melnik et al. [2001], and Lu and McKinley
[2003] have also contributed to the literature on distributed index-
ing and querying.

9. CONCLUSION
We have explored ways in which the load issues associated with

the pipelined distributed evaluation approach can be addressed. The
final mechanism involves a blend of advance workload estimation,
judicious list replication, and adaptive workload monitoring. These
techniques increase the throughput of term-distributed indexing by
30%. Nevertheless, local fluctuations in workload mean that each
node in the network is less than 100% busy, and while the final
throughput rates attained in our experiments remain tantalizingly
close to the rates achieved by an equivalent document-distributed
computation, we did not succeed in beating document distribu-
tion, despite the heavier CPU consumption of the latter. An impor-
tant conclusion of our investigation to date is thus that document-
partitioning retains its leading position as the method against which
others must be judged.
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