
Efficient Phrase Querying with an Auxiliary Index

Dirk Bahle Hugh E. Williams Justin Zobel
School of Computer Science and Information Technology

RMIT University, GPO Box 2476V
Melbourne, Australia, 3001.

{dbahle,hugh,jz}@cs.rmit.edu.au

ABSTRACT
Search engines need to evaluate queries extremely fast, a
challenging task given the vast quantities of data being in-
dexed. A significant proportion of the queries posed to
search engines involve phrases. In this paper we consider
how phrase queries can be efficiently supported with low disk
overheads. Previous research has shown that phrase queries
can be rapidly evaluated using nextword indexes, but these
indexes are twice as large as conventional inverted files. We
propose a combination of nextword indexes with inverted
files as a solution to this problem. Our experiments show
that combined use of an auxiliary nextword index and a con-
ventional inverted file allow evaluation of phrase queries in
half the time required to evaluate such queries with an in-
verted file alone, and the space overhead is only 10% of the
size of the inverted file. Further time savings are available
with only slight increases in disk requirements.

General Terms
Indexing, query evaluation

Keywords
Inverted indexes, nextword indexes, evaluation efficiency, in-
dex size, stopping, phrase query

1. INTRODUCTION
Search engines are used to find data in response to ad

hoc queries. On the Web, most queries consist of simple
lists of words. However, a significant fraction of the queries
include phrases, where the user has indicated that some of
the query terms must be adjacent, typically by enclosing
them in quotation marks. Phrases have the advantage of
being unambigous concept markers and are therefore viewed
as a valuable addition to ranked queries [6, 7].

In this paper, we explore new techniques for efficient eval-
uation of phrase queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

A standard way to evaluate phrase queries is to use an
inverted index, in which for each index term there is a list
of postings, and each posting includes a document identifier,
an in-document frequency, and a list of offsets. These offsets
are the ordinal word positions at which the term occurs in
the document. Given such a word-level inverted index and a
phrase query, it is straightforward to combine the postings
lists for the query terms to identify matching documents.
This does not mean, however, that the process is fast. Even
with an efficient representation of postings [16], the list for
a common term can require several megabytes for each gi-
gabyte of indexed text. Worse, heuristics such as frequency-
ordering [13] or impact-ordering [1] are not of value, as the
frequency of a word in a document does not determine its
frequency of participation in a particular phrase.

A crude solution is to use stopping, as is done by some
widely-used web search engines (the Google search engine,
for example, neglects common words in queries), but this
approach means that a small number of queries cannot be
evaluated, while many more evaluate incorrectly [12]. An-
other solution is to index phrases directly, but the set of
word pairs in a text collection is large and an index on such
phrases difficult to manage.

In recent work, nextword indexes were proposed as a way
of supporting phrase queries and phrase browsing [2, 3, 15].
In a nextword index, for each index term or firstword there
is a list of the words or nextwords that follow that term,
together with the documents and word positions at which
the firstword and nextword occur as a pair. The disadvan-
tage of a nextword index is its size, typically around half
that of the indexed collection. Also, as described originally,
nextword index processing is not particularly efficient, as the
nextwords must be processed linearly and (compared to an
standard inverted index) for rare firstwords the overhead of
the additional layer of structure may outweigh the benefits.

In this paper we propose that phrase queries be evalu-
ated through a combination of an inverted index on rare
words and a form of nextword index on common words. We
explore the properties of phrase queries and show experi-
mentally that query evaluation time can be halved if just
the three most common firstwords are supported through
a nextword index. While phrase browsing is not possible
with such an arrangement, the disk overheads of the partial
nextword index are small and the benefits are substantial.

We have observed that many ordinary queries — those
without quotation marks — nonetheless resolve successfully
if processed as a phrase query, a phenomenon that search
engine users are familiar with, as the most popular engines

highly rank matches in which the query terms are adjacent.
This suggests that phrase querying is a potential method for
a fast “first cut” evaluation method, as it allows more rapid
identification of documents in which the terms occur as a
phrase.

2. PROPERTIES OF QUERIES
With large web search engines being used daily by mil-

lions of users, it has become straightforward to gather large
numbers of queries and see how users are choosing to express
their information needs. Some search engine companies have
made extracts of their query logs freely available. In our re-
search, we have made extensive use of query logs provided
by Excite dating to 1997 and 1999, as well as more recent
logs from other sources. These logs have similar proper-
ties (with regard to our purposes), and we report primarily
on the Excite logs in this work. In the Excite log, after
sanitising to remove obscenity there are 1.583,922 queries
(including duplicates). Of these, 132,276 or 8.3% are ex-
plicit phrase queries, that is, they include a sequence of two
or more words enclosed in quotes. Amongst the rest of the
queries—those without a phrase— about 5% contain a word
that does not occur at all in the 21.9 gigabytes (Gb) of
data we use. However, almost exactly 41% of the remaining
non-phrase queries actually match a phrase in the 21.9 Gb
dataset we use in our experiments. A surprising propor-
tion of the phrases include a common term. Amongst the
explicit phrase queries, 11,103 or 8.4% include one of the
three words that are commonest in our dataset, “the”, “to”,
and “of”. 14.4% of the phrase queries include one of the
20 commonest terms. In some of these queries the common
word has a structural function only, as in tower of london,
and can arguably be safely neglected during query evalua-
tion. In others, however, common words play an important
role, as in the movie title end of days or the band name
the who, and evaluation of these queries is difficult with the
common words removed, especially when both “the” and
“who” happen to be common terms [12].

Taken together, these observations suggest that stopping
of common words will have an unpredictable effect. Stop-
ping may yield efficiency gains, but means that a significant
number of queries cannot be correctly evaluated. We exper-
imented with a set of 122,438 phrase queries that between
them match 309 × 106 documents. Stopping of common
words means that a query such as tower of london must
be evaluated as tower -- london: the query evaluation en-
gine knows that the two remaining query terms must appear
with a single term between them. If the commonest three
words are stopped, there are 390 × 106 total matches for
all queries extracted from the log. However, these are dis-
tributed extremely unevenly amongst the queries: for some
queries the great majority of matches are incorrect. The
figure rises to 490 × 106 for the commonest 20 words, and
1693× 106 for the commonest 254 words, while a significant
number of queries, containing only stopped words, cannot
be evaluated at all.

Amongst the phrase queries, the median number of words
in a phrase is 2, and the average is almost 2.5. About 34%
of the queries have three words or more, and 1.3% have six
words or more. A few queries are much longer, such as titles:
the architect of desire beauty and danger in

the stanford white family by suzannah lessard.

Another point of interest is where in a phrase the com-
mon words occur. In English, the common words rarely
terminate a phrase query. Only 0.4% of phrase queries with
“the”, “to”, or “of” have these words at the end. Almost all
of these queries are short: virtually no queries of four words
or more terminate with one of the commonest terms. In
the short queries ending in a common term, the other query
terms are themselves usually common. We take advantage
of these trends in the methods for phrase query evaluation
proposed in this paper.

3. INVERTED INDEXES
Inverted indexes are the standard method for supporting

queries on large text databases; there are no practical al-
ternatives to inverted indexes that provide sufficiently fast
ranked query evaluation. An inverted index is a two-level
structure. The upper level is a data structure such as a
B-tree containing all the index terms for the collection. For
text databases, the index terms are usually the words occur-
ring in the text, and all words are included. The lower level
is a set of postings lists, one per index term. Following the
notation of Zobel and Moffat [17], each posting is a triple of
the form:

〈d, fd,t, [o1, . . . , ofd,t
]〉

where d is the identifier of a document containing term t, the
frequency of t in d is fd,t, and the o values are the positions
in d at which t is observed. An example inverted file is shown
in Figure 1. In this example, there is a vocabulary of five
words, each of which has a postings list.

It is straightforward to use an inverted index to eval-
uate a phrase query. Consider the query magdalene sue

prentiss. Of these terms, “magdalene” is the rarest, and
its inverted list is fetched first. The postings are decoded
and a temporary structure is created, recording which doc-
uments contain this word and the ordinal word positions in
each document at which it occurs. The term “prentiss” is
the next rarest, and is processed next. For each document
identifier and word offset in the temporary structure created
earlier, a posting is sought to see whether “prentiss” is in
the document two words later. If the search fails, that word
position is discarded from the temporary structure, as is the
document identifier if no word positions for that document
remain. As both the structure and the postings are sorted,
this process is a linear merge. Then the postings list for
“sue” is fetched and decoded, and used to further delete en-
tries from the temporary structure. The remaining entries
are documents and word positions at which the phrase oc-
curs. Similar approaches have been described elsewhere [5,
10].

Summarising, phrase queries are evaluated as follows.

1. Sort the query terms from rarest to commonest, keep-
ing note of their original position in the phrase.

2. Fetch the postings list for the first (rarest) query term.
Decode this list into a temporary structure of docu-
ment identifiers and word offset positions.

3. For each remaining query term, decode its postings
list, merging it with the temporary data; this merge
process discards from the temporary structure all doc-
ument identifiers and word offsets that do not match
any entry in the postings list.

On Disk
Vectors

1,(<9,2,[4,1001]>)

53,(<9,3,[3,8,90] ...)

23,(<4,2,[5,34]>, ...)

243,(<5,1,[45]>,<9,1,[7]> ...)

In Memory
Vocabulary

new

in

historic

hampshire

railroads

15,(<1,1,[100]>,<9,1,[6]> ...)

Figure 1: An inverted file for a collection with a vocabulary of five words.

In this query evaluation model, processing of the first
query term establishes a superset of the possible locations
of the complete phrase, which are maintained in a tempo-
rary structure; as the subsequent query terms are evaluated,
this structure is pruned, never added to. It is thus essen-
tial to begin processing with the rarest query term, to avoid
creation of an excessively large temporary structure (or of
having to process the inverted lists in stages to stay within
a memory limit).

A simple heuristic to address this problem is to directly
merge the inverted lists rather than decode them in turn. On
the one hand, merging has the disadvantage that techniques
such as skipping [11] cannot be as easily used to reduce pro-
cessing costs (although as we discuss later skipping does not
necessarily yield significant benefits). On the other hand,
merging of at least some of the inverted lists is probably the
only viable option when all the query terms are moderately
common.

Whether the lists are merged or processed in turn, the
whole of each list needs to be fetched (unless query process-
ing terminates early due to lack of matches). For ranked
query processing it is possible to predict which postings
in each inverted list are most likely to be of value, and
move these to the front of the inverted list; techniques for
such list modification include frequency-ordering [13] and
impact-ordering [1]. With these techniques, only the first of
the inverted lists need be fetched during evaluation of most
queries, greatly reducing costs.

In contrast, for phrase querying it is not simple to predict
which occurrences of the term will be in a query phrase, and
thus such reordering is unlikely to be effective. Offsets only
have to be decoded when there is a document match, but
they still have to be retrieved.

Other techniques do have the potential to reduce query
evaluation time, in particular skipping [11], in which addi-
tional information is placed in inverted lists to reduce the
decoding required in regions in the list that cannot contain
postings that will match documents that have been identi-
fied as potential matches. On older machines, on which CPU
cycles were relatively scarce, skipping could yield substan-
tial gains. On current machines, however, disk access costs
are the more important factor, and in other experiments we
have observed that the increase in length of lists required
by skipping outweighs the reduction in decoding time. We
therefore do not use skipping in our experiments.

We have implemented a phrase query evaluator based on
inverted lists, using compression techniques similar to those
employed in MG [16] to reduce costs, and have used it to
test the efficiency of phrase query evaluation. Our test data

Table 1: Size of inverted index (Mb) after stopping
of common words.

Number of Index size
words stopped (Mb)

0 2350
3 2259
6 2195

10 2135
20 2089

254 1708

Table 2: Times for phrase query evaluation (sec-
onds) on an inverted index after stopping of com-
mon words. Results are shown for all queries; 2-
word queries only; and 5-word queries only.

Number of Overall 2-word 5-word
words stopped time (sec) queries queries

0 1.56 0.49 6.41
3 0.66 0.30 1.94
6 0.45 0.29 1.07

10 0.40 0.28 0.81
20 0.37 0.28 0.70

254 0.18 0.16 0.26

is 21.9 Gb of HTML containing about 8.3 Gb of text (drawn
from the TREC large web track [9]).

Table 1 shows the size of the index with a range of levels
of stopping. As can be seen, the three commonest words
account for around 4% of the index size, and only small space
savings are yielded by stopping. However, as Table 2 shows,
the impact of stopping on query evaluation time is dramatic.
Just removing the three commonest words reduces average
time by about 60%, and by a factor of 3 for longer queries.
For these longer queries, the savings continue to increase as
more common words are stopped. It is the scale of these
savings that make stopping attractive, despite the fact that
they are at the cost of inaccurate query results.

4. NEXTWORD INDEXES
Inverted indexes allow evaluation of phrase queries, but

faster evaluation is possible with phrase-oriented indexes.
One possibility is to use a conventional inverted index in

which the terms are word pairs. Another way to support
phrase based query modes is to index and store phrases
directly [8] or simply by using an inverted index and ap-
proximating phrases through a ranked query technique [5,
10]. Greater efficiency, with no additional in-memory space
overheads, is possible with a special-purpose structure, the
nextword index [15], where search structures are used to ac-
celerate processing of word pairs. The nextword index takes
the middle ground by indexing pairs of words and, therefore,
is particularly good at resolving phrase queries containing
two or more words. As noted above and observed elsewhere,
the commonest number of words in a phrase is two [14].

A nextword index is a three-level structure. The highest
level is of the distinct index terms in the collection, which we
call firstwords. At the middle level, for each firstword there
is a data structure (such as a front-coded list, or for fast
access a structure such as a tree) of nextwords, which are
the words observed to follow that firstword in the indexed
text. For example, for the firstword “artificial”, nextwords
include “intelligence”, “insemination”, and “hip”. At the
lowest level, for each nextword there is a postings list of the
positions at which that firstword-nextword pair occur.

An example nextword index is shown in Figure 2. In this
example, there are two firstwords, “in” and “new”. Some
of the nextwords for “in” are “all”, “new”, and “the”. For
each firstword-nextword pair, there is a postings list. (A
nextword index is of course a form of inverted index, but for
consistency with other work we use “inverted index” solely
to refer to a standard word-level inverted file.)

In nextword indexes, the postings lists are typically short,
because most pairs only occur infrequently. For example,
the postings list for the firstword-nextword pair “the”·“who”
is orders of magnitude smaller than the postings lists for
these words in an inverted file. It follows that phrase query
evaluation can be extremely fast.

Nextword indexes also have the benefit of allowing phrase
browsing or phrase querying [4, 15]; given a sequence of
words, the index can be used to identify which words fol-
low the sequence, thus providing an alternative mechanism
for searching text collections. We do not consider phrase
browsing further in this paper, however.

For phrase queries of more than two words, multiple post-
ings lists must be fetched from the nextword index to resolve
the query. Selection of which listings to fetch requires a little
care. For example, with the query

boulder municipal employees credit union

the query can be resolved by fetching the postings lists for
the firstword-nextword pairs “boulder”·“municipal”, “em-
ployees”·“credit”, and “credit”·“union”. Alternatively, it
would be possible to get the lists for “boulder”·“municipal”,
“municipal”·“employees”, and “credit”·“union”. Which is
most efficient depends on which is shorter: the list for “em-
ployees”·“credit” or the list for for “municipal”·“employees”.

Unfortunately, establishing which is shorter requires two
disk accesses, to retrieve the nextwords for “employees” and
“municipal”. However, we have observed that the frequency
of a firstword closely correlates to the lengths of its nextword
lists. Thus in the query

historic railroads in new hampshire

we can with confidence choose “railroads”·“in” in preference
to “in”·“new”, because “railroads” is much less common

than “in”. Algorithms for choosing order of evaluation are
considered by Bahle, Williams, and Zobel [3]. An efficient
algorithm for evaluating phrase queries with a nextword in-
dex is as follows.

1. If the number of query terms n is even, the query
can consist of n/2 disjoint firstword-nextword pairs. If
the number of query terms n is odd, dn/2e firstword-
nextword pairs must be chosen. However, in both cases
it is more efficient to choose more than the minimum
number of pairs, if doing so avoids choice of a common
word as a firstword.

2. The method we use is to choose all n − 1 firstword-
nextword pairs; then sort them by increasing firstword
frequency; then discard from the list the pairs that
are completely covered by preceding selections. This
approach can lead to processing of more than dn/2e
pairs, but experimentally was shown to reduces costs
overall.

3. The selected word pairs are sorted by increasing fre-
quency of the firstwords, then their postings lists are
processed as for inverted file phrase query processing.

The size of a nextword index is 4487 Mb, almost exactly
twice that of an inverted file. For phrase queries, the sav-
ings in query evaluation time are dramatic. Average query
evaluation time is reduced to 0.06 seconds, faster than in-
verted files by a factor of 25. For two-word queries, the time
falls to 0.01 seconds, which is faster by a factor of 50. The
time for 5-word queries is 0.32.

An interesting possibility suggested by these results is
that—given space for a nextword index—all queries be eval-
uated as if they were phrases. We observed above that a
significant fraction of all queries successfully evaluate, and
indeed on browsing the query logs it is obvious that many
of the queries without quotation marks are nonetheless in-
tended to be phrases. Spink et al. [14] suggest that most
two word queries should be treated as a phrase query even
if they were entered as a ranked query. Given that search
engines return as highest matches the pages in which the
query words appear in sequence, use of a nextword index
provides a rapid mechanism for finding these pages.

Much of the speed improvement for phrase queries yielded
by nextword indexes is for queries involving a non-rare word.
Indeed, for queries of rare words there may be little gain, as
query processing with nextword indexes involves more com-
plex structures than does processing with inverted indexes.
As the two approaches to phrase query processing appear,
then, to have complementary advantages, it is attractive to
try to combine their strengths.

5. COMBINED QUERY EVALUATION
We have observed above that inverted indexes are the

least efficient for phrases involving common words, the case
where nextword indexes yield the greatest speed advantage.
We therefore propose that common words only be used as
firstwords in a stripped-down nextword index, and that this
new index be used where possible in evaluation of phrase
queries. We call this a top frequency based scheme, since
only the most frequent words are indexed in the nextword
index. We have explored other schemes based on the fre-
quency of words in the indexed collection, or based on the

In Memory
Vocabulary

On Disk
Nextword Lists

in

new

...

age

hampshire

house

...

the

all

new

On Disk Inverted Vectors

15,(<1,15,[100]>,<65,1,[1]>,<74,7,[23,43,54,62,68,114,181,203]>, ...)

1,(<9,1,[6]>)

3,(<1,1,[12]>,<34,3,[23,34,111]>,<77,1,[29]>)

305,(<9,2,[7,199]>,<532,1,[256]>, ...)

2,(<9,1,[423]>,<19,1,[4]>)

2,(<31,3,[21,41,91]>,<44,1,[34)]>)

Figure 2: A nextword index with two firstwords.

frequency of words in the query log. None of the investi-
gated schemes offered a better space and time trade-off, so
we report only results from the top frequency scheme.

An example of a top frequency combined index is shown
in Figure 3. At the left there is a vocabulary of five words.
Each word has an inverted list, together constituting a com-
plete inverted file for these words. In addition, the common
words “in” and “new” have a nextword index.

With a combined index, processing involves postings lists
from both the inverted index and the nextword index. Con-
sider again the query:

historic railroads in new hampshire

Neither “historic” nor “railroads” is a common word, so
establishing that these terms occur in the phrase involves
fetching their postings lists from the inverted index and pro-
cessing in the usual way. However, “in” and “new” are both
common. The posting list for the firstword-nextword pair
“in”·“new” from the nextword index must be fetched and
processed. Then there is a choice. On the one hand, the
nextword index postings list for “new”·“hampshire” cannot
be longer than the inverted index postings list for “hamp-
shire” and in all likelihood is a great deal shorter. On
the other hand, compared to the inverted index, an ex-
tra disk access is required to fetch a postings list from the
nextword index. In our implementation, we process using
the nextword index if possible, and resort to the inverted
index only for terms that are not in an indexed firstword-
nextword pair.

In summary, we use the following process:

1. Identify all pairs in the list in which the first term is
an indexed firstword. Sort these terms, and prune the
list as for standard evalution of phrase queries via a
nextword index.

2. For all terms not in a firstword-nextword pair, sort.

3. Process the postings lists in increasing order of first-
word frequency, so that processing of nextword index
lists and of inverted file lists is interleaved.

In this model, a common word need only be evaluated via its
postings list in the inverted file if it occurs as the last word
in a query, which in the Excite query log is a rare event.

We have tested other query resolution methods that in-
volved term sorting based on nextword frequency (or NWF,
the number of nextwords for a firstword), inverted docu-
ment frequency (or IDF, the number of documents in which

Table 3: Size of nextword index (Mb) containing
only common firstwords.

Number of Index size
common words (Mb)

3 254
6 427

10 520
20 657

254 1366

a word occurs), or both. We also experimented with resolv-
ing nextword entries of a given query always first, or always
last. We found overall that these different resolution meth-
ods did not significantly vary in query speed and behaved
almost identically to sorting by IDF only. This is why we
propose sorting inverted index terms and nextword terms
based on IDF only: we do not need to keep another statis-
tical value per index term and sorting is straightforward.

In Table 3 we show sizes of nextword indexes in which
only the commonest terms are allowed as firstwords. For
a nextword index on the three commonest terms only, for
example, it can be seen that the space consumed is just over
10% of the size of the inverted index or around 1% of the
size of the original HTML collection.

Query evaluation time with a combined index is shown
in Table 4. (The “0” line is repeated from Table 2.) In
contrast to earlier tables of evaluation time in this paper, in
every line of this table all queries are correctly resolved. As
can be seen, use of a nextword index allows evaluation of all
phrase queries, and much more rapidly than was previously
possible. Use of a partial nextword index of 1% of the HTML
collection halves query evaluation time; a partial nextword
index of less than 3% of the size of the collection cuts time
to a third. The time savings with more aggressive stopping
are less significant, but the additional disk costs with more
stopping are small.

These are substantial savings at low cost. Phrase query
processing time with a nextword index is only slightly greater
than with a stopped inverted file, and no answers are lost.

Such combined processing can be integrated with other
heuristics for phrase query evaluation. For example, a strat-
egy that is likely to be successful in the context of a web
search engine is to maintain indexes (perhaps for a lim-
ited time only) on phrases, or word pairs from phrases,

in

hampshire

historic

new

railroads

In Memory
Vocabulary

On Disk
Nextword Lists

...

the

all

new

15,(<15,1,[100]>,<65,1,[1]>,<74,7,[23,43,54,62,68,114,181]> ...)

251,(<5,1,[45]>,<9,1,[6]> ...)

1,(<9,1,[7]>)

23,(<9,3,[4,8,245]> ...)

2,(<1,1,[53]>,<9,2,[4,1001>])

23,(<1,2,[65,98]>,<9,4,[7,54,64,69]> ...)

age

hampshire

house

...

15,(<2,1,[100]>,<6,1,[1]>,<9,8,[1,5,54,62,68,114,181,203]> ...)

On Disk Inverted Vectors

3,(<1,1,[12]>,<34,3,[23,34,111]>,<77,1,[29]>)

2,(<31,3,[21,41,91]>,<44,1,[34]>)

305,(<9,2,[7,54]>,<532,1,[256]> ...)

2,(<9,1,[423]>,<19,1,[4]>)

Figure 3: A combined inverted file and nextword index.

Table 4: Times for phrase query evaluation (sec-
onds) on a combined index, with different numbers
of common words used in the nextword index. Re-
sults are shown for all queries; 2-word queries only;
and 5-word queries only.

Number of Overall 2-word 5-word
common words time (sec) queries queries

0 1.56 0.49 6.41
3 0.76 0.31 2.99
6 0.57 0.31 2.28

10 0.53 0.30 2.10
20 0.50 0.30 1.98

254 0.46 0.27 1.83

that are commonly posed as queries. Amongst our 132,276
queries, 72,184 are distinct. The commonest phrase query
(thumbnail post) occurs 205 times and involves no com-
mon words. The queries themselves contain 92,846 distinct
word pairs; the commonest pair occurs 683 times. Indexing
of common query pairs has the potential to yield significant
further savings.

6. CONCLUSIONS
We have proposed that phrase queries on large text col-

lections be supported by use of a small auxiliary index. In
this approach, all words in the text are indexed via an in-
verted file; in addition, the commonest words are indexed
via an auxiliary nextword index, which stores postings lists
for firstword-nextword pairs. We have shown that the cost
of evaluating phrase indexes can be cut by a factor of three,
with an auxiliary index that is only 3% of the size of the
indexed data.

These results show that there is no need to use stopping
in phrases. Indeed, the statistics on the number of matches
indicate that such stopping leads to significant error rates.
While it can be argued that mistakes in matching due to
stopping of common words will often be unimportant, we

have demonstrated that there is no reason to make such
mistakes at all.

Our schemes have scope for improvement. In particular,
choosing of pairs during query evaluation requires further
exploration, and we are further investigating structures for
representing nextword lists. However, our results show that
evaluation of phrase queries can be dramatically accelerated
with only a small additional index, and that stopping of
phrases leads to errors and is not necessary for efficiency.

7. REFERENCES
[1] V. N. Anh, O. Kretser, and A. Moffat. Vector-Space

ranking with effective early termination. In W. B.
Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors,
Proc. ACM-SIGIR International Conference on
Research and Development in Information Retrieval,
pages 35–42, New York, Sept. 9–13 2001. ACM Press.

[2] D. Bahle, H. Williams, and J. Zobel. Compaction
techniques for nextword indexes. In Proc. 8th
International Symposium on String Processing and
Information Retrieval (SPIRE2001), pages 33–45, San
Rafael, Chile, 2001.

[3] D. Bahle, H. E. Williams, and J. Zobel. Optimised
phrase querying and browsing in text databases. In
M. Oudshoorn, editor, Proc. Australasian Computer
Science Conference, pages 11–19, Gold Coast,
Australia, Jan. 2001.

[4] P. Bruza, R. McArthur, and S. Dennis. Interactive
internet search: keyword, directory and query
reformulation mechanisms compared. In N. J. Belkin,
P. Ingwersen, and M.-K. Leong, editors, Proc.
ACM-SIGIR International Conference on Research
and Development in Information Retrieval, pages
280–287, Athens, 2000.

[5] C. L. Clarke, G. V. Cormack, and E. A. Tudhope.
Relevance ranking for one- to three-term queries. In
Proc. of RIAO-97, 5th International Conference
“Recherche d’Information Assistee par Ordinateur”,
pages 388–400, Montreal, CA, 1997.

[6] W. B. Croft, H. R. Turtle, and D. D. Lewis. The use

of phrases and structured queries in information
retrieval. In A. Bookstein, Y. Chiaramella, G. Salton,
and V. V. Raghavan, editors, Proc. ACM-SIGIR
International Conference on Research and
Development in Information Retrieval, pages 32–45,
Chicago, 1991. ACM.

[7] E. F. de Lima and J. O. Pedersen. Phrase recognition
and expansion for short, precision-biased queries
based on a query log. In Proc. ACM-SIGIR
International Conference on Research and
Development in Information Retrieval, pages 145–152,
Berkeley, 1999. ACM Press.

[8] C. Gutwin, G. Paynter, I. Witten, C. NevillManning,
and E. Frank. Improving browsing in digital libraries
with keyphrase indexes. Decision Support Systems,
27(1/2):81–104, 1998.

[9] D. Hawking, N. Craswell, P. Thistlewaite, and
D. Harman. Results and challenges in web search
evaluation. In Proc. of the Eighth International
World-Wide Web Conference, volume 31, pages
1321–1330, May 1999.

[10] D. D. Lewis and W. B. Croft. Term clustering of
syntactic phrases. In J.-L. Vidick, editor, Proc.
ACM-SIGIR International Conference on Research
and Development in Information Retrieval, pages
385–404. ACM, 1990.

[11] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Transactions on Information
Systems, 14(4):349–379, Oct. 1996.

[12] G. W. Paynter, I. H. Witten, S. J. Cunningham, and
G. Buchanan. Scalable browsing for large collections:
A case study. In Proc. of the 5th ACM International
Conference on Digital Libraries, pages 215–223, San
Antonio, 2000.

[13] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes.
Journal of the American Society for Information
Science, 47(10):749–764, 1996.

[14] A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic.
Searching the web: The public and their queries.
Journal of the American Society for Information
Science, 52(3):226–234, 2001.

[15] H. Williams, J. Zobel, and P. Anderson. What’s next?
index structures for efficient phrase querying. In
M. Orlowska, editor, Proc. Australasian Database
Conference, pages 141–152, Auckland, New Zealand,
Jan. 1999.

[16] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, San Francisco, California,
second edition, 1999.

[17] J. Zobel and A. Moffat. Exploring the similarity
space. SIGIR Forum, 32(1):18–34, Spring 1998.

