
Clustering Near-Duplicate Images in Large Collections

Jun Jie Foo
School of Computer Science
and Info. Technology, RMIT

University, Australia
jufoo@cs.rmit.edu.au

Justin Zobel
School of Computer Science
and Info. Technology, RMIT

University, Australia
jz@acm.org

Ranjan Sinha
Dept. of Computer Science &
Software Eng., University of

Melbourne, Australia
rsinha@csse.unimelb.edu.au

ABSTRACT
Near-duplicate images introduce problems of redundancy
and copyright infringement in large image collections. The
problem is acute on the web, where appropriation of im-
ages without acknowledgment of source is prevalent. In this
paper, we present an effective clustering approach for near-
duplicate images, using a combination of techniques from
invariant image local descriptors and an adaptation of near-
duplicate text-document clustering techniques; we extend
our earlier approach of near-duplicate image pairwise iden-
tification for this clustering approach. We demonstrate that
our clustering approach is highly effective for collections of
up to a few hundred thousand images. We also show — via
experimentation with real examples — that our approach
presents a viable solution for clustering near-duplicate im-
ages on the Web.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering ; I.5.3 [Pattern Recogni-
tion]: Clustering—Algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
clustering near-duplicates, image clustering, near-duplicate
detection

1. INTRODUCTION
Duplicate and near-duplicate images — that is, variants

derived from the same original image — are common amongst
the vast numbers of images on the web. The existence of
such near-duplicates in web image searches indicate the pres-
ence of redundancy, and may also represent violations of
copyright. The detection of such instances is challenging
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Figure 1: A snapshot of the first 28 image results
returned by Google Images using the query “Edvard
Munch Madonna”.

due to the multitude of possible variations of images. Ma-
nipulation and re-rendering of images is straightforward, as
simple digital editing operations (for example conversion to
grayscale, change in colour balance, rescaling, rotating, and
cropping), easily defeats simple image duplicate detection
methods.

Consider the example in Figure 1, which shows the first 28
image results returned by the Google image search engine1

for the text-based image query “Edvard Munch Madonna”.
Most of the returned images are nearly identical; others are
clearly derived from one another, reflecting revisions of the
same image. From the perspective of a user, it is attractive
to be able to group these duplicate and near-duplicate in-
stances into a set, so that a greater variety of relevant images
can be presented more effectively; this also allows the user to
avoid viewing re-occurrences of the same image (or variants
of it) in the result set. Grouping these image variants into
their respective sets also enables infringements of copyright
to be efficiently detected; each set can be further perused to
identify suspect images. Thus, the ability to identify such
variants with a reasonable degree of reliability and accuracy
would allow detection of copyright violations, and reduce re-
dundancy within collections and during the presentation of
search results.

In this paper, we propose a clustering approach — adapted
from near-duplicate text document clustering [4] — to iden-
tify and cluster near-duplicate images; we show this adap-
tation by extending our previous method of near-duplicate
pairwise image identification [9]. First, we describe the
adaptation of this clustering technique to the image do-
main where images are characterized using PCA-SIFT [16],
a type of invariant local descriptor. We then provide empir-
ical evidence to show that our proposed clustering approach

1http://images.google.com
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is highly effective for clustering near-duplicates in large im-
age collections (of up to 300 000 images). Significantly, we
demonstrate that it manages such tasks using only modest
processing time. Furthermore, we show that our clustering
technique offers an effective solution that is indeed practi-
cal for web images; we observe high effectiveness in our ex-
periments in clustering real-world near-duplicate examples
gathered from the web.

2. BACKGROUND
In the research literature, near-duplicate images have been

categorized into three main groups based on the nature of
modifications from the original [7, 14, 26]: scene, which are
changes effected by movement, addition, or occlusion of im-
age subjects or objects; camera, which are changes due to
differing camera viewpoint or angle; and image, which de-
scribe changes due to digital manipulation such as filtering,
cropping, colour, contrast, or resolution alteration. In this
work, we focus on the detection of image variants through
image changes, where we assume that the original image and
its variants share the same digital source, and that the co-
derivation is evident to a human observer. Examples of such
include multiple photographs of the same scene, or multiple
photographs of a painting; these are near-duplicates that
seem almost identical without a common digital source. Al-
though they are not syntactically identical, they may be of
interest for the detection of copyright violation.

For near-duplicate image detection, Ke et al. [17] pro-
pose using interest-points that are highly robust for object-
recognition and correspondence matching for the matching
of near-duplicate images. For this task, they demonstrate
near-perfect accuracy on a collection of 18 000 images using
their Scale Invariant Feature Transform (SIFT) [18], charac-
terized by PCA-SIFT local descriptors [16], but scalability
was poor even for a moderate-sized collection. To improve
scalability, we showed in previous work that pruned SIFT
features that are characterized using the same PCA-SIFT
descriptors can lead to great gains in efficiency with negligi-
ble loss in accuracy for large collections [8].

Meng et al. [20] propose perceptual distance functions
— also known as Dynamic Partial Functions (DPF) — for
near-duplicate retrieval using CBIR colour and texture im-
age features, wherein they observe limited effectiveness; this
method has also been observed to suffer from low effective-
ness for severe image alterations [10]. Qamra et al. [23]
show that a higher level of effectiveness can be achieved
with this method using statistical analysis and sampling,
but its efficiency is unclear. Lu and Hsu [19] demonstrate
mesh-based image hashing technique for retrieval of near-
duplicate images on a collection of 20 000 images, but the
method showed only limited effectiveness on even less severe
alterations; scalability remains an issue.

Most research in this field approach the problem from the
query-based retrieval perspective, whereby, given a query
example, the aim is to identify near-duplicate instances —
with respect to the query image — in an image collection;
clustering near-duplicate images has not been extensively
investigated. In early work, Chang et al. [5] proposed the
RIME system for clustering of near-duplicate images using
a cell-based indexing scheme, where they show high effec-
tiveness for 10 near-duplicate images in a moderate-sized
collection of 30 000 images. The effectiveness of their ap-
proach was tested on a small number of near-duplicate im-

ages containing minor alterations [5]; efficacy on more vari-
ations of near-duplicates in larger collections is unknown.
Zhang and Chang [26] demonstrate that attributed rela-
tional graphs can be applied for near-duplicate image detec-
tion using a combination of machine learning and stochastic
models to assess the similarity between two near-duplicate
images; they use this method to automatically identify near-
duplicate pairs within a video dataset. The results observed
on the TRECVID video keyframes using this method suffers
from low effectiveness [26]; the efficiency is also unclear as
only a small dataset of 600 images were tested. Neverthe-
less, Zhang and Chang [26] were perhaps the first to address
the challenges of automatically identifying all near-duplicate
image instances within a given collection without the use of
a query example.

In more recent work [9], we propose using hash-based
probabilistic counting — originally used for near-duplicate
text-document detection [24] — for near-duplicate images.
We undertook a preliminary investigation in the adaptation
of this technique, and showed that it can be used for accurate
pairwise identification of near-duplicate images — character-
ized by local descriptors — in a moderate-sized collection.
In this work, by extending this method, we propose a new
clustering technique for near-duplicate images by borrowing
another technique originally proposed by Broder et al. [4] for
clustering near-duplicate text-documents. We describe the
adaptation of this clustering algorithm for our application
in Section 6. Next, we describe the invariant image local
descriptors used in our work.

3. INVARIANT LOCAL DESCRIPTORS
The idea of local descriptors is to detect interesting re-

gions surrounding a certain point that possess properties
that are robust to photometric changes and geometric vari-
ation, so that each region can be computed as distinctive
local descriptors. Broadly, the process of computing local
descriptors can be divided into two steps: first, characteris-
tic and robust image points or regions are detected (using
interest point detectors [22]) from an image, then distinctive
features can be computed based on these detected points or
surrounding regions — typically based on the analysis of
pixel statistics or gradient information [21] — to be used
for matching purposes; then, each local descriptor is usually
summarized into a high-dimensional feature vector that can
be matched in an Lp-metric space. Thus the number of de-
scriptors is dictated by the cardinality of the set of detected
interest points from an image.

Several types of local descriptor have been proposed, in-
cluding SIFT [18], PCA-SIFT [16], SURF [2], and GLOH [21].
Although some work has been done to evaluate the effec-
tiveness of these descriptors for object recognition and cor-
respondence matching [21, 22]; there is no consensus on
the most appropriate choice of local descriptor for the task
of near-duplicate image detection. In this work, we apply
the PCA-SIFT local descriptors that has been shown to be
highly accurate for near-duplicate image matching [8, 17],
and more compact than other descriptors [16].

The PCA-SIFT local descriptors were originally proposed
as an alternative way to compute SIFT detected interest
points or regions.2 The processes of SIFT interest point de-
tection, and PCA-SIFT local descriptor generation, are as

2We use the terms points and regions interchangeably.
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follows. In the initial stage of the SIFT algorithm, all local
peaks are identified in various locations and scales using a
difference-of-Gaussian (DoG) function computed by a pyra-
midal scheme. Then, by thresholding using contrast levels
and ratios of principal curvature [18], poorly localized and
unstable peaks are discarded. Next, after all stable peaks are
found, each peak is assigned a dominant orientation for ro-
tation invariance; where orientation is computed using gra-
dients of the regions centered around identified peaks. A
stable peak (scale and location information) along with its
dominant orientations, is known as a keypoint [18]. To com-
pute the local descriptors, the PCA-SIFT uses the vertical
and horizontal gradients of the regions surrounding each de-
tected interest keypoint; the x and y gradients are sampled
using a 39 × 39 patch, producing a 3042 element feature
vector for each region. This vector is then projected to 36
dimensions using PCA; two local descriptors are deemed a
match in this high-dimensional space if their L2-distance is
within 3 000 [16].

In our previous work [8], we showed that the highly dis-
tinctive PCA-SIFT descriptors can be used on even a severely
pruned set of DoG interest regions. This is achieved using
a simple ranking scheme to threshold and reject poorly lo-
calized peaks so that only a subset of interest points are
considered. We showed that using approximately 100 in-
terest points gives the same level of effectiveness as the
original scheme, and results in great gains in efficiency for
near-duplicate image matching; we use the pruned version
in this work. As a large collection of images can produce
up to hundreds of thousands of local descriptors, all local
descriptors are first indexed (prior to clustering) using a
high-dimensionality index structure as in the work of Ke
et al. [17] so that each local descriptor can be more effi-
ciently compared when needed; we describe indexing of local
descriptors in the next section.

4. INDEXING LOCAL DESCRIPTORS
We now describe the process of indexing the local de-

scriptors for a given image collection. To index a set of
high-dimensional local descriptors, we use the Locality Sen-
sitive Hashing (LSH) — an index scheme [1, 11, 13] for ap-
proximate nearest-neighbour matching in high-dimensional
spaces. The idea of LSH is to use a family of hash functions
to ensure that the probability of collision of two points is
correlated to the distance between them.

Given a set of local descriptors (points) p ∈ P , an LSH
hash function can be defined as gi(p) = (h1(p), . . . , (hk(p)),
for i = 1, . . . , l, where k determines the probability of col-
lision, and l determines the fraction of false negatives [13].
A family of functions can be efficiently computed with a
Hamming space Hd for d dimensions [11], whereby each d-
dimensional vector p(x1, . . . , xd) can be mapped to a Ham-

ming cube Hd′
with d′ = Cd (where C denotes the largest

coordinate in P ), turning vector p to a binary Hamming
string p′ while preserving the properties of a hash func-
tion. Given a transformed vector of p′, a hash gi(p), for
i = 1, . . . , l, can be obtained by a projection of vector p′ onto
the coordinate set Ii (where I consists of randomly sampled
k elements from {1, . . . , d′}) essentially hashing point p to
bucket gi(p). The number of hash buckets, by this approach,
can be large depending on the cardinality of set P ; thus, a
second level of standard hashing is used to map the contents

of gi(p) to a hash table [11]. Hence, there are a total of l LSH

indexes, each using the LSH functions from the Hd′
family.

The size of each hash table M is determined using: M = n
αB

where n is the total number of points in a collection, and
B is maximum number of points in each hash bucket; the
utilization parameter to 0.5 as it has been shown to perform
well for near-duplicate image detection [17, 8].

When comparing two points using the LSH index, the
hash value for a single point is used to retrieve the corre-
sponding hash bucket; the neighbourhood search is limited
to only those points that fall within that bucket. Thus, the
neighbourhood of an approximate match is reduced consid-
erably to those that share identical hash values. The prob-
ability of collision within the index is dictated by the k ran-
dom bits that are selected to create the hash. A large k
value results in a low collision probability; whereas a small
k value causes the opposite effect. Using l independent in-
dexes increases accuracy as those that are missed by one
index may be retrieved by other indexes. The tunable pa-
rameters for the LSH index are l and k, both of which are
critical for efficacy. We experiment with these parameters
for our clustering algorithm in Section 8.

Using the LSH index, the cost of comparing two images
largely depends on the cardinality of the set of descriptors
P in any given image. For example, an image with 1000 lo-
cal descriptors requires 1000 point queries to the LSH index
for evaluation. As each image is treated as a bag-of-points,
this approach can be computationally intensive given a large
number of local descriptors. All points that collide within a
given hash table are approximated, by the L1-distance (em-
bedded in the Hamming space), to be closer to each other
than those that do not. As most local descriptors are de-
signed to be matched within the L2-norm [21], there can
also be a considerable number of false positive matches as a
result of this approximation — one of the drawbacks of this
scheme. An additional L2-norm verification can be used to
discard false positive matches under the L1 [17], but has
been observed to have limited impact on effectiveness [11,
9]. Any additional verification during clustering incurs an
overhead to efficiency — a crucial factor for clustering of
large image collections. In this work, we use the LSH index
proposed by Gionis et al. [11] where we assume similarity
of two local descriptors by a hash-collision in the L1-norm,
as it has been shown to perform well for retrieval of near-
duplicate images [17], and automatic identification of near-
duplicate image pairs [9].

5. PROBABILISTIC COUNTING
The concept of hash-based probabilistic counting (HPC) [3,

24] was originally proposed for near-duplicate text document
detection; it was adapted in our previous work for the task
of identifying near-duplicate image pairs within an image
collection [9]. Here, we briefly describe our adaptation of
probabilistic counting to local descriptors; then, by extend-
ing this approach, we propose a clustering algorithm in the
following section.

Using the LSH index, the post-indexing phase of local
descriptors of an image can be mapped to a series of hash-
keys across l indexes, such that two features sharing identical
keys are, with high confidence, close to each other (under
the L1-norm) in a d-dimensional space. Our approach is
similar to the visual vocabulary approach [12, 25], in that
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Figure 2: Process of hash-based probabilistic counting of local descriptors using the LSH index and the
inverted list.

a set of local descriptors are mapped to cluster centers (or
a single representative units) by vector quantization using
k-means on some training data [25]. Instead of mapping
descriptors to a single unit, we map each local descriptor
to l representative units by utilizing the LSH indexes; this
has been shown to yield high accuracy [9, 10]. Using this
approach, each hash-key can be treated as a set of l units,
akin to words in text, and thus an image is transformed
into a series of representative units that can be stored in
an inverted list [27]; wherein each entry consists of a list of
images containing the local descriptor that share identical
hash-keys. The rationale is that image pairs that share large
quantities of identical hash-keys are highly likely to be near-
duplicates of each other.

Using the HPC method, all possible image pairs in every
entry of the inverted list can be rapidly hashed to an array
A of m counters using a universal hash function h [24]. For
a pair of images with identifiers (ID) of imgID1 and imgID2,
that share co-occurring entries (units) in the inverted list,
A[h(imgID1, imgID2)] is incremented; this is essentially a
probabilistic hash-counter. That is, it may sometimes gen-
erate spurious pairs due to hash collisions when image pairs
with no co-occurring descriptors share identical hash loca-
tions within an LSH index with the ones that do. This phe-
nomenon is typically observed with high probability when
incommensurate hash-counters are used. As we are only
concerned with matches between two images with at least a
minimum number of matching descriptors [9], thresholding
was introduced to reject image pairs that do not have suffi-
cient matches. Thus, a small range of threshold values (T )
can be implemented such that the width of a hash counter
is upper-bounded to reduce the effects of hash-collisions.
Once the appropriate pairs have been approximated using
the probabilistic hash-counter, matching features between a
pool of vastly reduced image pairs can be counted exactly.
That is, a tally is kept for every unique image pair using a
static structure with no possibility of collision, thereby pro-
ducing a list of <imgID1, imgID2, counter> triplets. As
such, each counter reflects the actual number of local de-
scriptor matches between any two images amongst l LSH
indexes; this process is illustrated in Figure 2.

In previous work, we demonstrate the applicability of this
approach for the identification of near-duplicate image pairs
and show high effectiveness [9]. Given that the HPC method
uses the LSH index, the efficacy of this method is directly
affected by the tunable LSH parameters l and k, and the
threshold value T . Later in Section 8, we show — via ex-

perimentation of these parameters — that the HPC method
can be extended to accurately cluster near-duplicate images
into non-overlapping sets within large image collections. We
describe the clustering algorithm in the following section.

6. THE CLUSTERING ALGORITHM
The identification of near-duplicate image pairs can be

conceptualized as a graphing problem [3, 9], where each
node represents a unique image, and the presence of an
undirected edge between two nodes reflects an existing near-
duplicate relationship between the images. As such, a col-
lection of N images can be represented as a weighted graph
of G = (V, E); where a set of nodes V = {1, . . . , N} repre-
sents the images, and E = {s(i, j) : i, j ∈ V } represents the
set of edges between every pair of nodes in the graph. s(i, j)
denotes the approximated local descriptor matches between
two nodes of i and j.

Once an image collection is processed by the HPC method,
each triplet 〈imgID1, imgID2, counter〉 can be seen as two
nodes with a weighted edge between them, where the num-
ber of approximated local descriptor matches (henceforth re-
ferred to as similarity) is reflected by the edge weight, Thus
the aim is to find an efficient solution for discriminating be-
tween unique images and near-duplicates, and to accurately
form non-overlapping clusters for each near-duplicate set;
this is akin to identifying disjoint partitions within a graph.

We propose adapting the clustering approach by Broder
et al. [4] — originally used for text documents — for near-
duplicate images. They show that using triplets of 〈docID,
docID, count〉 generated from text documents can be used
for effective clustering. By examining each triplet, they
unite (add an edge in between) two nodes (documents) from
an union-find algorithm if the pair of the examined triplet
has a count of common shingles [4] exceeding a certain thresh-
old. A shingle is simply the smallest unit by which a text
document can be partially represented, similar to the repre-
sentative units of hash-keys used in the HPC method. When
all triplets have been examined, clusters are created by iden-
tifying all the disjoint sets of connected nodes. Although
the generation of the triplets (as used by Broder et al.) uses
exact counting of common shingles, which is less scalable
than the probabilistic approach of Shivakumar and Garcia-
Molina [3, 24] (as adapted in the HPC method), the pro-
posed clustering method remains viable. That is, the scal-
ability issues imposed by the algorithm of Broder et al. is
limited to the process of identifying document pairs.
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We conjecture that near-duplicate images form natural
clusters that can be accurately identified by this approach;
a high similarity between two near-duplicate images is of-
ten indicated by a large number of matching local descrip-
tors. Thus, by using a suitable threshold, we can effec-
tively gather near-duplicates into their respective clusters.
We can then create m clusters of {C1, . . . , Cm} where two
non-overlapping clusters can be defined as: Ca

T

Cb = ∅,
a �= b and

Sm
a=1 Ca = V ′. Using this algorithm, clusters are

formed for only the set of nodes (V ′) with non-zero weighted
edges, that is, image pairs without any matching local de-
scriptors are not considered during clustering. Thus, the
clustering algorithm is performed on G′(V ′, E′), for V ′ ⊆ V
where E′ = {s(i, j) ≥ T : i, j ∈ V }, and T is the inclusion
threshold for the nodes in each triplet.

The threshold T used for clustering is similar to that used
for identifying image pairs (as discussed in Section 5). How-
ever for clustering, we conjecture the value of T to be signif-
icantly different due to the transitive property of the near-
duplicate relationship. That is, for three near-duplicate im-
ages of A, B, and C, where A shares high similarity with B
but not with C (due to its indirect derivation from B), im-
ages A and C remains associated due to the approximated
matches between images B and C that exceed the thresh-
old. Thus a pair of nodes within a cluster may have an edge
weight below a certain threshold T but are indirectly associ-
ated via another node within the same cluster. In this work,
we empirically determine a suitable threshold for clustering
near-duplicates by experimenting with the parameter T , the
cluster threshold .

7. EVALUATION METHODOLOGY
We now describe the experiments used to empirically demon-

strate the effectiveness of our clustering approach. First, we
evaluate the effect of varying the parameters l and k — the
choice of which is critical for large image collections — of
the LSH index to determine the optimal settings by which
to perform clustering. The aim is to study the impact of
these parameters on the effectiveness of near-duplicate pair-
wise image identification — the HPC method — that are
subsequently used for clustering.

The effectiveness of this experiment can be measured with
the coverage measure using artificially generated edges from
the nodes (images) in a test collection. Artificial edges (or
reference edges [9]) can be generated using a collection of
known or predefined near-duplicate image pairs. For exam-
ple, 10 groups of 5 near-duplicate images each will generate
10 × 5×4

2
= 100 edges. Thus, coverage — similar to the

recall metric in document retrieval literature — can be de-
fined as [3, 9]: Coverage = EI

ER
, where EI denotes the total

number of algorithm-identified edges that also appear in the
set of artificial edges, and ER indicates the total number of
artificial edges. Second, using a series of experiments, we
observe the effects of l and k on the clustering algorithm
both in terms of accuracy, size of identified clusters, and
the number of identified edges for a given collection; we also
perform timing experiments. We study the effect of varying
the threshold value T to determine its effects on the quality
of clusters.

To measure the quality of the generated near-duplicate
clusters, we borrow two measures from Chen et al. [6], namely
purity and entropy . Given a set of N images that belong to
c distinctive near-duplicate groups — denoted by 1, . . . , c —

that are formed into m clusters Cj , j = 1, . . . , m, purity for
a single cluster Cj can be defined as [6]:

p(Cj) =
1

|Cj | max
k=1,...,c

|Cj,k|

where |Cj | is the size of the cluster (number of images), and
Cj,k denotes a set of images in cluster Cj that belong to a
near-duplicate set k. Note that c and m are independent
variables as the ideal number of clusters and the number of
algorithm-identified clusters do not necessarily coincide.

Purity is the ratio of the dominant near-duplicate set
within a cluster to the cluster size. This measure is simi-
lar to the precision metric in retrieval literature, since Cj,k

returns the number of relevant images in the dominant near-
duplicate set of the cluster. Entropy for cluster Cj is defined
as [6]:

h(Cj) = − 1

log c

c
X

k=1

|Cj,k|
|Cj | log

|Cj,k|
|Cj |

This measure is used to quantify the distribution of the dif-
ferent near-duplicate sets within a cluster; values are nor-
malized to be between 0 and 1. A low-entropy value in-
dicates that the cluster consists of primarily a single near-
duplicate set, whereas a high-entropy value reflects a mix-
ture of different sets. Thus, in contrast to purity, an ideal
algorithm will form all clusters with entropy values of 0, as
each cluster contains only images that are near-duplicate
instances of one other. Additionally, we also measure the
average purity and entropy of each near-duplicate set, re-
spectively defined as:

p(k) =
1

mk

mk
X

j=1

p(Cj) , h(k) =
1

mk

mk
X

j=1

h(Cj)

where mk denotes the number of clusters containing images
from near-duplicate set k.

Although purity and entropy are informative measures,
they are insufficient indicators of the content of each clus-
ter [6]. To this end, we also measure and report recall and
precision — used in standard IR literature — of the near-
duplicate set, which are respectively defined as:

R(k) =

Pmk
j=1 |Cj,k|
|k| , P r(k) =

Pmk
j=1 |Cj,k|

Pmk
j=1 |Cj |

where |k| indicates the size of the known near-duplicate set
k. When used with purity and entropy along with mk, recall
and precision can provide an accurate indicator as to the
quality of a cluster in terms of completeness and clustering
precision.

Image Collections
To generate artificial clusters for our experiments, we se-
lect 200 unique images from the Corel Photo CD collection
and apply 50 alterations to each image. Thus each of the se-
lected 200 images has 50 altered versions, resulting in 10 000
seed images that form 200 unique non-overlapping clusters.
To create our first collection C1, we use all 10 000 seed im-
ages and randomly select an additional 140 000 images from
the SPIRIT collection [15] to serve as noise, thereby creating
a collection of 150 000 images. We then create a larger col-
lection C2 of 300 000 by adding a completely different set of
290 000 randomly picked images from the SPIRIT collection.
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We discard images that share identical checksums or URLs
to reduce the possibility of identical images within the noise
collection; also, we choose only images of similar sizes to the
seed collection to ensure uniform quality. A separate collec-
tion is used to create the seed collection, as those from the
SPIRIT collection are gathered from the web. This way, we
reduce the likelihood of the seed images having duplicates or
near-duplicates within the SPIRIT collection unbeknownst
to us, the presence of which could affect the experimental
results.

The list of alterations — similar to that of the works of
Ke et al. [17] and Qamra et al. [23] — is as follows:

1. format change: format change from .jpg to .gif (1 type)

2. colorize: each of the red, green, and blue channels are
tinted by 10% (3 types)

3. contrast: increase and decrease contrast (2)

4. severe contrast: increase and decrease contrast 3× of
original image (2)

5. crop: crop 95%, 90%, 80%, and 70% of image, preserve
center region (4)

6. severe crop: crop 60%, 50%, and 10% of image, preserve
center region (3)

7. despeckle: apply“despeckle”operation of ImageMagick (1)

8. frame: a frame size 10% of image is added using random
colors (4)

9. rotate: rotate image (by 90o, 180o, and 270o) about its
center (3)

10. scale-up: increase scale by 2×, 4×, and 8× (3)

11. scale-down: decrease scale by 2×, 4×, and 8× (3)

12. saturation: alter saturation by 70%, 80%, 90%, 110%, and
120% (5)

13. intensity: alter intensity level by 80%, 90%, 110%, 120%
(4)

14. severe intensity: alter intensity level by 50% and 150%
(2)

15. rotate+crop: rotate image (by 90o, 180o, and 270o), crop
50% in center region (3)

16. rotate+scale: rotate image (by 90o, 180o, and 270o), de-
crease scale 4x (3)

17. shear: apply affine warp on both x and y axes using 5o,
and 15o (4)

All images are first converted to grayscale and resized to 512
pixels on the longer edge prior to extraction of local descrip-
tors. The number in parentheses indicates the number of
instances for each alteration type.3

To test our clustering algorithm on real near-duplicate
examples on the Web, we use approximately 14 000 images
retrieved from 20 queries using Google Images from the
web. The 20 subjects used in this collection are selected
from Google ZeitGeist 2005:4 50 cent, Angelina Jolie, David
Beckham , Carmen Electra, Britney Spears, The Simpsons,
South Park, Garfield, Ferrari, Lamborghini, Batman, Harry
Potter, Yoda, Spiderman, Superman, Bob Marley, Tupac,
Kurt Cobain, Aaliyah, and Terri Schiavo. We use the same
collection as in our previous work, where this collection was
manually clustered by their near-duplicates [10]. Each of the
20 queries were used to retrieve the image results; each re-
sult set is then manually evaluated using the top 20 unique
images as examples by which to find other near-duplicate

3All alterations are created using ImageMagick, http://www.
imagemagick.com.
4
http://www.google.com/press/zeitgeist/archive.html
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Figure 3: Effects of l and k on the identification of all
image pairs and clusters on collection C1 of 150 000
images; we report coverage (%) and the number of
identified edges; results are reported for variations
of LSH parameters l (from 5 to 20) and k (from 250
to 450) using a threshold T = 8.
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Figure 4: Distribution of the number of images for
the identified clusters using LSH parameters of l =
10 and k = 250; each line in the graph denotes a
different threshold value (from 8 to 100).

instances within the result set. We use only 190 human-
evaluated clusters from this collection; we discard singleton
clusters and those that contain images that are unusable.5

All experiments are run on a two-processor Xeon 3 GHz
machine with 4 GB of main memory running Linux 2.4.

8. RESULTS
We now present results for our clustering algorithm on

collections C1, C2, and C3. We first provide experimen-
tal results using varying thresholds of l and k on collection
C1. Then, using the optimal settings of l and k, we present
clustering results on the larger collection C2 and the web
collection C3, in the following subsections.

In Figure 3, we show the effects of varying l and k on the
number of identified edges and the coverage for 150 000 im-
ages (collection C1). These results are for a single threshold
T = 8, similar trends are observed for clustering threshold
values ranging from 8 to 100. As expected, a larger l in-

5Images were evaluated using their thumbnails; thus, not all eval-
uated exists within the collection [10]. The list of image URLs
returned by the Google index is available at http://www.cs.rmit.
edu.au/~jufoo/ZeitGeistURLS.tgz
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creases the number of identified edges, as more image pairs
are likely to have matching local descriptors that exceed the
given threshold; this trend is also observed for the coverage
of the near-duplicate edges. We find that the number of
edges can be sharply reduced by increasing the parameter k
with only a slight drop in coverage.

As shown in Figure 3, using l = 20 and k = 250 yields a
coverage of 86% with nearly one million edges; this is unde-
sirable given that there are only 245 000 artificial edges in

the test collection — 200× 50(49)
2

. Using too small a value for
l may reduce the number of identified edges and adversely
affect coverage. However, we observe that using l = 10 in-
dexes and k = 250 strikes a good balance between the num-
ber of identified edges and the level of coverage; l = 10 and
k = 250 yields coverage of 70% with approximately 230 000
edges. We use this configuration for subsequent clustering
experiments.

Figure 4 shows the distribution of the number of images
in the formed clusters as observed on collection C1. On av-
erage, over all threshold values, approximately 1 000 non-
overlapping clusters are formed for this collection. This
observation is expected as the majority of the images are
gathered from unknown sources and we expect some clus-
ters to be formed from existent duplicates or near-duplicates
unbeknownst to us. As shown in Figure 4, for clustering
threshold values ranging from 8 to 100, the number of im-
ages (approximately 40–50) remains consistent for approxi-
mately 200 clusters. The observed results also indicate that
the majority of the clusters contain only a single pair of near-
duplicate images. This is a satisfying result as the collection
C1 contains 200 artificial near-duplicate groups, each con-
taining 50 near-duplicate images. Even though these clus-
ters do not explicitly reflect the 200 artificial groups, the
distribution of the images provide an indication of cluster
formation.

We observe that the number of clusters declines more
gradually with increasing clustering threshold value; for in-
stance, the difference between threshold values of 8 and 100
is evident with the size of the largest cluster. The rela-
tively skewed distribution of images in clusters formed by
T = 8 and T = 16 hints that a small threshold value may be
counter-productive for clustering. The transitive property
of the edges can cause images to be less selectively linked
to one another, resulting in large clusters to be formed. As
discussed in Section 7, an ideal algorithm would form m
clusters such that m = c, where c = 200 artificial groups.
However, the number of identified clusters exceeds that of
the artificial groups, hinting that some groups may have
been over-clustered.

Figure 5 shows the average number of clusters formed for
each of the 200 artificial near-duplicate groups. These re-
sults are observed for clustering threshold T ranging from 8
to 100. We observe that, on average, large clustering thresh-
olds tend to over-cluster; the average number of clusters for
each group (known as mk) approaches 3. We believe this
result can be explained by the various alterations of near-
duplicate images that exist within each artificial group; we
observe that the more severe alterations of near-duplicate
images tend to form individual clusters due to low-weighted
edges that do not rise above the threshold. Nevertheless, this
is a positive result considering the relatively low number of
algorithm-formed clusters per group (mk) against the num-
ber and variation of near-duplicate images in each group.
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Figure 5: Average number of algorithm-formed clus-
ters for each of the 200 artificial groups, for different
clustering threshold T (from 8 to 100) using LSH
parameters of l = 10 and k = 250.
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Figure 6: Average purity p(k) and average entropy
h(k) over 200 near-duplicate groups, for different
clustering threshold T (from 8 to 100) and LSH pa-
rameters of l = 10 and k = 250.

8.1 Cluster Quality and Accuracy
Figure 6 shows the average purity and average entropy of

the clusters in collection C1; these measure are defined in
Section 7). Figure 7 shows the average recall and average
precision of the clusters (over all the 200 artificial groups).
The results in these two figures are observed over a range
of clustering threshold T values, ranging from 8 to 100.
As shown in Figure 6, we observe that by increasing the
threshold value, average purity of the clusters approaches
1 whereas average entropy approaches 0. It also indicates
that small clustering threshold values do not produce qual-
ity clusters; we begin to observe higher cluster quality with
threshold values of approximately 70 and above.

Figure 7 shows that small clustering threshold values yield
low average precision and high average recall; large thresh-
old values yield the opposite effect. We observe that the re-
ductions in average recall is relatively gradual and remains
above 80% with the largest threshold value of 100, where it
converges with average precision of 80%. The results from
both figures indicate that our clustering algorithm favours
large threshold values, yielding high average recall and pre-
cision, with high purity and low entropy. Thus, overall, we
observe that our clustering algorithm excels at forming high
quality clusters, given reasonably large threshold values.

The results presented so far indicate the average cluster
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Figure 8: Average purity p(k) and average entropy
h(k) for each of the 200 near-duplicate groups using
cluster threshold of T = 100, with LSH parameters
of l = 10 and k = 250.

quality over 200 artificial groups. To further evaluate the
quality of clusters, we report the average entropy, purity,
recall, and precision for each of 200 near-duplicate groups;
these results are presented in Figure 8 and Figure 9. The re-
sults are observed using a cluster threshold (T ) of 100, as it
yields the best tradeoff amongst all measures. As indicated
in Figure 8, the majority of identified clusters for each of the
200 near-duplicate groups contain high concentration of cor-
rectly identified images; this is indicated by an overall high
average purity and low average entropy. We also observe
that the majority of the near-duplicate groups have average
purity over 0.8 and average entropy below 0.2 — indicative
of the high effectiveness of our clustering algorithm.

Figure 9 shows that the recall and precision for clusters
in majority of the near-duplicate groups are pleasingly high.
For all groups with 100% precision — approximately 145 of
200 groups — the level of recall is observed to range between
60% to 90%. The drop in precision of clusters in some of the
near-duplicate groups indicate that our clustering algorithm
occasionally fails to correctly categorize images into their re-
spective clusters, resulting in a mixed bag of images within
each cluster, thus, yielding a relatively low level of precision
albeit a slightly higher level of recall. The two relatively
distinct levels of precision can be attributed to the preci-
sion measure (see Section 7), where it measures the ratio of
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Figure 9: Recall and precision (%) (sorted by preci-
sion) for each of the 200 near-duplicate groups using
cluster threshold of T = 100, with LSH parameters
of l = 10 and k = 250.

correctly identified images in all algorithm-formed clusters
for each of the 200 near-duplicate groups. This results in a
more stringent measure, as a low precision level of a single
cluster (with the group) can effect an abrupt drop in the
overall precision.

Overall, the results indicate that our clustering algorithm
is indeed effective for accurately distinguishing relevant im-
ages into their respective clusters most of the time — on
a large collection (150, 000 images) — at the expense of
approximately 10 misses (on average) for every 50 near-
duplicate images considered during clustering; as indicated
by the average recall of all near-duplicate groups.

8.2 Further Studies
To study the effectiveness of our clustering approach on an

even larger collection, we perform the same experiments on
collection C2 of 300, 000 images using the optimal settings
(l = 10, k = 250, and T = 100). We find the overall level of
effectiveness to be nearly lossless in comparison to that of
collection C1. Using cluster threshold T of 100 for collection
C2, we observe that the average number of clusters formed
for each of the 200 near-duplicate groups remains at 2.89,
which indicates that although the collection has doubled in
size, the identified number of clusters for each artificial near-
duplicate group remains relatively constant. As with collec-
tion C1, our clustering algorithm for collection C2 achieves
average recall and average precision of 80.7% and 76.4%,
respectively, for the clusters within the 200 near-duplicate
groups. The average recall and precision for collection C1

were 80.6% and 74.4%, respectively. The average purity and
average entropy for collection C2 were observed to be 0.89,
and 0.09, respectively; the average purity and average en-
tropy were, respectively, 0.91, and 0.07 for collection C1.
Overall, these results demonstrate that our proposed clus-
tering technique is indeed effective and that the observed
efficacy is less dependent to changes in collection size.

To gain insight into the efficiency and performance of our
clustering technique with regards to collection C2, we com-
pare the total time required to identify and cluster the near-
duplicate images for both collection C1 and C2. We also
compare the number of identified edges in each collection to
determine the impact of the larger collection on efficiency.
Figure 10 shows the total run-time and the number of iden-
tified edges for both collections using cluster threshold T of
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Figure 10: Cost of identification and clustering of all
near-duplicate images within two image collections
C1 of 150, 000 images, and C2 of 300, 000 images; the
figure shows the timing results and the number of
identified edges using cluster threshold of T = 8 and
T = 100, with LSH parameters of l = 10 and k = 250.

8 and 100. We use two different threshold values to observe
the impact of small and large threshold values on efficiency.
As shown in Figure 10, using cluster threshold of 8, the time
to process collections C1 and C2 are 5.7 minutes and 10.5
minutes, respectively.

We also observe in Figure 10, a linear growth in the num-
ber of edges from approximately 360 000 to 540 000. A
cluster threshold T of 100 significantly reduces the number
of edges to 70 000 and 74 000, respectively, for collections
C1 and C2. This is an important result and shows that a
large cluster threshold value can both restrict the number of
edges as the collection size is increased, as well as maintain
high effectiveness in clustering. The relatively unaffected
run-time with regards to the cluster threshold T (from 8
to 100 in both collections) is within our expectation; the
hash-counters used during pairwise identification of all im-
age pairs has a cost of O(n); it requires two images to be
approximately counted for every matching local descriptor in
each of the l LSH indexes to determine the number of edges
within the given threshold. Thus, run-time remains unaf-
fected regardless of the cluster threshold value and shows
that a large collection can be processed and effectively clus-
tered using our clustering algorithm with modest processing
time.

To further validate the results of our clustering algorithm,
we perform the same clustering experiments using collection
C3 (contains images retrieved from Google Images). Table 1
reports the results for our clustering algorithm on this col-
lection for each of the 20 subject queries used. Columns
two and three list the number of human-evaluated clusters
and the number of algorithm-formed clusters for each sub-
ject query, respectively. The measures average recall, aver-
age precision, average purity, and average entropy for the
algorithm-formed clusters within each of the 20 subjects are
shown in columns four to seven. The results in this table
show that the average number of algorithm-formed clusters
for each human-evaluated cluster is approximately 1.7. This
indicates that with our clustering algorithm, each human-
evaluated clusters are not over-clustered into more than 2
groups, on average. Although the average recall is not as
high as those observed for collections C1 and C2, it remains

Table 1: Clustering results for the collection C3

(Web collection) for 20 different subjects; each sub-
ject consists of c human-evaluated clusters. Column
three shows the total number of algorithm-identified
clusters that contain images from the c clusters of
each category. Columns four and five report the
average recall and precision (%) of the identified
clusters, respectively. Average purity and average
entropy are also reported, respectively, in the final
two columns.

Query Total Avg. Avg. Avg. Avg.
Subject c mk Rec.(%) Prec.(%) p(k) h(k)

50 cent 14 25 77.57 68.80 0.71 0.04
aaliyah 11 24 74.27 72.63 0.79 0.04

angelina 10 6 86.11 100.00 1.00 0.00
batman 8 11 65.83 84.64 0.78 0.03
marley 14 20 54.58 81.14 0.78 0.03
spears 6 3 63.33 68.97 0.70 0.05
electra 11 8 70.79 88.89 0.89 0.02

beckham 9 6 94.44 100.00 1.00 0.00
ferrari 7 7 80.95 89.29 0.89 0.02

garfield 7 5 82.50 79.55 0.60 0.06
potter 11 11 57.19 76.07 0.85 0.02
cobain 12 23 68.34 73.01 0.76 0.03

lamborghini 7 8 75.00 93.97 0.94 0.01
south park 10 13 71.50 67.50 0.63 0.05
spiderman 7 11 51.91 65.04 0.75 0.03
superman 7 10 69.92 78.92 0.75 0.03

schiavo 10 22 68.37 81.05 0.77 0.04
simpsons 8 5 68.33 85.42 0.83 0.02

tupac 10 16 58.22 84.64 0.88 0.02
yoda 11 11 66.36 85.16 0.87 0.03

at a competitive level of 70% recall and 80% precision, on
average.

We expect this level of effectiveness for this collection as
there exists some very severe alterations within each of the
subject groups in the collection [10]. The relatively lower
recall value can also be explained by the smaller number
of near-duplicate images in each cluster as compared to the
artificial collections; hence, the fluctuation in recall level is
more abrupt. Also indicated in Table 1, the quality of the
clusters in each subject group remains high, at an observed
average of 0.82 and 0.03 for purity and entropy, respectively.
Overall, the results are highly pleasing as they indicate the
effectiveness of our clustering technique for both large im-
age collections, and real world examples on the Web. We
show some examples of the algorithm-identified clusters in
Figure 11.

9. CONCLUSIONS AND FUTURE WORK
We have demonstrated a new image clustering algorithm

that combines techniques from computer vision and text
document clustering methods. We have successfully adapted
a text-oriented clustering algorithm to the image domain.
The results indicate that our approach yields high effective-
ness — even for large collections — when coupled with PCA-
SIFT invariant local descriptors; our clustering algorithm
has been shown to effectively generate non-overlapping clus-
ters containing large concentrations of relevant near-duplicate
images belonging to the same set. Overall, our clustering
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Figure 11: Examples of some clusters that are iden-
tified by our approach — using the same settings
as those reported in our experiments — on images
retrieved from the Web (Google Images). The num-
bers of the left column denote the cluster IDs.

algorithm offers a promising approach for organizing near-
duplicate images in large collections such as the Web, and
presents a plausible solution to the challenges of image re-
dundancy inherent in image search engines. In future work,
we intend to explore more efficient detection and retrieval
of near-duplicate images using this clustering approach; we
plan to investigate the scalability of our approach, and also
to perform a comparative evaluation against predominant
clustering techniques such as the k-means.
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