
Partitioning Number Sequences into

Optimal Subsequences

J. Zobel

Department of Computer Science, RMIT University

GPO Box 2476V, Melbourne 3001, Australia

jz@cs.rmit.edu.au

P. Dart

Department of Computer Science and Software Engineering

The University of Melbourne, Parkville 3052, Australia

philip@cs.mu.oz.au

Abstract

We consider how to partition finite sequences of positive numbers into subsequences such that
each resulting subsequence has a sum of at least a given minimum. Given several different
optimality criteria, based on maximising the number of subsequences and minimising their
variance in size, we develop and analyse a series of algorithms that yield optimal solutions.

Keywords: algorithms, analysis of algorithms, computational complexity.

1 Introduction

Consider a finite sequence of positive numbers that is to be partitioned into subsequences as
follows. Each subsequence must contain numbers whose sum is at least L, where L is fixed;
the variation between the sums is to be kept small; and the sums should be close to L. That
is, the criteria for the partitioning are that the number of sums should be maximised and the
variance should be minimised.

The problem of partitioning arose from our work in information retrieval, where it can
be desirable to divide documents consisting of small units of text (such as sentences or para-
graphs) into larger units of consistent length, for retrieval or presentation [2, 5]. First, enforc-
ing a minimum length helps ensure that there is sufficient content to allow accurate matching
of queries and documents. Second, when units of text significantly vary in length, estimation
of their relevance to a query is inaccurate, to it is desirable to reduce the variance. Parti-
tioning can also be used for division of irregularly-sized data such as web pages into packets
for network transmission, where there is a trade-off between response time and total cost of
transmission.

Similar problems have been described by other authors. Larmore and Hirschberg have
considered how to break scrolls into pages whose lengths must fall within a certain range [4].
In contrast to partitioning, any successful pagination is satisfactory. Knuth and Plass have
comprehensively discussed the problems presented by breaking paragraphs into lines with
acceptable inter-word spacing [3], a far more complex problem than partitioning, for not only
can the size of the items in a line be varied within certain limits, but the items can be divided
with a hyphen between two lines. Another related problem is bin packing, in which items are
to be placed in the minimum number of bins of some fixed maximum capacity [1]; however,
packing does not have a constraint on the order of items.

2 Partitioning

Partitioning can be described formally as follows. Given a source sequence, that is, a sequence
of positive numbers

W = 〈w1, . . . , wn〉 ,
we wish to coalesce adjacent numbers in the sequence to form a target sequence, that is, a
new sequence of positive numbers

T = 〈t1, . . . , tm〉 .

A target is such that each ti ≥ L, where L is a fixed lower bound satisfying
∑n

j=1 wj ≥ L > 0,
and the target’s elements are defined by

ti =
ki∑

j=ki−1+1

wj ,

2

where ki−1 < ki, k0 = 0 and km = n. Thus the ith subsequence consists of numbers
wki−1+1, . . . , wki

and has sum ti.
In addition, we wish to choose k1, . . . , km−1 to minimise the average distance between

each ti and L. A suitable function for minimising the average distance between ti and L is
the variance from L given by

variance(T) =
1
m

m∑

i=1

(ti − L)2 .

Before we describe our algorithms for finding the optimal target, we consider some of
the difficulties presented by partitioning. One is that local optimality does not imply global
optimality. For example, consider a source

〈10, 1, 9, 2, 8, 3, 7, 4〉 ,

where L is 10. Two targets are 〈10, 10, 10, 14〉 and 〈11, 11, 11, 11〉. The first target is locally
better at the left-hand end, but the second is optimal. Thus an algorithm for finding an
optimal target cannot proceed by accruing numbers in the source and choosing the optimal
partial target.

Another difficulty presented by partitioning is that the target with lowest variance may
not be the longest possible. An example source with this property is

〈10, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 10〉 .

where L is 10. Two targets are

〈10, 10, 18, 10, 18, 10, 18, 10, 18, 10, 18, 10, 10〉

and
〈15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15〉 .

The latter is shorter, but has lower variance. However, it is difficult to construct such sources,
and we believe them to be very rare. Note that if the source is shortened by omission of a
〈5, 5, 9, 9〉 subsequence, the longer target has the lower variance; that is, the source given is
the shortest (of that pattern) that results in lower variance for the shorter target.

3 Optimising for variance

The optimum target, with regard to any optimality criteria, can be found exhaustively as
follows. Any given target can be written as

T = 〈w1 + . . . + wk1, wk1+1 + . . . + wk2, . . . , wkm−1+1 + . . . + wkm〉 .

From this form it can be seen that all possible targets can be found by enumerating combi-
nations of sums, and that there are 2n−1 different combinations; note, however, that some of
these combinations can contain some ti < L and are therefore not targets.

3

1. Set S1 ← {〈w1〉}.
2. For each j from 2 to n,

(a) Create an empty set Sj .

(b) For each l ∈ Sj−1,

i. Add l · wj to Sj .

ii. Add l + wj to Sj .

3. Set S ← {l ∈ Sn|v ≥ L for each value v in l}.
4. Choose from S the sequence l ∈ S with minimum variance.

Figure 1: Algorithm A—naive optimisation for variance.

Figure 2: Linked list “fan” structure for storing sequences.

We use the following notation. Suppose l = 〈v1, . . . , vk〉 is a sequence and v is a value.
Then a composition 〈v1, . . . , vk +v〉 is denoted by l+v; an extension 〈v1, . . . , vk, v〉 is denoted
by l · v; the length k of l is denoted by len(l); and the last value vk in l is denoted by last(l).

The set S of targets can be enumerated by the method shown in Figure 1. Input are n and
a source 〈w1, . . . , wn〉. We assume, as in all the algorithms in this paper, that

∑n
j=1 wj ≥ L.

That is, we assume there is a valid target.
A simple way to implement Algorithm A (and Algorithms B and C, described later) is to

have a linked structure as follows. Each tk value requires a node with fields containing: its
value; k; the sum

∑k
i=1(ti−L)2; a pointer to tk−1; and a pointer to the last t value in another

sequence. The inter-sequence pointers give a linked list joining the ends of all the candidate
sequences together. Candidate sequences can be reconstructed by following intra-sequence
pointers from the end of the sequence to the start. To simplify implementation, a sentinel
node should be placed before w1. This “fan” structure is illustrated in Figure 2.

In Figure 2, the dashed lines are the inter-sequence pointers and the crossed node is the
sentinel. One sequence is unreachable, because there is no pointer to the last node; although
not possible with Algorithm A, the other algorithms can create such a structure.

4

Using the fan structure, finding the optimal sequence—the sequence with the lowest
variance—is straightforward: the information stored in the last node in each sequence can
be used to derive the variance, and the last nodes are connected by the inter-sequence point-
ers. The fan structure itself is desirable because any leading subsequence that is common to
several sequences is stored once only.

Assuming the fan implementation, we can derive the following properties.

Theorem 1 Algorithm A has space and time complexity of O(2n).

Proof At step 2b of Algorithm A, two sequences are added to Sj for each sequence in Sj−1,
so that |Sj| = 2|Sj−1|. Given the fan implementation, the additional cost in space at each j

is linear in the current number of sequences. The result follows.

Theorem 2 For any source W and the set S yielded by application of Algorithm A to W ,
the target in S with the lowest variance will be optimal.

Proof The result follows from the observation that all targets are in S.

We now show how Algorithm A can be modified to yield the more efficient Algorithm B,
described below. The inefficiencies in Algorithm A can be addressed using the following
propositions.

Proposition 1 Consider Sj, for any j where 1 ≤ j ≤ n, derived by Algorithm A. For any
sequence l = 〈t1, . . . , tk−1, tk〉 ∈ Sj such that tk−1 < L, no sequence in Sn derived from l, by
composition or extension, is a target.

Proof Straightforward.

Thus subsequences that cannot lead to targets can be progressively eliminated, by modifying
step 2(b)i of Algorithm A such that l · wj is added to Sj only if last(l) ≥ L. It can be seen
by induction that, for any j and any sequence 〈t1, . . . , tk〉 ∈ Sj, each ti ≥ L for 1 ≤ i < k.
Step 3 can then be modified to keep only the sequences whose last element is at least L.

Proposition 2 Consider two targets derived by Algorithm A,

T = 〈t1, . . . , tk + wj + v, t′1, . . . , t′k′〉 ∈ S and
T ′ = 〈t1, . . . , tk, wj + v, t′1, . . . , t′k′〉 ∈ S .

Then the variance of T ′ is less than the variance of T .

Proof Straightforward.

5

1. Set S1 ← {〈w1〉}.
2. For each j from 2 to n,

(a) Create an empty set Sj .

(b) For each l ∈ Sj−1,

i. If last(l) < L or wj < L, add l + wj to Sj .

ii. If last(l) ≥ L, add l · wj to Sj .

3. Set S ← {l ∈ Sn|last(l) ≥ L}.
4. Choose from S the sequence l ∈ S with minimum variance.

Figure 3: Algorithm B—optimisation for variance.

It follows that T—or, if wj ≥ L, even its leading subsequence l = 〈t1, . . . , tk + wj〉—need
never be created, since for any target derived from l there will be a target with lower variance
derived from 〈t1, . . . , tk, wj〉. Sequences such as l can be avoided by not applying composition
when last(l) ≥ L and wj ≥ L.

The algorithm can now be restated as Algorithm B, shown in Figure 3, and again the
fan implementation should be used. As for Algorithm A, the sequence in S with the lowest
variance will be the optimal target. The complexity is as follows.

Theorem 3 Algorithm B has space and time complexity of O(2n).

Proof The result follows from the observation that in the worst case Algorithm B generates
the same sequences as Algorithm A, and never generates more sequences.

Although the upper bound on the cost of Algorithm B is the same as that of Algorithm A,
Algorithm B is in general cheaper, particularly when the source contains elements that are
at least L. Nonetheless, for some sources Algorithm B has cost O(2n).

4 Optimising for length and variance

We can use length and variance constraints to refine Algorithm B in accordance with the
following proposition, to yield an Algorithm C that produces targets of maximum length, and
of these targets, chooses the target with minimum variance.

Proposition 3 Consider two sequences

l = 〈t1, . . . , tk〉 ∈ Sj−1 and
l′ = 〈t′1, . . . , t′k′〉 ∈ Sj−1 ,

where tk ≥ L and t′k′ ≥ L.

6

1. For any target
T = 〈t1, . . . , tk, wj + v, u1, . . . , up〉

that contains l as a leading subsequence, there is a target

T ′ = 〈t′1, . . . , t′k′ , wj + v, u1, . . . , up〉

that contains l′ as a leading subsequence.

2. If k < k′ then T will be shorter than T ′.

3. If k = k′ and variance(l) > variance(l′), then variance(T) > variance(T ′).

4. If k = k′ and variance(l) = variance(l′), then variance(T) = variance(T ′).

Proof Straightforward.

Thus, when choosing sequences in Sj−1 for extension, only the sequence with maximal length
and minimal variance need be considered at step 2(b)ii.

Similarly, step 2(b)i of Algorithm B can be refined as follows. If l ∈ Sj−1, last(l) ≥ L,
and wj ≥ L, then, as discussed above, for each target T that can be derived from l + wj, a
target T ′ with lower variance can be derived from l ·wj . Moreover, T will be shorter than T ′.
Furthermore, suppose that Sj−1 contains two sequences l = 〈t1, . . . , tk〉 and l′ = 〈t′1, . . . , t′k′〉,
where tk ≥ L, t′k′ ≥ L, and k < k′. From the above proposition, for each target that can
be derived from l, a longer target can be derived from l′, so we do not need to consider
composition to l.

Using the refinements, an algorithm that optimises for length and variance can be stated
as in Figure 4.

Theorem 4 Consider the set S returned by Algorithm C.

1. Each sequence in S is a target of maximal length.

2. The target of maximal length and, for that length, minimal variance, is in S.

Proof The result follows from Proposition 3 and from case analysis of the algorithm.

To analyse the complexity of Algorithm C we first need two lemmas.

Lemma 1 In Algorithm C, |Sj | ≤ |Sj−1|+ 1.

Proof In step 2e of Algorithm C, at most one sequence is added to Sj for each sequence in
Sj−1, and only one sequence is added to Sj at step 2d. No other steps add sequences.

Lemma 2 In Algorithm C, if two adjacent source elements wj−1 and wj are both at least L,
the set Sj has just one element.

7

1. Set S1 ← {〈w1〉}.
2. For each j from 2 to n,

(a) Create an empty set Sj .

(b) Set M ← {l ∈ Sj−1|last(l) ≥ L}.
(c) Let K be the length of the longest sequence in M .

(d) If M ′ = {l ∈ M |len(l) = K} is not empty, choose an arbitrary sequence l ∈ M ′

such that there is no sequence l′ ∈M ′ with lower variance, and add l · wj to Sj .

(e) For each l ∈ Sj−1,

i. If last(l) < L add l + wj to Sj .

ii. If last(l) ≥ L and len(l) = K and wj < L then add l + wj to Sj .

3. Set S ← {l ∈ Sn|last(l) ≥ L}.
4. Choose from S the sequence l ∈ S with minimum variance.

Figure 4: Algorithm C—optimisation for length and variance.

Proof Neither option of step 2e applies, and step 2d adds exactly one candidate.

We say that a sequence is minor if it does not contain two adjacent elements of at least L.

Theorem 5 Algorithm C has time complexity of O(ns), where s is the length of the longest
minor subsequence in the input source.

Proof The result follows from Lemmas 1 and 2.

Algorithm C should be implemented with the following modifications to the fan structure.
At step 2d, a new node for wj must be created, and must point to the node for the last element
in l; the node for this element must be marked as referenced. At step 2e, each value last(l)
can be replaced by last(l) + wj, except for the single value of last(l) that was marked as
referenced, in which case a node for last(l) + wj must be created, with a pointer to last(l)’s
predecessor.

Theorem 6 Algorithm C has space complexity of O(n).

Proof Using the fan structure, at most two nodes are added for each element in the source.

5 Optimising for length alone

Algorithm D, shown in Figure 5, is linear in time and space and emits the solution as it
proceeds. The variables prev and curr refer to the previous and current target sequence
entries respectively.

8

1. Set prev ← undefined and curr ← w1.

2. For each j from 2 to n,

(a) If curr ≥ L, emit prev if it is defined, set prev ← curr , and set curr ← wj .

(b) Otherwise, if wj > prev then set prev ← prev + curr and set curr ← wj .

(c) Otherwise, set curr ← curr + wj .

3. If curr < L then set prev ← prev + curr and emit prev . Otherwise, emit prev followed
by curr .

Figure 5: Algorithm D—optimisation for length.

Theorem 7 Algorithm D has O(n) time complexity, requires O(n) space to store the solution
but only O(1) working space.

Proof The algorithm requires at most four comparisons and one sum for each element of
the source, and only curr and prev are stored.

Moreover, Algorithm D emits partial solutions as it proceeds, whereas the other algorithms
do not emit any solution until the whole source has been inspected.

Theorem 8 Algorithm D always generated targets of the maximum length.

Proof Step 2 generates leading subsequences in which, including the values of prev and
curr , all but the last element is at least L. Using induction on j, it can be shown that, for a
source of any length n, the partial target generated by step 2 is of the longest possible length,
and that if curr < L then curr is at least as large as the last element in any partial target
of the same length. That the target generated by Algorithm D is of maximal length follows
immediately.

However, the targets computed by Algorithm D do not necessarily have minimal variance
for their length. We believe that there is no linear time algorithm that yields such targets,
because optimisation of variance cannot be determined locally.

6 Summary

We have described four algorithms for computing an optimal partitioning of a source into a
target, for three different optimality criteria. The first two algorithms, A and B, minimise
variance, at a complexity of O(2n) for a source of length n; we believe it unlikely that there is
an algorithm that minimises variance at lower complexity. The third algorithm, C, minimises
variance at maximum target length and has space complexity of O(n) and time complexity
of O(ns), where s is the length of the longest minor subsequence in the source. Thus the worst

9

case is a source for which all elements are less than L, giving a complexity of O(n2)—a marked
improvement over the first two algorithms. Given our observation that almost all targets of
minimum variance are of maximum length, it follows that Algorithm C is an excellent heuristic
method for minimising variance alone. The final algorithm, D, maximises target length and
has space and time complexity of O(n). In the application of interest to us—dividing long
documents into pages—there were sources of over ten thousand elements. In experiments with
a large collection of documents represented as sequences of elements, Algorithms A and B
were impossible to use because of the space requirements, while Algorithm C was acceptable
but occasionally slow. Algorithm D took less than a second and yielded no solutions with
unacceptable variance, but in some documents the variance was much greater than in the
solutions produced by the other algorithms.

Acknowledgements

We wish to thank Alistair Moffat, James Thom, and Nick Wormald. This work was supported
by the Australian Research Council and the Collaborative Information Technology Research
Institute in Melbourne, Australia.

References

[1] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco,
1979.

[2] M. Kaszkiel, J. Zobel, and R. Sacks-Davis. Efficient passage ranking for document
databases. ACM Transactions on Information Systems, 17(4):406–439, October 1999.

[3] D.E. Knuth and M.F. Plass. Breaking paragraphs into lines. Software—Practice and
Experience, 11:1119–1184, 1981.

[4] L.L. Larmore and D.S. Hirschberg. Efficient optimal pagination of scrolls. Communications
of the ACM, 28(8):854–856, 1985.

[5] J. Zobel, A. Moffat, R. Wilkinson, and R. Sacks-Davis. Efficient retrieval of partial
documents. Information Processing & Management, 31(3):361–377, 1995.

10

