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Abstract

Ranking techniques are effective at finding answers in document collections but

can be expensive to evaluate. We propose an evaluation technique that uses

early recognition of which documents are likely to be highly ranked to reduce

costs; for our test data, queries are evaluated in 2% of the memory of the

standard implementation without degradation in retrieval effectiveness. cpu

time and disk traffic can also be dramatically reduced by designing inverted

indexes explicitly to support the technique. The principle of the index design is

that inverted lists are sorted by decreasing within-document frequency rather

than by document number, and this method experimentally reduces cpu time

and disk traffic to around one third of the original requirement. We also show

that frequency sorting can lead to a net reduction in index size, regardless of

whether the index is compressed.

1 Introduction

Ranking is used to retrieve documents from a database and present them in

order of estimated relevance to the user’s query [13, 14]. For the multi-gigabyte

databases now available, ranking is considered the best option for data access:

Boolean queries require expert formulation, and techniques such as browsing

are ineffective for the initial location of answers from among large numbers of

documents. The need for ranking has led to efforts such as the international

TREC project, a cooperative experiment involving a two gigabyte text database

and manual checking of over 300,000 documents for relevance to a test query

set [7].

In comparison to Boolean queries, which retrieve exactly those documents

that contain the specified query terms, ranked queries are statistically compared

to the documents. The statistical similarity of a document to a query is assumed

to correspond to the likely relevance of the document to the query, so the

answers to the query are the documents with the highest similarity values.

Many functions have been proposed for computation of similarities. One of

the most successful functions—in terms of retrieval effectiveness, or ability to

locate answers that humans judge to be correct—is the cosine measure [13,

14]. In a straightforward implementation of a similarity measure such as the

cosine measure, the document database has an inverted index that contains, for

each term in the database, an inverted list of the identifiers of the documents
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containing that term. The costs of ranked query evaluation on such an index

are: memory, to store the similarity values, usually requiring one accumulator

per document in the database; disk traffic, to transfer inverted lists for each

query term from disk to memory for processing; and cpu time, to process this

index information.

For a large document database, the cost of evaluation of the cosine measure

can be prohibitively high, because ranked queries are usually expressed in nat-

ural language and can therefore contain a large number of terms, some of which

will occur in a high proportion of the database’s documents, and because rank-

ing techniques assign a similarity value to every document containing any of the

query terms. As a consequence, typically most of the documents in the database

will have non-zero similarity, and will hence be candidates for presentation to

the user. For this reason, only the top-ranked documents are retrieved—most

of the candidate documents are discarded.

We propose a technique for filtering documents during ranking, allowing a

significant reduction in the volume of main memory required. The effect of

the filter is that a document’s accumulator is updated only if the combination

of the frequency of the term in the document and the term’s importance is

large enough to be likely to have an impact on the final ordering of documents.

Thus the inverted list of even a common term may be processed, but only for

those documents in which the term is frequent will the accumulator be updated.

Our experiments in applying this technique to the cosine measure show that it

allows evaluation of the queries on a large document collection in approximately

in 2% of memory of previous techniques, and without deterioration in retrieval

effectiveness.

We also show how to re-organise inverted files to support the filtering heuris-

tic. Inverted lists are generally document-sorted , that is, sorted by document

identifier, but for the filter this implies that the whole of each list has to be pro-

cessed, even when there are only a few documents in which the term is frequent.

By sorting inverted lists by decreasing within-document frequency, so that they

are frequency-sorted , the identifiers of the interesting documents are brought to

the start of the list, also yielding a reduction in disk traffic because only part of

each inverted list must be retrieved. Frequency-sorting can potentially have an

adverse impact on index size, because index compression techniques rely on the

small differences between adjacent documents in longer inverted lists to achieve

size reductions [1, 10]. We show, however, that it is possible to use frequency-
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sorting to achieve a net reduction in index size, regardless of whether the index

is compressed. Together, these improvements make information retrieval possi-

ble for small machines such as PCs, and for large multi-user document systems

such as library systems, which can have thousands of simultaneous users.

Document databases and the cosine measure are described in Section 2.

The technique of document filtering is described in Section 3, together with

experimental results. In Section 4 we show how to structure inverted lists

to support filtering, and give experimental results for both compressed and

uncompressed inverted files. Conclusions are presented in Section 5.

2 Ranked query evaluation

The ranking technique we use to demonstrate our techniques is the cosine mea-

sure [13, 14]. For this measure, the similarity of document d and query q is for

practical purposes computed by

Cq,d =
∑

t simq,d,t

Wd
,

where Wd is the length of document d and simq,d,t is the partial similarity of q

and d with respect to term t, defined by

simq,d,t = wq,t · wd,t

where wx,t is the weight of t in document or query x. The accumulators are

used to hold the running totals for the expression
∑

t simq,d,t; the information for

these totals is extracted from the inverted lists. The Wd values are precomputed

with the expression

Wd =
√∑

t

w2
d,t

and stored elsewhere.

Several term weighting systems have been proposed and explored [4, 12, 14].

We assign the weight to a term in a query or a document using the frequency-

modified inverse document frequency, described by

wx,t = log2 fx,t · log2
N

ft
,

where fx,t is the number of occurrences (or within-document frequency) of term t

in x, N is the number of documents in the collection, and ft is the number of

documents containing t. The expression wt = log2(N/ft) is the weight or
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importance of t in the collection. This function assigns a high weight to terms

which are encountered in only a small number of documents in a collection. It

is supposed that rare terms have high discrimination value and the presence

of such a term in both a document and a query is a good indication that the

document is relevant to the query.

Database structure

We use inverted files to index documents [13, 14, 15]. An inverted index for

a document database typically has two components: a vocabulary and a set of

inverted lists. The vocabulary contains each term t in the database and the

number ft of documents containing t. Knowledge of ft allows the terms in a

query to be processed in order of decreasing weight [2, 8], as is necessary for the

technique we shall describe. There is one inverted list for each t, consisting of

the identifiers of the documents containing the term and, with each identifier d,

the within-document frequency fd,t of t in d. Thus inverted lists consist of

document entries, that is, pairs of 〈d, fd,t〉 values.

Inverted lists are usually sorted by document identifier, not only for conve-

nience of processing but because such sorting allows index compression—once

sorted, the differences (or run-lengths) between adjacent identifiers can be com-

puted, yielding small integers that are suitable for compression. For example,

consider the list consisting of the following 〈d, fd,t〉 pairs

〈5, 3〉〈9, 2〉〈12, 2〉〈16, 5〉〈21, 1〉〈25, 2〉〈32, 4〉 ,

which represents the fact that the term being indexed occurs three times in

document 5, twice in document 9, and so on. This list can be converted into

the sequence of run-lengths

〈5, 3〉〈4, 2〉〈3, 2〉〈4, 5〉〈5, 1〉〈3, 2〉〈7, 4〉 .

Given that the number of documents containing a given term can be used to

compute the average run-length, using a parameterised code the run-lengths

can be efficiently compressed, as the run-lengths will conform to a known dis-

tribution with a known mean. For high-frequency terms, often only 1 or 2 bits

are required to represent a run-length if coded using integer coding schemes

such as those of Elias [3] or Golomb [5]. The fd,t values are already a skew

distribution of small integers, and can be effectively represented in unary or
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1. For each document d in the collection, set accumulator Ad ← 0.

2. For each term t in the query,

(a) Retrieve the inverted list for t from disk.

(b) For each term entry 〈d, fd,t〉 in the inverted list, set Ad ← Ad +

simq,d,t.

3. Divide each non-zero accumulator Ad by the document length Wd.

4. Identify the k highest accumulator values (where k is the number of

documents to be presented to the user) and retrieve the corresponding

documents.

Figure 1: Basic algorithm for computing a cosine measure

in an Elias code such as the gamma code [3]. Overall, such inverted index

compression techniques can reduce index size by a factor of six or more [1, 10].

For a large document database indexed by an inverted file, the index can be

used to simultaneously compute the cosine correlation between each document

in a collection and the query as follows [4, 10, 13, 14]. An accumulator is

created for each document, either by initially allocating an accumulator for

every document in the database or by dynamically adding an accumulator for

a document when it is allocated non-zero similarity. The similarity of each

document to the query q are then computed by retrieving the inverted list for

each query term and adding simq,d,t to the accumulator for every document d in

the term’s inverted list. Then each accumulator is divided by the appropriate

Wd value and the k documents with the highest cosine values are chosen. A

version of this algorithm, as given by Moffat and Zobel [10], is shown in Figure 1.

Evaluation of the cosine measure also requires a file containing the length

Wd for each document. These values are query independent and need to be com-

puted only once, at database creation time; and can be effectively compacted

and stored in a few bits each [11]. The reason they are stored separately is to

allow effective compression of the inverted file. Storage of the within-document

frequencies normalised by the document lengths would imply storage of float-

ing point numbers rather than small integers that can be effectively compressed

and, hence, a substantial increase in the size of the inverted file.

Thus the main costs of query evaluation are memory space, for the accumu-

lators; disk traffic, to retrieve inverted lists; and cpu time, to decode inverted
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lists. Reducing all of these costs to levels suitable for a small machine is the

subject of this paper.

3 Reducing the number of accumulators

As we have described above, the usual approach to the evaluation of ranked

queries is consecutive processing of every term in a query and of the whole

inverted list for each term. This technique computes, for each query term and

each document containing the term, a partial similarity of the document and

the query; each document requires an accumulator.

Thus a particular shortcoming of this technique is the memory required for

the accumulators. The most common terms in a typical query are contained in

a large proportion of the documents in a collection. Processing of all identifiers

in these inverted lists leads to a large number of accumulators. Moreover, most

of the partial similarities are given by common terms and thus have very low

weight. Processing of these values produces little increase in accuracy and is

expensive, particularly in systems that use compression for inverted lists, since,

to evaluate queries, large volumes of data have to be decompressed.

There have been many attempts to improve the efficiency of ranked query

evaluation [2, 4, 6, 8, 10]. Elimination of stop-words—that is, of very frequent

words or closed-class words such as “and” and “of”—is often used to reduce the

number of uninformative terms processed. But it is often difficult to determine

the list of stop-words. For example, in our test database the word “text”,

which is not especially common in English, is encountered in every document

in the collection and hence does not have any discrimination value. Another

word, “Washington”, is also common in the collection, but does seem to provide

useful discrimination.

More sophisticated algorithms implement some dynamic stopping condition.

The typical approach taken by these algorithms is to order terms in a query

by decreasing weight, and then process terms in this order until some stopping

condition is met [2, 6, 8, 10]. Moffat and Zobel [10] implemented the stopping

condition by limiting the number of accumulators. They tested two versions of

the algorithm. In the first version, processing of a query was stopped as soon as

the number of accumulators exceeded a certain limit. In the second, processing

of query was continued after reaching the limit number of accumulators but no

new documents were inserted into the set of candidates. The first version of
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this algorithm showed dramatic improvement in response time but at the cost

of significant deterioration in retrieval effectiveness. The second version gave

the same retrieval effectiveness as a basic version that processed all inverted

lists, and in conjunction with a modification to the index structure discussed

below approximately halved processing time.

Harman and Candela [6] experimented with another pruning algorithm.

They accumulated partial similarities given by all documents in all inverted

lists (like the second algorithm by Moffat and Zobel) but limited the num-

ber of accumulators by setting a condition for the insertion of new documents

into the set of relevant documents: their algorithm only considered those doc-

uments which contained terms with inverse document frequency more than a

certain fraction of the maximum inverse document frequency of any term in the

database. An overview of pruning algorithms and some additional references

are given by Salton [13] and Frakes and Baeza-Yates [4].

These techniques have the effect of saving time, by neither retrieving nor

processing some inverted lists, and of saving space, by having fewer accumula-

tors. However, there is often a penalty in retrieval effectiveness. The property

common to all of these techniques is that they may process the inverted list for

a term even if it is not particularly important in any document, or not process

the inverted list for a discriminating term simply because it is fairly frequent;

and that they abruptly switch from free addition of accumulators to allowing no

addition of accumulators at all. They yield a reduction in the number of pro-

cessed term entries but usually lead to deterioration in retrieval effectiveness,

because the decision to stop is based only on global parameters of the data

set. These algorithms select, for processing or rejection, whole inverted lists

rather than separate document entries within these lists, and as a consequence

these algorithms cannot provide a gradual transition from acceptance of terms

to rejection of terms.

Filtering documents

Accumulator values cannot be effectively compressed because they are unpat-

terned real numbers, so the only way of reducing the space requirement is to

reduce the number of documents for which an accumulator is required. We

propose use of a filtering technique that provides a gradual transition from in-

clusion to omission of documents, by taking into consideration both the global

parameter of term importance across the collection and the local parameter
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of the number of occurrences of a term in each document. We modify the

algorithm of Figure 1 in the following way.

As in the basic algorithm, query terms are sorted by decreasing wt, so that

important terms are processed first. Then, before each term t is processed, two

thresholds are computed, an insertion threshold sins and an addition thresh-

old sadd, where sadd ≤ sins. As we process the inverted list for t, the partial

similarity simq,d,t of query q and each document d in the list is compared to

the thresholds. If sins ≤ simq,d,t, document d is important enough to be one of

the candidates: if necessary an accumulator is created, then simq,d,t is added to

d’s accumulator’s value. If sadd ≤ simq,d,t < sins, document d is not important

enough to be interesting to the user by itself but simq,d,t is likely to affect the

final order of documents; so if d already has an accumulator then simq,d,t is

added to its value, but if not no action is taken. And finally, if simq,d,t < sadd,

the information is unimportant and therefore discarded.

The rationale for the use of thresholds is that, if there are a large enough

number of candidate documents with high values of similarity to the query,

it is not profitable to consider small partial similarities—they are unlikely to

significantly change the final ranking. For example, in the test database we used

for our experiments (described later in this section), a typical less common query

term had wt ≈ 8, whereas a typical common query term had wt ≈ 1. After the

first few query terms were processed, the highest accumulator values were on

the order of 500 to 5,000, with differences between adjacent accumulator values

of from 10 to 100 or more. In this context, the simq,d,t values of from 1 to 10

typically given by common terms do not have much effect on the final ordering.

Using the threshold sadd we can ignore inverted list entries that yield small

partial similarities, thus saving cpu time. Likewise, the threshold sins allows

us to ignore some documents, thus saving memory space. In other words,

the thresholds provide a mechanism for tuning system load. Thresholds have

previously been used to decide whether to process or reject whole inverted

lists [6], but not to decide whether to process or reject individual documents.

The values of both thresholds for a term t are determined as a function of the

accumulated partial similarity of the currently most relevant document Smax.

This heuristic supposes that if the current most relevant document has a high

weight then we do not need to process a document that has a small value of

similarity to a query, as it is unlikely to change the final ranking or identify

important document that is not yet included in the set of relevant documents.
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The values of the thresholds are determined as

sins = cins · Smax and

sadd = cadd · Smax ,

where 0 ≤ cadd ≤ cins are constants; choice of values for these constants is

discussed below. The effect is that, as query terms are processed and the value

of accumulated similarity of documents in the set of answers grows, it becomes

increasingly difficult to update or add new accumulators.

We process term entry 〈d, fd,t〉 in the inverted list of t only if the partial

similarity simq,d,t of d and query q is greater than the current value of threshold

s, where s is either sins or sadd. Substituting the definitions of wd,t and wq,t

into the definition of simq,d,t, we obtain

s ≤ fd,t · wt · fq,t · wt .

The final condition is
s

fq,t · w2
t

≤ fd,t ,

thus expressing the decision of whether to process a term entry 〈d, fd,t〉 as a

condition on fd,t. The thresholds can now be directly expressed in terms of

frequencies:

fins = cins·Smax
fq,t·w2

t
and

fadd = cadd·Smax
fq,t·w2

t

These threshold values are constant during processing of an inverted list, so

that the decision of whether to use a term entry requires only a single integer

comparison.

The use of thresholds provides a smooth transition from acceptance to re-

jection of term entries in inverted lists, as it is progressively more difficult for

accumulators to be added or updated. For the first terms processed the value

of Smax is small and the value of wt is large, so that most identifiers are con-

sidered. As Smax rises and wt falls, the thresholds rise, until, in the limit, all

fd,t values are less than fadd, so that processing an inverted list has no effect on

accumulator values. The filtering algorithm for computing the cosine measure

is shown in Figure 2.

The constants cins and cadd are used to control the resources required by the

algorithm. By increasing the constant cadd we reduce the number of term entries

(and, correspondingly, reduce the number of partial similarities of documents
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1. Create an empty structure of accumulators.

2. Sort the query terms by decreasing weight.

3. Set Smax to 0.

4. For each term t in the query,

(a) Compute the values of the thresholds fins and fadd.

(b) Retrieve the inverted list for t from the disk.

(c) For each term entry 〈d, fd,t〉 in the inverted list,

i. If fd,t ≥ fins, create an accumulator for Ad if necessary,

and set Ad ← Ad + simq,d,t.

ii. Otherwise, if fd,t ≥ fadd and Ad is present in the set of

accumulators, set Ad ← Ad + simq,d,t.

iii. Set Smax ← max(Smax, Ad).

5. Divide each non-zero accumulator Ad by Wd.

6. Identify the k highest accumulator values and retrieve the correspond-

ing documents.

Figure 2: Filtering algorithm for computing the cosine measure

and a query) inspected and accumulated by the algorithm, and hence decrease

cpu time. By increasing the constant cins we reduce the number of documents

that can be candidates, and hence decrease memory usage. The constants

should be chosen so that the discarded information would, if included, have

minimal impact on the final ordering. In a production system, the constant

values could simply be adjusted at each query based on observation of system

load, or occasional queries could be run for several values of each constant, and

best values chosen according to the distortion introduced into the answer set.

A potential weak point of the filtering technique is its vulnerability to pres-

ence of documents with a large number of occurrences of a rare term. Such

documents have very large weight and can theoretically make the values of the

filters so large that no more documents will be able to meet filtering conditions

and be taken into consideration. If this document contains the first (rarest)

term in a query, then the set of answers to the query will consist only of the

documents containing that term. To the test robustness of the method of fil-

tering, we have tried another way of calculating the thresholds, in which Smax
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is replaced by SQ, defined by

SQ =
∑
t′∈Q

(
log2

N

ft′

)2

,

where Q is the set of query terms that have already been processed. However,

experimentally we have found that the difference in performance of the two

versions of the filtering algorithm is insignificant, and we have used the Smax

approach in the experiments described below. Another possibility is to use the

average similarity of several top documents instead of the highest one, but this

version would be more expensive.

Document filtering sharply reduces the volume of main memory needed for

evaluation of ranked queries. However, the filtering technique as it stands does

not yield substantial savings in either disk traffic or cpu time. To perform a

ranking we still have to fetch and process the whole inverted list for every query

term, comparing fd,t for every document to the current threshold values. For

the long inverted lists only a few fd,t values pass the thresholds, so that most of

the time spent processing these lists has no effect on the final ranking. Section 4

describes techniques for avoiding these problems.

Experimental results

The database we have used in our experiments is a collection of Wall Street

Journal articles, extracted from the TREC data [7]. The value of this database

is that it has a set of queries with manual relevance judgements that can be used

to determine retrieval effectiveness. The database contains 173,000 documents,

totalling 508 Mb; average document size is 510 term occurrences; the longest

document consists of 22,200 terms. We have used queries 51–150 from the

TREC experiment, after stemming and removing SGML markup; the length

of the queries ranges from 66 to 313 terms. We measured the retrieval ef-

fectiveness of algorithms—their ability to retrieve answers a human judges to

be relevant—from the recall (proportion of relevant documents retrieved) and

precision (proportion of retrieved documents that are relevant), by averaging

precision at 0%, 10%, . . . , 100% recall. For consistency with the TREC experi-

ments, we retrieved only the top 200 documents for each query, and pessimisti-

cally assumed all recall values outside the top 200 to be zero. All results shown

are average values over all 100 queries.

Retrieval effectiveness is shown as a function of the addition threshold in

Figure 3. We depict two parameters on the horizontal axis: the value of the
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Figure 3: Retrieval effectiveness for different values of cadd (cins = 0.12)

constant cadd and the percentage of term entries processed by the algorithm

for this value of cadd. For comparison, we also show as a horizontal line the

performance with cins = cadd = 0, that is, for the algorithm shown in Figure 1.

The value of the insertion threshold was fixed in this experiment. Prior

to these experiments we measured retrieval effectiveness for different values of

cins, and chose 0.12 because it gave good retrieval effectiveness using a small

number of accumulators. For this value of cins, we can obtain an answer to a

ranked query with the same retrieval effectiveness as the basic algorithm (32.4%)

having processed only 10% of all term entries. Interestingly, processing 15% of

all term entries we obtain even better retrieval effectiveness in comparison to

the standard algorithm. We believe that this is because of the pruning of

common terms, which are encountered in almost every document and create

informational noise rather than help discriminate between documents. Note

that it is only necessary to process a very small number of term entries to obtain

a decent level of retrieval effectiveness. For example, while processing only 1%

of the term entries, the deterioration in retrieval effectiveness is only 2.1%.

Figure 4 shows the dependency of retrieval effectiveness on the number

of accumulators. The number of accumulators was varied by changing the

insertion threshold. Both the value of the constant cins and the corresponding

number of accumulators is depicted on the horizontal axis. We used cadd = 0 in

this experiment to prevent the skipping of common terms; that is, for each of

document included in the set of candidate documents we accumulated all partial

similarities given by all terms. Note that using a relatively small number of

candidate documents we obtain better retrieval effectiveness than does the basic
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Figure 4: Number of accumulators for different values of cins (cadd=0)

algorithm. Interestingly, this phenomenon is consistent for different techniques

and different document collections; for example, similar results were obtained

by Moffat and Zobel in their experiments with an explicit limit on the number

of accumulators [10], and in our own experiments with a different version of the

cosine measure.

The main saving yielded by this technique is a sharp reduction in the number

of accumulators. This is illustrated in Figure 4. On the horizontal axis we

vary cins, which affects the number of accumulators; for example, cins = 0.12

results in roughly 4,000 accumulators, whereas cins = 0 results in almost every

document having an accumulator, or around 173,000 accumulators in total.

The vertical axis is retrieval effectiveness, which remains high even when the

number of accumulators is small; until the number of accumulators drops below

4,000 retrieval effectiveness is constant and is equal to that given by the basic

algorithm. The technique also yields a small saving of cpu time, as we do not

have to compute the simq,d,t values for document identifiers that are filtered out.

The filtering algorithm is reasonably insensitive to both cins and cadd, pro-

viding good performance across a wide range of values. Moreover, per query

the largest number of accumulators used in our experiments was no more than

3 times the average value, so that performance does not greatly depend on

characteristics of individual queries. Thus the major effect of the thresholds

is on system performance, with cins affecting memory usage and cadd affecting

response time and disk traffic.

To confirm these results we applied the filtering method to another subset of

the TREC data, the Associated Press subcollection. We observed almost iden-

tical behaviour: excellent performance with only a few thousand accumulators
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and little impact on cpu time.

The queries used in these experiments are quite long. It might be argued

that short queries of only a few terms would be adversely affected by the in-

formation discarded during filtering, but we believe that this would not be the

case. Filtering discards contributions that are small compared to values ac-

cumulated so far, so that less information is discarded for the first few query

terms, with typically no information discarded for the first one to five terms

processed. While the performance gains for short queries (which have mod-

est resource requirements) would be less spectacular than for long queries, we

would not expect effectiveness to degrade.

Other term weighting systems

The cosine measure as described in Section 2 is not the only similarity measure.

There are other similarity measures, for example those described by Lucarella [8]

and Harman and Candela [6]. We tested the robustness of document filtering

by applying it to these similarity measures.

Lucarella determined the similarity of a document and the query using the

formula ∑
t wq,t · wd,t√∑

t w2
q,t ·

√∑
t w2

d,t

,

where q is the query, d is the document, and wx,t is the weight of the term t in

a document or query x. The weight of a term is determined as

wx,t = (0.5 + 0.5 · fx,t/f
max
x ) · wt ,

wt = log2
N

ft
,

where fx,t is the number of occurrences of the term t in x, fmax
x is the maxi-

mum occurrence frequency among the terms associated with the document or

query x, N is the number of documents in the collection, and ft is the number

of documents containing t. This measure is similar to our form of the cosine

measure, but the importance of the within-document frequency of a term in a

document is smaller in Lucarella’s measure since it is normalised.

Harman and Candela employed the similarity measure

∑
t

log2 (fd,t + 1) · (wt + 1)
log2 Md

,
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Figure 5: Retrieval effectiveness for different number of accumulators

where Md is the total number of significant terms (including duplicates) in the

document d. This similarity measure considers only a frequency of a term in

documents, not taking into account the number of term occurrences in a query.

For these measures we examined the reduction in the number of accumula-

tors. (We were not able measure time savings that our technique would yield

for these similarity measures, as this would have required a reimplementation

of the inverted index.) As the volume of computation required for evaluation

of the similarity of the query and documents is approximately the same both

for our similarity measure and for the measures used by Harman and Candela

and by Lucarella, we expect that the time savings should be the same as for

the similarity measure used in our system.

Figure 5 shows, for these similarity measures, retrieval effectiveness as a

function of the number of accumulators. The number of accumulators was var-

ied by changing the constant cins. As for the standard cosine measure document

filtering allows queries to be evaluated without deterioration in retrieval effec-

tiveness, using only about 1% and 6% of the previous memory requirement for

Harman and Candela’s and Lucarella’s algorithms respectively.

4 Inverted file structures for filtering

For our ranking technique, the decision about whether to process or reject

a term entry depends on the within-document frequency fd,t. For the usual

structure of inverted lists, where term entries are sorted by document identi-

fier, we have to process the whole list, comparing fd,t in every term entry to

the current value of the threshold. We propose that inverted lists instead be
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frequency-sorted , that is, sorted by decreasing fd,t, so that the time wasted

processing small fd,t values can be entirely avoided. First, once an fd,t value

is encountered that is below the threshold, processing of the inverted list can

stop. Second, if the inverted list is longer than a disk block, only one block of

the list needs to be retrieved at a time: since the tail of a long inverted list will

contain only small fd,t values, it is unlikely to be required, and there is little

cost associated with leaving it on disk until requested.

It is also useful to store in the vocabulary the maximal within-document

frequency fmax
t for each term t, to allow skipping of inverted lists. Before

commencing the processing of each term in a query we compute the threshold

frequencies fadd and fins and compare them to the maximal within-document

frequency of the term fmax
t . If fmax

t is less than fadd then no document con-

taining this term will be processed and we can proceed to the next term in the

query without retrieving the inverted list from disk.

Unfortunately, frequency sorting is incompatible with compression of in-

verted lists. If the document identifiers are unsorted, run-lengths cannot be

taken and the index size will dramatically increase. Besides the impact on

space requirements, an immediate effect of this increase is in the real time re-

quired to compute a ranking: inverted lists become more expensive to retrieve

from disk. For some queries this penalty will outweigh the gain of re-ordering.

Thus it is crucial that we find some way of maintaining compression per-

formance. A simple way of having some compression within frequency-sorted

inverted files is to, for the term entries with the same fd,t value, sort by docu-

ment identifier. Inverted lists then consist of a series of sequences, where each

sequence is a triple

(f, pf , (d1, . . ., dpf
))

where f is the fd,t value of the documents d1, . . ., dpf
in the sequence and pf

is the number of documents. For a sequence of several documents with the

same frequency there is a potential space saving, as the frequency only has to

be stored once. The identifiers in a sequence are sorted, allowing run-lengths

to be taken and hence allowing compression. For example, the inverted list

illustrated in Section 2 would under this scheme be represented as

5, 1, (16) 4, 1, (32) 3, 1, (5) 2, 3, (9,3,13) 1, 1, (21)

in which each box is a sequence, the first number is the frequency, the second

is the number of documents in the sequence, and the expression in brackets
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is the documents in that sequence. The expression (9, 3, 13) represents the

document numbers 9, 12, and 25 after run-lengths have been taken—these are

the documents that contain the term with frequency 2.

However, the sequence method might not yield as good compression as for

document-sorted inverted lists. One reason for possible poorer compression is

the pattern of document identifiers within sequences. A run-length of k can

typically be compressed to a little over log2 k bits; since the average run-length

between identifiers in a sequence is larger than the average run-length in the

sorted inverted list, compression performance degrades. Another reason for

possible increase in size is that, although many sequences are only one or two

documents long, the per-sequence parameters still have to be stored.

In a database of N documents, the size of a document-sorted inverted list of

p identifiers can be estimated as follows. The number of bits required to store

the document identifiers is approximately [9]

BG(p) = p

(
1.5 + log2

N

p

)
.

In addition an fd,t value must be stored for each document. The space required

for these values will depend on the distribution of frequencies. We assume that

the distribution is given by a integral function I(p, f) for which
∑r

f=1 I(p, f) =

p, where r is the largest fd,t value in the distribution. We also assume that each

fd,t value is represented by a gamma code [3]; the number of bits required to

represent frequency f using gamma is

Bγ(f) = 1 + 2blog2 fc .

Thus the space required for the fd,t values is

r∑
f=1

(I(p, f) ·Bγ(f))

and the total space for a document-sorted inverted list is approximately

BDS(p) = Bγ(p) + BG(p) +
r∑

f=1

(I(p, f) ·Bγ(f)) ,

where Bγ(p) bits are needed to represent the length of the list.

Based on the same assumptions, the size of a frequency-sorted list can be

determined as follows. In the sequence for frequency f there are I(p, f) iden-

tifiers, so each sequence requires BG(I(p, f)) bits for identifiers. In addition

each sequence requires approximately 1 bit for the frequency (the frequencies
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are ordered so differences can be taken, and usually the difference will be 1)

and Bγ(I(p, f)) bits to store the number of identifiers in the sequence. In to-

tal, the space required for a frequency-sorted inverted list of p identifiers is

approximately

BFS(p) = Bγ(r) +
r∑

f=1

(BG(I(p, f)) + 1 + Bγ(I(p, f))) .

where r is again the largest fd,t value in the inverted list and Bγ(r) bits are

needed to represent the number of sequences.

Whether BFS or BDS is larger depends on the distribution of frequencies.

One extreme is that all documents have fd,t = 1, that is,

I(p, f) =


 p if f = 1

0 otherwise

for which we have

BDS(p) = Bγ(p) + BG(p) + p ·Bγ(1) = Bγ(p) + BG(p) + p

and

BFS(p) = Bγ(1) + BG(p) + 1 + Bγ(p) . = Bγ(p) + BG(p) + 2

In the case of inverted lists in which all fd,t values are 1, therefore, frequency-

sorting results in slightly better compression. Another extreme is when p = r

and each document has a different fd,t value, that is,

I(p, f) =


 1 if f ≤ p

0 otherwise

for which we have

BDS(p) = Bγ(p) + BG(p) +
p∑

f=1

Bγ(f)

and

BFS(p) = Bγ(p) + p · (BG(1) + 1 + Bγ(1)) .

In this case, of each fd,t value occurring once, which is better will depend on p,

but the sizes will be similar.

For the Wall Street Journal database, we have observed that most of the fd,t

values in most inverted lists are 1, most of the remainder are 2, and so on—there

is a strong skew towards low frequencies. This distribution can be modelled as
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Figure 6: Estimated size of compressed inverted lists

follows. Suppose that for some integer v, the distribution of frequencies is

such that (v − 1)/v of the identifiers in each inverted list have fd,t = 1, of the

remainder (v − 1)/v have fd,t = 2 (that is, (v − 1)/v2 of the total), and so on.

That is, the number of identifiers with fd,t = f is given by

I(p, f) =




p(v − 1)/vf if f ≤ logv p

1 if f = logv p + 1

0 otherwise.

for p such that logv p is integral. Estimated sizes for compressed inverted lists

are plotted in Figure 6 for v = 2 and v = 4 for a database of 1,000,000 records.

As can be seen, the sizes are almost identical, with the frequency-sorted index

very slightly smaller.

It is straightforward to extend the model developed above to predict the

volume of index data retrieved in response to a query, but the result depends

on several estimates—the function I(p, f), the distribution of p values for query

terms, and the likely Smax value—so the predictions made by such a model are

at best a broad indicator of possible performance. What is clear is that use of

filtering reduces, and has the potential to drastically reduce, disk traffic. The

scale of reduction is best determined experimentally, as we do for the Wall

Street Journal later in this section.

A possible drawback of frequency-sorting of inverted lists is the impact on

update. The costs of update for an inverted index are: locating and fetching

the list; identifying the part of the list to be modified; modifying the list;

and writing the list to disk, making any reorganisation necessary to minimise

space fragmentation if the list’s length has changed. Of these costs, only the
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second—searching the list—is affected by the change from document sorting to

frequency sorting; typically the searching cost might double, while the other

costs are unchanged. We therefore believe that frequency sorting has only a

minor impact on update. However, as for most indexing methods for text

databases, update is expensive, requiring disk accesses for every indexed term

in each modified or inserted document.

Our method of filtering and re-ordering inverted lists into sequences of doc-

uments of the same frequency is not the only possible solution to the problem of

ignoring the majority of document identifiers. Moffat and Zobel have proposed

that inverted lists be ordered by identifier, but in addition contain pointers into

the inverted list at evenly-spaced intervals, to allow the search to “skip” sections

of the list without decompression [10]. Such skipping provides the benefit of

random access (usually impossible in the context of compression) while main-

taining reasonable compression performance. In conjunction with their scheme

of a small, fixed number of accumulators, the skipping reduces cpu time with-

out degrading retrieval effectiveness; however, this scheme slightly increases

disk costs, and does not support filtering. As we show below, the gain they

achieve is limited compared to that given by the scheme we describe here.

Other representations of sequences

The analysis above indicates that the sequence method for representing inverted

lists should yield reasonable compression, but better compression may be pos-

sible, particularly for the sequences of higher frequency terms—a typical long

inverted list will contain many term entries for which fd,t is 1 or 2, and a small

number of term entries for which fd,t is large. That is, for the high frequencies,

many sequences will have only one or two documents and the overheads of rep-

resenting a short sequence (the need to store the number of documents and the

loss of compression due to the large run-lengths) are high.

These problems can be overcome by selective application of the idea of

sequences. As we have seen, there are advantages to the long sequences of low

frequencies, but short sequences are inefficient. It follows that an efficient form

of inverted list is an initial sequence of 〈d, fd,t〉 pairs, for the high frequencies

that would lead to short sequences, followed by a series of sequences, one for

each of the low frequencies. We therefore propose the following structure for

representing an inverted list. Each list is split into n sequences (the problem

of choice of n is discussed later). The leading sequence is of 〈d, fd,t〉 pairs, for
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all documents with fd,t ≥ n. Each remaining sequence is of documents of some

frequency fd,t < n, and the sequences are ordered by decreasing frequency.

Within each sequence, the entries are sorted by document identifier. Within

the leading sequence, rather than storing fd,t values we store fd,t − n + 1. The

minimum value of n is 1, in which case the whole list is stored in one sequence.

The final filtering algorithm, using sequences, is shown in Figure 7. Such a

scheme should be effective because, for even the longer inverted lists of more

common terms, the distribution of fd,t values is highly skew. Thus, in the above

scheme, each of the low fd,t values would have its own sequence, which would

be long; whereas the high fd,t values would share a sequence.

At the start of each inverted list that has been grouped into sequences

we store the number of sequences; each sequences starts with the number of

entries in it. The frequency of a sequence is determined by its ordinal number.

This method means that, for all but the leading sequence, frequencies are not

explicitly stored, and also means that we have to store zero as the number

of documents for an empty sequence. An example of this method of storing

inverted lists, using n = 3, is as follows.

3 3|〈5, 1〉〈11, 3〉〈16, 2〉 3|9,3,13 1|21

This example corresponds to the inverted list shown above. The first box is the

number of sequences in the list. The second box is the leading sequence and the

third and fourth boxes are the sequences for frequencies 2 and 1 respectively.

We now examine, for inverted lists compressed with the sequence method,

optimisation for index size and query evaluation time. Consider the effect of

having the same n for all inverted lists, and of the inverted file that results from

varying this n. As we increase n, we increase the number of sequences in each

inverted list. On the one hand, this allows storage of more document identifiers

without their corresponding frequencies. On the other hand, we have to store

a sequence length for each sequence, including zeros for sequences that do not

contain documents. Sequence lengths are a significant overhead on the size of

the inverted file, and as n increases they quickly become unacceptably large.

Also, decrease in the length of each sequence implies an increase in the average

run-length and, hence, a worse rate of compression.

Small n implies a small inverted file. But now consider the problem of proper

choice of n for fast query evaluation, in which case we wish to stop processing

term entries (ordered by decreasing fd,t) as soon as fd,t < fadd is found. If
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the value of threshold fadd is less than the minimal frequency n of documents

in the leading sequence, we process the whole leading sequence, and possibly

some subsequent sequences, and for all documents processed we update their

accumulators; thus no decoding time is wasted. But if fadd is more than n

we must process the whole of the leading sequence, even though some of the

documents in the sequence will be ignored. So, using one value of n for all

inverted lists, to achieve fast query evaluation we have to increase the size of

n, which will however increase the size of the inverted file.

The other possibility to allow n to vary between lists. A simple method

would be to, for each list, set n to 1, compress the list; then increment n and

compress it again; and so on until a minimum is found. The existence of a

minimum is guaranteed, as the size of the sequence lengths will, in the limit, be

dominant. (Note that, in a scheme with varying n, in addition to the sequence

lengths the value of n must be stored in each list.) However, such a scheme is

impractical.

The heuristic scheme we chose for selection of n is based on the observation

that using a separate sequence for each fd,t value when fd,t is high (and the

length of the sequence is low) is expensive because of the per-sequence over-

heads. Let us call the number of identifiers at which overall compression gains

outweigh overheads the sequence threshold T . (In fact T is a function of, not

just sequence length, but of the fd,t for the sequence; but since in our test

collection almost all inverted lists have only a few frequencies with sequences

of any length, this approach is a reasonable approximation.) To achieve good

compression, we should avoid sequences of a length less than T . We determine

the size of n for the inverted list for a term t using the following procedure.

Initially, for each distinct value of fd,t, we find the number of documents that

contain t this number of times. Then we find the highest fd,t for which the

number of documents is at least T . Let us denote this frequency as fT. We

then create the inverted list by having per-frequency sequences for frequencies

from 1 to fT and a leading sequence that contains documents with all remaining

frequencies. The value of n for such an inverted list is fT + 1.

On the one hand, if T is 1 then every frequency in every inverted list will

have its own sequence, and the value of n for an inverted list will be the highest

fd,t value in that list. On the other hand, for (say) a database of a million

documents, if T is 100,000 then most inverted lists will have n of 1, and thus

have only one sequence; but the inverted lists for the most common terms
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will probably have several sequences, because these terms would in a typical

database occur in almost every document.

Having leading sequences of mixed fd,t allows us to achieve two aims simul-

taneously. On one hand, we avoid creation of inverted lists containing many

short sequences that cannot be effectively compressed, and similarly avoid stor-

ing many sequence lengths. On the other hand, we are able to keep the leading

sequences short and, hence, have fast query evaluation.

Experimental results

Using the Wall Street Journal database we built a document-sorted inverted file

and a frequency-sorted inverted file and evaluated the TREC queries described

above. In all of these experiments we used filter values cins = 0.12 and cadd =

0.007, as these gave good retrieval effectiveness while requiring only a small

number of accumulators. All times and volumes of disk traffic are per query,

averaged over the 100 TREC queries, on a Sun SPARC 10 model 512, using

local disks.

The size of the document-sorted compressed inverted file is 35.4 Mb; that

of the frequency-sorted inverted file is 33.4 Mb, or only 6.6% of the size of

the original data. Overall, therefore, the cost of storing the per-sequence pa-

rameters is more than offset by the saving of not storing duplicate fd,t values.

On the document-sorted index, average query evaluation is 3.18 cpu seconds

for stopped queries (from which closed-class words have been removed, on the

grounds that they have little impact on retrieval effectiveness) and 10.18 cpu

seconds for unstopped queries; on the frequency-sorted index, the comparable

times are 1.20 cpu seconds and 1.73 cpu seconds respectively. These times are

very similar, demonstrating that the filtering method almost completely ex-

cludes stop-words from consideration. That is, our method obviates the need

to manually select a list of stop-words.

Frequency-sorted indexes require far less data to be fetched from disk than

do document-sorted indexes, since we usually have to read only the first block

of each inverted list. For document-sorted inverted files and stopped queries,

the volume of data fetched was 532 Kb; for unstopped queries, it was 2,108 Kb.

In contrast, using our technique the volume of index fetched was just 157 Kb

and 249 Kb respectively. The number of disk accesses is also reduced, since

deciding whether to reject a term does not require a disk access.

These results compare well to those of the “skipping” scheme of Moffat and
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Zobel [10], who on a larger database are only able to halve cpu time, and ac-

tually increase disk traffic slightly. However, their scheme is also applicable to

Boolean queries, for which they achieve much greater performance gains. The

idea of their scheme is to break usual identifier sorted indexes into blocks and to

store some additional information allowing decoding algorithm to skip a block

if necessary without decoding its contents. The same scheme can be applied to

the frequency sorted index. Inverted lists in such an index consist of sequences

and store documents ordered by their numbers inside of each sequence, as in

Moffat’s and Zobel’s scheme. Skipping information can be inserted into each

sequence, thus allowing efficient searching for documents by their numbers dur-

ing evaluation of boolean queries. We believe that this approach should provide

good performance of evaluating Boolean queries at the cost of slightly decreased

efficiency of processing ranked queries due to necessity of decompressing addi-

tional skipping information.

We also built a series of indexes using different values of the sequence thresh-

old T , to experiment with the effect of T on performance. The size of an in-

verted file is shown as a function of the sequence threshold T in Figure 8. At

one extreme, assigning T to 1 forces creation of a separate sequence for every

frequency with at least one document. Inverted lists in such a file do not have

leading sequences. This leads to an increase in index size because of the short-

ness of the sequences and because the number of sequence lengths to be stored

is larger. Large values of T also lead to a gradual increase in inverted file size,

as the leading sequences becomes long and we have to represent many large

frequencies in these sequences.

We also examined query evaluation time for different values of T . The time

is almost constant for small values of T (up to T = 100 or so) since the difference

in size of leading sequences is small. Performance deteriorates for large values

of T , because, during processing of common terms, we have to process long

leading sequences, searching for the documents that pass the filter and ignoring

the rest. In the limit, of huge T , we have a document-sorted index. Note that

there are processing overheads that are independent on the number of processed

documents; hence the decrease in the time of query evaluation is not a linear

function of the quantity of index processed.

The volume of inverted lists fetched and decompressed during query eval-

uation is shown in Figure 9, again for both stopped and unstopped queries.

Frequency-sorted inverted files built with small values of T provide an almost
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constant amount of decompressed data. This is because, on the one hand, the

smaller the value of T the smaller the leading sequence and, hence, the smaller

the number of documents which have to be decompressed but ignored; on the

other hand, small values of T give rise to inverted lists consisting of many small

sequences, so that the overheads for storing sequence parameters increase and

the same number of compressed identifiers occupy more space. For small val-

ues of T these phenomena are almost in balance, producing a plateau in the

graph. On the other hand, inverted files built with large values of T have long

leading sequences, leading to increase in the amount of data that is fetched and

processed.

Overall, performance is excellent across a wide range of T values, and for all

T values performance is better than for document-sorted compressed inverted

files. Retrieval effectiveness is maintained; index size is reduced; and cpu time

and disk traffic are much reduced. We expect that relative performance would

improve further with growth in the database size. Since performance depends

only marginally on T , we conclude that T = 1 can be used in a production

system. Note, however, that the majority of documents in the Wall Street

Journal database are short and average within-document frequency is small.

For databases of longer records, a higher T value may be preferable.

Uncompressed inverted files

Our structure for inverted files, where documents in inverted lists are ordered

by decreasing fd,t, would also be effective in systems that use uncompressed

inverted files. Using this structure yields significant reduction in the size of

inverted files. Typically, a 〈d, fd,t〉 pair occupies 6 bytes, consisting of 4 bytes for

storage of the document number and 2 bytes for storage of the term frequency.

Using our structure of an inverted file allows decrease in the size of the inverted

file from 238 Mb for the basic structure to 160 Mb; that is, we can almost

completely avoid storing fd,t values. The size of the uncompressed inverted file

for different values of the sequence threshold is shown in Figure 10.

5 Conclusions

We have shown how to make dramatic reductions in the major costs of ranking

a query on a large document database—disk traffic, cpu time, and memory

usage—without degrading retrieval effectiveness. The basis of these reductions
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is the filtering method, in which only the documents with high within-document

frequency are considered as candidate answers; it is this technique that reduces

memory usage, as having fewer candidates means that fewer accumulators are

required to store information about these candidates. Despite the reduction in

memory usage, there is no deterioration (and even with some improvement) in

retrieval effectiveness.

The reductions in disk traffic and cpu time are based on the simple observa-

tion that, by ordering inverted lists by decreasing within-document frequency,

only the first part of each list will contain high frequencies, and so the rest

can be ignored. Frequency-sorted inverted lists can be effectively compressed

by splitting inverted lists into sequences of documents of the same frequency

and applying the existing compression techniques within each sequence. Both

modelling and experiment have shown that change to frequency sorting has no

negative impact on index size.

For our test database, these techniques maintain retrieval effectiveness; re-

duce memory requirements from 173,000 to 4,000 accumulators; reduce the

quantity of data requested from disk from 532 Kb to 157 Kb; and reduce cpu

time from 3.18 to 1.20 seconds. The gains for unstopped queries are even

greater. The time saving is most noticeable for systems that use compression

for storage of data, since the cost of decompression of long inverted lists is

the major component of processing time. There is also a slight reduction in

index size, from 35.4 Mb to 33.9 Mb, already a massive saving on the 238 Mb

required for an uncompressed index. Together, these dramatic improvements

allow ranking to be performed much faster, and on much smaller machines,

than was previously possible.
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Symbols used

Symbol Meaning

A set of accumulators

Ad accumulator for docu-

ment d

Cq,d cosine for document d

cins, cadd threshold constants

d document identifier

fins, fadd within-document

frequency thresholds

fd,t frequency of t in d

fq,t frequency of t in q

fT sequence frequency

threshold

ft number of documents

containing term t

k number of answers

Symbol Meaning

N number of documents

q query

SQ current similarity

threshold

sins, sadd partial similarity

thresholds

simq,d,t partial similarity of q

and d with respect to t

T sequence threshold

t term

wd,t weight of t in d

wq,t weight of t in q

wt weight of t in the coll-

ection

Wd weight or length of d
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1. Create an empty structure of accumulators.

2. Sort the query terms by decreasing weight.

3. Set Smax ← 0.

4. For each term t in the query,

(a) Compute the values of the filters fins and fadd.

(b) If fmax
t < fadd go to step 4.

(c) For the leading sequence in t’s inverted list and each document

d in the sequence,

i. If fd,t ≥ fins, create an accumulator for Ad if necessary,

and set Ad ← Ad + simq,d,t.

ii. Otherwise, if fd,t ≥ fadd and Ad is present in the set of

accumulators, set Ad ← Ad + simq,d,t.

iii. If Ad was updated, set Smax ← max(Smax, Ad).

(d) For each remaining sequence in t’s inverted list with fd,t ≥ fadd

and each document d in the sequence,

i. If fd,t ≥ fins, create an accumulator for Ad if necessary,

and set Ad ← Ad + simq,d,t.

ii. Otherwise, fd,t ≥ fadd; if Ad is present in the set of accu-

mulators, set Ad ← Ad + simq,d,t.

iii. If Ad was updated, set Smax ← max(Smax, Ad).

5. Divide each non-zero accumulator Ad by the document length Wd.

6. Identify the k highest values of accumulators (k is the number of

documents to be presented to the user) and retrieve the corresponding

documents.

Figure 7: Filtering algorithm using sequences to compute the cosine measure
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Figure 8: Size of compressed index for different values of sequence threshold
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Figure 9: Volume of inverted lists decoded during query evaluation
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Figure 10: Size of uncompressed index for different values of sequence threshold


