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Abstract

It is common to model the distribution of words in text by measures such
as the Poisson approximation. However, these measures ignore effects such
as clustering: our analysis of document collections demonstrates that the
Poisson approximation can significantly overestimate the probability that
a document contains a word. Based on our analysis, we propose a new
model for distribution of words in text, and show how this model can be
used to estimate the probability that a document contains a word and the
number of distinct words in a document.

1 Introduction

Models for the distribution of words in text are used to estimate the performance
of algorithms for text compression and for full text retrieval from databases.
Many of these models, such as the Zipf and lognormal distributions, are used to
predict the distribution of word frequencies (Carroll, 1967; Witten and Bell,
1990; Zipf, 1936; Zipf, 1949). However, such measures do not predict the
probability that a given document in a document collection contains a particular
word. Other models, such as the Poisson distribution, can be used to estimate
this probability, but such models are inaccurate, as they ignore effects such as
word clustering .

Clustering arises from the fact that words tend to be repeated a number of
times in the same piece of text, even words that are (overall) quite rare. For
example, the effectiveness of adaptive text compression techniques depends in
part on clustering effects, where in general the number of bits used to encode
a word decreases as the number of recent occurrences of the word increases
(Cleary and Witten, 1984; Moffat, 1989). However, clustering has not been
measured nor its effects quantified. Without some allowance for clustering,
estimating the performance of information retrieval algorithms is difficult. For
example, in full text retrieval systems, the cost of answering a query depends
on the number of documents that satisfy the query, and the size of an index
depends on the number of unique terms in each document.

To obtain accurate estimates of the probability that a document of a given
size contains a given word, we analysed several document collections. Our anal-
ysis revealed that the Poisson estimate of this probability can be much greater
than the observed probability. We propose as a new measure a clustering model
and show that this model generally provides a good fit to observed data. Like
other accurate models of text (Witten and Bell, 1990), this model is empirical.
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We show that the clustering model can be used to estimate the average number
of documents containing a word of a given probability and to estimate the num-
ber of distinct words in a document. There are several possible applications of
this measure. It has already been used to estimate the costs of full text storage
and retrieval (Zobel et al., 1991) and to estimate the importance of query terms
in information retrieval (Wallis et al., 1991).

In Section 2 we describe the methods and results of our analysis of document
collections. In Section 3 we discuss existing models for distribution of words in
text. We present the clustering model in Section 4, and discuss how it can be
verified and applied in Section 5. In Section 6 we discuss the limitations of the
clustering model. Directions for further work are discussed in Section 7.

2 Analysis of document collections

In this section we discuss how we analysed our document collections and present
the results of our analysis. For the purposes of our analysis, we assumed that a
word is a series of alphabetic characters flanked by non-alphabetic characters.
As in many information retrieval systems, uppercase and lowercase letters were
converted to a single case and the resulting strings were stemmed using Lovins’s
algorithm (Lovins, 1968), thus reducing the number of distinct terms under
consideration. We also assumed that a document is an entire, contiguous piece
of text such as a book of the Bible, an Act of Parliament, or a speech, and that
a document collection is a set of documents from a single source. The size of a
document was measured by the number of words in the document rather than
by the number of characters.

We had several document collections available for analysis. We chose to
concentrate on three, the King James version of the Bible, the Commonwealth
Acts of Australia from 1901 to 1988 (or Comact), and an extract from the 1989
Western Australian Hansard, the official transcript of that state’s parliamen-
tary proceedings. The sizes of these collections are shown in Table 1. As can

Number of Number of Number of word Average document
documents distinct words occurrences length (in words)

Bible 66 8 892 791 448 11 992
Comact 3 459 21 740 16 548 025 4 784
Hansard 13 545 22 484 4 473 791 330

Table 1: Size of each document collection

be seen, the Bible is very much smaller than both Comact and Hansard, and
was principally used to verify results obtained from the latter two collections.
The presentation of our results in this paper is principally based on Comact.
The three collections have very different characteristics. The Bible is somewhat
representative of written English. Hansard is a collection of transcripts of spo-
ken English, and each document (which is a debate on a single topic) tends to
be repetitive and informal in structure. In contrast, the language in Comact
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is highly formalised, the vocabulary limited, and the text available to us con-
tained a large number of spelling errors, amounting to approximately one-third
of all distinct terms. However, within each collection documents are written in
a fairly homogeneous style.

Our principal aim was to discover a relationship between: the probability
that a given word occurs; document size; and the probability that a document of
that size contains that word. For most sizes, however, our document collections
contained very few documents of or near that size. Thus for our analysis we
chose to select a range of possible lengths and construct psuedo-documents (or
fragments) of each length. Each pseudo-document was an excerpt of contiguous
text from a real document. We generated the psuedo-documents by taking
several fragments of each length from each real document. If the originating
document was shorter than a given length, no fragment of that length was taken
from it. This method of constructing psuedo-documents of given lengths from
real documents allowed us to simulate collections of independent documents of
a given size drawn from a large document space. We show in Section 5 that
the model derived from psuedo-documents can be used to predict aspects of the
behaviour of real documents.

The number of fragments of each length was chosen so that about 5% of
each document was represented in fragments of that length. The starting point
of each fragment was chosen at random, and we did not exclude the possibility
of overlap. We considered 26 different fragment lengths between 2 and 100 000
words. For some of these lengths, the number of fragments generated for each
of the document collections is shown in Table 2.

Fragment length
40 100 400 1 000 4 000 10 000 40 000

Bible 1 021 431 138 80 37 27 2
Comact 22 530 10 362 3 822 2 191 979 417 46
Hansard 9 741 5 196 1 209 548 241 105 4

Table 2: Number of fragments in each document collection

Word occurrence probabilities for each document collection were computed
by counting word occurrences over the whole of the document collection. The
probabilities of fragments containing a word were given by counting, for each
fragment size, the number of fragments of that size in which the word occurred.
These probabilities were computed by maintaining a splay tree (Sleator and
Tarjan, 1985) of distinct words with, for each word, several counters.

Throughout this paper, we use n to denote the number of words in a frag-
ment, p(w) or just p to denote the probability that a randomly chosen word
in the document collection is the word w (that is, the occurrence probability of
w), and pn(w) or just pn to denote the probability that a fragment of length
n contains word w. For all words in Comact, p and pn (where n = 100, 1 000,
and 10 000) are related as shown in Figure 1. We have omitted from Figure 1
the few points where p > 0.005.
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One problem with our method of estimating probabilities is the difficulty of
accurately deriving extreme p and pn values. At very low p values only a few
distinct pn values occur, representing words occurring in only a few fragments;
thus, at such p values, patterns such as simple lines appear in graphs. Moreover,
since many of the words with very low p did not occur in any of the fragments
we generated, our method derived pn = 0, which is clearly an error since all
words with some probability of occurrence must have non-zero pn for all finite n.
A similar but less severe problem occurs for very high p values, as words with
such p values occur in nearly every fragment. Thus, estimated probabilities
with very low or very high p or pn were substantially inaccurate. In deriving
our model in Section 4, we eliminate these extreme values for p and pn.

3 Existing models of word distributions

Models of word probabilities

Zipf’s law is perhaps the best known model of word probabilities. It describes
the fact that when words are ranked on frequency, from most to least frequent,
plotting rank against frequency yields a hyperbolic curve (Zipf, 1936; Zipf,
1949). However, it has been argued that too much emphasis has been placed
on this result: even words produced by a simple random generator conform to
Zipf’s law (Witten and Bell, 1990).

In any case, Zipf’s law, or amendments to Zipf’s law such as that proposed
by Mandelbrot (Mandelbrot, 1952), do not apply to the problem we are con-
sidering: the number of word occurrences and number of distinct words in a
document collection do not specify the parameters of the Zipf curve. Nor do
these parameters, if known, help determine the probability that a document
contains a given term. Although theoretically elegant, Zipf’s law provides only
a loose fit to actual text, and in practice must be modified by introduction
of additional parameters (Witten and Bell, 1990). The lognormal distribution
(Carroll, 1967) has similar limitations (Witten and Bell, 1990).

The Poisson approximation

For a sequence of trials in which the probability of each outcome is unchanged
between trials (that is, the trials are equivalent and independent), the proba-
bility that exactly m of the trials have a particular outcome is given by the
binomial distribution. Where the number of trials is large, the Poisson ap-
proximation can be used to estimate this probability using the formula for the
Poisson random variable X:

P (X = m) = e−λ · λ
m

m!

where λ is the mean number of trials with the desired outcome (Feller, 1968).
Thus the probability that at least one trial has a particular outcome is estimated
by

P (X ≥ 1) = 1− e−λ
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In our context, the probability that a fragment contains one or more occurrences
of a particular word can be estimated using the Poisson approximation by

poisn = 1− e−n·p

where poisn is the Poisson-estimated approximation to pn. For fragments of
sizes n = 100, n = 1000, and n = 10000, poisn is shown as the top curve
(dashed line) in Figures 2, 3, and 4 respectively. Observed pn values for each
word are shown as points in these figures. These graphs show that the Poisson
estimate poisn significantly overestimates pn for most values of p. As can be
seen, the error in the Poisson estimate becomes greater as n increases.

Although the Poisson approximation can be used to model distribution of
words in text, choice of words when speaking or writing is not a sequence of
independent trials. Usually, choice of a word is strongly limited by the words
preceding it (Witten and Bell, 1990): for example, ‘choice’ is quite likely to be
followed by ‘of’, but it is most unlikely that ‘choice’ would be followed by ‘the’.
For non-text data, it can be assumed that data values are randomly distributed
(Yao, 1977), so that numbers of matching records can be estimated via the
binomial distribution and hence the Poisson approximation. Christodoulakis
has shown that, where this assumption is false, estimates based on the assump-
tion over-estimate the number of matching records (Christodoulakis, 1984).
Nonetheless, some authors have implicitly assumed that words in text data are
randomly distributed (Kent et al., 1990; Sacks-Davis et al., 1987); our results
indicate that this assumption is invalid.

Poisson estimates of the probability that a document contains a word are
usually an overestimate, as they are based on the assumption that words are
evenly distributed in text. Under this assumption, a rare word that has occurred
in a document is very unlikely to occur elsewhere in that document. In practice,
however, if any word occurs in a document, the probability that it will occur
again, possibly several times, is relatively high. Thus, since a word is likely to
occur several times in each document in which it occurs at all, Poisson estimates
based on occurrence counts across a document collection will in general be too
high.

4 The clustering model

If a word occurs in a document there is a relatively high probability that it will
occur more than once in that document. We call this effect word clustering .
In this section we describe an empirically-determined clustering model that
relates the probability that a word occurs, document size, and the probability
that a document of that size contains the word. This model is not based on
a psychological or linguistic theory of language: rather, it is an approximation
based on observations of the properties of actual text.

For most words w and for all but small document lengths n, the observed
probability pn(w) is substantially less than poisn(w). The degree of difference
between pn(w) and poisn(w) depends on w, since words with the same proba-
bility of occurrence can occur in different numbers of documents. The degree to
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which the distribution of a word differs from a random distribution has been de-
scribed by Wallis, Zobel, and Thom (Wallis et al., 1991) as the topic specificity
of the word.

As can be seen from Figures 2, 3, and 4, the distribution of (p, pn) values is
similar in shape to that predicted by the Poisson approximation. We therefore
assumed that a good fit would be given by models of similar form to Poisson.
Thus we investigated models of the form

clusn = 1− e−ψ(n,p)

where ψ is a function of n and p, and clusn is the cluster-estimated approxima-
tion to pn. In order for clusn to be less than poisn we require ψ(n, p) to be less
than n · p. Based on our observations of text, this relationship should hold for
all but small documents.

We investigated several ψ functions. The simplest form of ψ that gave a
good fit to our data is

ψ(n, p) = α1−β · nβ · p
where α and β are constants for a particular document collection.

In ψ, the parameter α is the document size above which clustering comes
into effect. When n = α, clusn and poisn are equal. Our formula predicts less
clustering than the Poisson approximation when n < α. Small documents or
fragments, such as this slightly contrived sentence, usually exhibit little clus-
tering and may actually show an opposite effect, because the authors’ tend to
avoid repeating words in any short piece of text.

The parameter β measures the degree of clustering; the smaller β is, the
more tightly words are clustered. When β = 1, there is no clustering and
our formula reduces to the Poisson approximation. In general β < 1, so if
n > α then (α/n)1−β < 1 and ψ(n, p) < n · p. The smaller β is, the greater
the difference between clusn and poisn. Therefore, for collections that are
accurately modelled by clusn with small β, clustering is high: in such collections,
words tend to occur frequently in a small number of documents, and are not
evenly distributed throughout the collection.

The parameters α and β will vary between collections because they will
have different points at which clustering begins to take effect, and because dif-
ferent styles of text will cluster to different degrees. For a particular document
collection, α and β can be estimated as follows. Let k = α1−β · nβ, which is a
constant for given n. Inverting the formula for clusn and using observed values
for pn we get

k = − loge(1− pn)
p

for p > 0 and pn < 1. In Figure 5 we have graphed k against pn for Comact
fragments of size 1 000. For all but extreme values of pn (which, as discussed
in Section 2, are difficult to derive using our method), k values generally fall
between 200 and 700 and are independent of pn values.

In Figure 6, median k values for each fragment size n are plotted on a
logarithmic scale, as suggested by Daniel and Wood’s text (Daniel and Wood,
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1980). As can be seen, the relationship between loge(median k) and loge(n) is
near linear, justifying our assumption that k = α1−β · nβ for some α and β.
Using regression as described in this paper’s Appendix, the solid, straight line
can be fitted to the (loge(n), loge(k)) points. The equation of the line is

loge(k) = β̂0 + β̂1 · loge(n)

Its intercept with the loge(k) axis is β̂0, and its slope is β̂1. Taking exponents
we get

k = eβ̂0 · nβ̂1

Hence β = β̂1 and

α = eβ̂0/(1−β̂1)

which is the intercept of the clustering and Poisson lines.
Note that in Figure 6 the median is based on pn values in the range 0.25 ≤

pn ≤ 0.75, since as discussed above estimates for pn values outside this range are
inaccurate. Also, this graph contains points for values of n not shown elsewhere
in this paper, and points for n < 60 or n > 40 000 have been discarded since
at these points either there were less than twenty fragments, or there were less
than twenty words with pn values in the range 0.25 to 0.75.

On Comact, the above method for deriving α and β yields α = 40.8 and
β = 0.734. For these figures, the estimate clusn is graphed (continuous line) for
Comact fragments of sizes n = 100, n = 1000, and n = 10000, in Figures 2, 3,
and 4 respectively. A summary of α, β, and α1−β values and confidence in-
tervals for each document collection is given in Table 3. To derive this table,

α β = β̂1 α1−β = eβ̂0

Bible 2.74 (0.90 to 8.33) 0.920± 0.010 1.08 (0.99 to 1.18)
Comact 40.8 (25.2 to 66.0) 0.734± 0.014 2.68 (2.36 to 3.04)
Hansard 6.28 (1.89 to 20.8) 0.914± 0.012 1.17 (1.06 to 1.30)

Table 3: α and β values for each document collection

the techniques given in the Appendix have been used to give 95% confidence
intervals for β̂0 and β̂1. The ranges of values for α derive from the confidence
in β̂0 and β̂1. Although the α values have substantial variation, the value α1−β

used in ψ is much more tightly contained, indicating that significant errors in
estimation of α only marginally affect the accuracy of the clustering model. In
Figure 6 we have graphed the upper and lower 95% bounds, and as can be seen
these lines enclose a small region.

There are marked differences between the α and β values for the different
document collections; these probably correspond to variations in literary style
in the different collections. We have not analysed a large enough number of
collections to prescribe typical α and β values, but analysis of further collections
has indicated that values near of those of Hansard appear to be common.
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n p Mean pn poisn clusn

100 10−6 0.000075 0.000100 0.000079
10−4 0.0062 0.0100 0.0078
10−2 0.55 0.63 0.54

1 000 10−6 0.00056 0.00100 0.00043
10−4 0.033 0.095 0.042
10−2 0.95 1.0 0.99

10 000 10−6 0.0044 0.0100 0.0023
10−4 0.20 0.63 0.21
10−2 1.0 1.0 1.0

Table 4: Typical p, pn, poisn, and clusn values for Comact

A comparison of mean observed pn values for Comact with the estimates
poisn and clusn is shown in Table 4. As can be seen, cluster-model estimates
of pn are always closer to the observed values than are the Poisson estimates.

5 Verifying the clustering model

As can be seen in Figures 2, 3, and 4, the clustering model provides a reason-
ably close fit to observed data. Another way of examining the accuracy of the
clustering model is to consider its predictive capability. In Comact, there are
2 191 fragments of 1 000 words. Therefore, according to the clustering model,
on average a word with some probability p would be expected to occur in

µ = (1− e−2.02 · 10000.787 · p) · 2 191 = (1− e−464·p) · 2191

fragments. For example, if p = 10−6 then µ = 1.02. Now consider all of the
M words in Comact whose occurrence probability is near p; continuing the
example, there are M = 282 words in Comact with p near to 10−6. Some of
these words occur in none of the 1 000-word fragments generated, some in one,
some in two, and so on. Poisson methods can be used to estimate how many of
the M words will occur in exactly m fragments using the formula

M · P (Y = m) = M · e−µ · µ
m

m!

These estimates can be compared with the number of words that occur in
exactly m fragments. Graphs of these estimates for p = 10−6 (M = 282) and
p = 10−5 (M = 217) are shown in Figures 7 and 8 (continuous line). Observed
values are shown as points in these graphs. For comparison, we have also plotted
estimates yielded by the Poisson approximation for word distribution (dashed
line), for which µ is given by

µ = (1− e−1000·p) · 2 191

As can be seen, for these probabilities the clustering model gives a fair pre-
diction, for a set of words of a given probability, how many fragments each of
the words will occur in; the Poisson model estimates these values very badly.
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Similarly good results are given for n = 100 and n = 10000. Unfortunately,
for probabilities greater than 10−5 there are not enough data points to use this
method to verify the model.

These results also explain the wide scattering of k values at low probabilities
shown in Figure 5. This scattering is a consequence of the fact that different
words of a given probability will occur in different numbers of documents, in
accordance with the Poisson distribution discussed above. Hence this technique
can be used to give bounds to the number of fragments likely to contain a given
word. For example, as can be seen in Figure 8, 95% of the words of p ≈ 10−5

occur in at least 3 and at most 20 of the 2 191 fragments of 1 000 words.
Another way to verify the clustering model is to use it to predict the number

of distinct terms in a document of a given length. Consider a collection of N
documents each of length n. Each word w will occur in pn(w) ·N documents.
Thus, across the collection, there will be∑

w∈W
pn(w) ·N

distinct word-document occurrences, where W is the set of distinct terms in
the collection. Thus each document should have

DN =
∑
w∈W

pn(w)

distinct terms.
If pn values are unknown, the Poisson approximation or the clustering model

can be used to estimate these values, based on the p values of the words in the
document collection. In Figure 9 we graph the number of distinct words in
the actual documents of Comact, and also graph the clustering and Poisson
estimates of DN using clusn and poisn respectively to estimate pn. As can be
seen, the clustering model gives a good estimate of the number of distinct words
in real documents.

If p values are also unknown, they can be estimated by measures such as
the Zipf distribution (Zipf, 1936; Zipf, 1949) or amendments to the Zipf dis-
tribution such as that proposed by Mandelbrot (Mandelbrot, 1952). However,
this additional level of approximation would increase the degree of error in the
approximation.

This approach has been used by Zobel, Thom, and Sacks-Davis (Zobel et al.,
1991) to estimate index sizes for different ways of storing text in databases;
index sizes are dependent on the average number of distinct terms in each
document. They also used the clustering model to approximate the probability
that a set of terms appears in a document. This probability is useful because
it can be applied to estimation of the number of answers to a query.

6 Limitations of the clustering model

An obvious limitation of the clustering model is that, unlike the Poisson ap-
proximation, the parameters of the model vary between collections. However,
this limitation also applies to other models of text, such as the Zipf distribution.

– 9 –



Furthermore, it is possible to choose typical α and β values and base estimates
on these. Based on the data given in this paper, it is possible to choose values
of α and β that are almost certain to exceed the actual values, yet would give
values for clusn that are significantly less than poisn. For example, if α is 60
and β is 0.9, then clusn < poisn for all n ≥ 60.

A more serious problem is that the model is not always a close fit to observed
data. Although it is almost always closer than the Poisson approximation, the
model is not very accurate for large p values. This inaccuracy is particularly
noticeable for large n. This divergence arises because we have assumed that
k is a constant for a given document collection and fragment size. In fact,
as can be seen in Figure 5, k drops as pn approaches 1. This effect is almost
nonexistent for smaller n, but becomes evident (for Comact) for n > 5 000. The
most straightforward solution to this problem is to consider alternative forms
of ψ. One form of ψ that seemed promising was

ψ(n, p) = 1− e−γ·p
σ

where both γ and σ are dependent on n. Thus clusn would be defined by

clusn = 1− e−(1−e−γ·pσ
)

For any given n, values for γ and σ can be found by fitting curves to graphs of
p against −loge(1 − pn). The resulting clusn is a very good fit to the observed
data for all p values. However, we could not identify any relationship between
n and these parameters.

Another limitation is that the model only applies to a range of sizes within
each collection. For example, in Comact α and β were computed by examining
fragments between 60 and 40 000 words in length. However, clusn with these
parameters does not provide as good a fit to the data for fragments of other
lengths as it does for lengths in this range.

7 Conclusion

We have shown that existing techniques do not give a good estimate of the
probability that a document of a given length contains a word of a given prob-
ability. We have proposed a new measure that allows for the tendency of words
to cluster, the clustering model, and have shown that this model gives a much
better estimate of the probability that the document contains the word than
does the Poisson approximation. The parameters of this model vary between
document collections, and indicate the degree to which words cluster in a collec-
tion. We have also shown that the clustering model can be used to give bounds
to the number of documents likely to contain a given word, and to estimate the
number of distinct words in a document.

There are some interesting problems that this model does not address. One
is to model occurrences of compound terms such as word pairs within docu-
ments. Another is to model occurrences of documents containing each member
of a set of words. Both of these problems are relevant to the problems of text
compression and full text retrieval from databases.
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Appendix: Regression

We first describe linear regression (or Gaussian least squares curve fitting) using
the notation of Devor (Devor, 1982). Suppose we have: an independent variable
x and a dependent variable y; and a series of x values x1, . . . xm and a corre-
sponding series of y values y1, . . . ym. For a probabilistic model in which there
exists parameters β0 and β1, for any fixed value of the independent variable x

y = β0 + β1 · x+ ε

where ε is a random variable with mean zero and variance σ2. The equation

y = β0 + β1 · x
is called the true regression line. We assume the pairs (xi, yi) are distributed
about the true regression line in a random manner.

The principle of least squares states that among all straight lines y = β0 +
β1 · x the least squares line or estimated regression line

y = β̂0 + β̂1 · x
is that line which minimizes the sum of the squared deviations∑

(yi − (β0 + β1 · xi))2

where β̂0 and β̂1 are point estimates for β0 and β1. The co-efficients β̂0 and β̂1

which minimize the sum of the squared deviations are

β̂1 =
m ·∑xi · yi − (

∑
xi) · (∑ yi)

m ·∑x2
i − (

∑
xi)2
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β̂0 =
∑
yi − β̂1 ·∑xi

m

To assign a level of confidence to the co-efficients, an estimate of the variance
σ̂2 must be found, namely

σ̂2 =
∑

(yi − (β̂0 + β̂1 · xi))2
m− 2

A confidence interval of 100 · (1− ω)% for β0 is given by

β̂0 ± tω/2,m−2 · σ̂ ·
√
(

1
m

+ (
∑
xi
m

)2 · 1∑
x2
i − (

∑
xi)2/m

)

A confidence interval of 100 · (1− ω)% for β1 is given by

β̂1 ± tω/2,m−2 · σ̂ ·
1√ (∑

x2
i − (

∑
xi)2/m

)
In these equations, tω/2,m−2 is the student t distribution; for a confidence in-
terval of 95%, tω/2,m−2 is approximately 1.960 for large m.

Where there is a non-linear relationship between the independent and de-
pendent variables, such as between n and k in Section 4, we need to use non-
linear regression. The linear model can be transformed by setting x = loge(n)
and y = loge(k). The parameters β̂0 and β̂1 can be estimated by substitut-
ing transformed values xi’s and yi’s into the above formulae, and approximate
confidence intervals for β̂0 and β̂1 can be derived in a similar fashion.
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Figure 1: Relationship between p and pn for Comact
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Figure 2: Observed, Poisson-estimated, and cluster-estimated pn for n = 100
for Comact
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Figure 3: Observed, Poisson-estimated, and cluster-estimated pn for n = 1000
for Comact
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Figure 4: Observed, Poisson-estimated, and cluster-estimated pn for n = 10000
for Comact
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Figure 5: k = − loge(1−pn)
p against pn for n = 1000 in Comact
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Figure 7: Distribution of pn values for p = 10−6 and n = 1000 in Comact
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Figure 8: Distribution of pn values for p = 10−5 and n = 1000 in Comact
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Figure 9: Number of distinct terms in each document of Comact


