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Abstract Two principal query-evaluation methodologies have been described for cluster-
based implementation of distributed information retrieval systems: document partitioning
and term partitioning. In a document-partitioned system, each of the processors hosts a
subset of the documents in the collection, and executes every query against its local sub-
collection. In a term-partitioned system, each of the processors hosts a subset of the inverted
lists that make up the index of the collection, and serves them to a central machine as they
are required for query evaluation.
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In this paper we introduce a pipelined query-evaluation methodology, based on a term-
partitioned index, in which partially evaluated queries are passed amongst the set of pro-
cessors that host the query terms. This arrangement retains the disk read benefits of term
partitioning, but more effectively shares the computational load. We compare the three
methodologies experimentally, and show that term distribution is inefficient and scales
poorly. The new pipelined approach offers efficient memory utilization and efficient use of
disk accesses, but suffers from problems with load balancing between nodes. Until these
problems are resolved, document partitioning remains the preferred method.

Keywords Distributed retrieval . Text searching . Index representations

1 Introduction

Ranked query evaluation in text databases is a straightforward application of inverted indexes.
The inverted list for each query term is fetched, and the per-document weights in the list
are used to update per-document values in a set of accumulators. The accumulators with the
largest values are then identified (possibly after a normalization step), and the corresponding
documents are fetched and presented to the user (Baeza-Yates and Ribeiro-Neto, 1999;
Witten et al., 1999; Zobel and Moffat, 2006).

Several strategies can be used to improve the efficiency of query evaluation. The main
intent of many of these strategies is to reduce the volume of index information fetched and
processed. Options include compression, to make better use of bandwidth; list reordering,
so that high weight postings are immediately available at the front of lists; and various ap-
proximations, to allow the computation itself to be streamlined. Such techniques can involve
complex trade-offs. For example, with some strategies the similarities computed during query
evaluation determine in an on-the-fly manner how much additional index information needs
to be retrieved, meaning that the cost of query evaluation can vary considerably from one
query to the next (Persin et al., 1996; Hawking, 1998; Anh et al., 2001; Anh and Moffat, 2006).

As another example of the complexities involved in some of the design decisions for
text retrieval, consider how memory might be used. A simple choice is to store the entire
collection vocabulary in memory, on the basis that even a typical desktop PC can comfortably
hold ten million terms in memory along with the associated housekeeping information, thus
saving a disk access for each term during query processing. However, in a stream of queries
some terms are more common than others, meaning that much of the vocabulary may be
accessed rarely, if at all, and the hundreds of megabytes required for the vocabulary can
be deployed for other facets of query processing. In particular, if the system allows query
parallelism, then the same memory can be used for the sets of accumulators required by each
query process; or for caching of inverted lists; or for caching answers to common queries;
or for caching documents themselves. Different trade-offs between kinds of caching might
significantly affect performance, with the appropriateness of the decisions depending on
factors such as the query arrival rate. But disk fetch time is likely to remain a key bottleneck
in all large retrieval systems.

The capacity of a single-server text database system is limited in two quite different
ways. If query throughput rates are a problem, then the system can be replicated, and a
receptionist process used to direct queries to one of a set of mirrored systems, each of
which is completely capable of answering any query. Replication involves relatively small
overheads, and approximately linear gains in throughput capacity can be expected as a
function of the number of processors used. On the other hand, if data volume is a problem,
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then parallelism must be used in a rather different way, via distribution. In a distributed
system, the receptionist passes each query to some or all of the processors, and synthesizes
a system-wide answer from the partial answers computed from each part of the system.
Because of the need for additional processing at the receptionist, linearity of performance
cannot be assumed. Moffat and Zobel (2004) consider in more detail the distinction between
replication and distribution in text database systems. For the purposes of this article it
is sufficient to note that distribution—required primarily when data volumes beyond that
which can be handled on a single machine must be accommodated—is the more interesting
problem from an algorithm design point of view.

Two standard techniques for index organization in distributed environments have evolved:
document partitioning, in which the document set is split over the set of processors, and each
processor stores a full index for its subset of the documents; and term partitioning, in
which the index is split over the set of processors, and each processor stores full index
information for a subset of the terms. Each of these two organizations has a corresponding
query processing regime, described in more detail below. Once storage-related issues have
been resolved by distribution, query throughput rates can then be resolved by replicating the
entire system. This is the approach used by, for example, the Google web search service
(Barroso et al., 2003).

In this paper we introduce a novel pipelined approach for evaluating queries against a
term-partitioned index, in which “bundles” that represent partly evaluated queries are shipped
between processors. Pipelining retains the attractive disk read and memory characteristics
of term partitioning. Compared to document partitioning, the anticipated advantages of the
new approach include fewer disk accesses, as lists are not stored in fragments; and more
efficient use of main memory, as each machine stores a smaller vocabulary. The fundamental
question that arises is then: do these hypothesized advantages convert into improved query
throughput rates?

To evaluate different distribution approaches, we have carried out comprehensive ex-
periments using a large document collection, a realistic query log, and carefully tuned
implementations. The experiments show that the new pipelined system is more efficient and
scalable than term partitioning. However, poor workload distribution means that pipelining
does not scale as well as document partitioning, and unless a better load balancing system
can be devised, document partitioning remains the distributed architecture of choice when
measured by peak query throughput. On the other hand, the experiments confirm our claims
for disk access loads and memory utilization, showing that in environments where query term
frequency is not so skewed—which might be possible, for example, if answers to frequent
queries are cached—pipelining may well be the method of choice.

The focus in this paper is on the use of cooperating, tightly-coupled computers on a
high-speed network, in applications with large amounts of indexed data, such as web search
engines. Other literature explores issues such as retrieval in the context of heterogeneous
distributed databases, potentially held at remote locations, and managed independently; such
environments are beyond the scope of this paper.

Our experiments are not the first comparison of document partitioning and term
partitioning. Ribeiro-Neto and Barbosa (1998) and Badue et al. (2001), for example, found
term partitioning to be superior, while Tomasic and Garcı́a-Molina (1993) found document
partitioning to be best. The results of Jeong and Omiecinski (1995) point both ways. Xi
et al. (2002) investigate similar issues, considering multi-threading and using 100 GB of
TREC data; the results (with what appears to be a low computational workload) favor
their alternative partitioning scheme (see also Sornil (2001)). These contradictory findings
underline the need for careful experimental design.
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The remainder of the paper is organized as follows. In Section 2 we describe the two
standard techniques for partitioning large collections so as to allow distributed retrieval. The
new technique is introduced in Section 3. In Sections 4 and 5 we present an experimental
comparison of throughput rates, and the conclusions that we draw from the observed behavior
of the methods. Finally, in Section 6, we analyze the workload balancing and disk read
characteristics of document partitioning and the new pipelining technique.

2 Distribution techniques

The index of a large document collection can be distributed across cooperating processors
in two distinct organizations—via a partition based on the documents of the collection, or
a partition based on its vocabulary. The next two subsections describe these organizations,
and the matching query processing regimes.

2.1 Document-partitioned indexing and querying

A straightforward way of distributing the retrieval task is to allocate each computer, or
server, a defined fraction of the documents and then build an index for each local document
set (Harman et al., 1991; de Kretser et al., 1998; Cahoon et al., 2000). Each index consists of a
complete vocabulary for the documents on that computer and, for each term in the vocabulary,
an inverted list recording the documents containing the term and (if phrase querying is to be
supported) the positions in each document at which the term occurs. Queries are accepted by
a receptionist process, which broadcasts them to each of the k servers in the cluster. Assuming
that the top r documents are to be returned to the user, each server computes a list of r′ ≥ r/k
highest-rank documents. The set of lists from the servers are then merged by the receptionist
to yield a single ranked list of length k · r′ from which the top r are proposed as answers.

One of the computers in the cluster might act as the receptionist, or it might be a separate
computer external to the cluster. The receptionist task might also be distributed across all
of the servers, and run as a low-impact process on each of them. In the latter case, all that
is required is that the individual ranked lists corresponding to each query be returned to the
receptionist process that initiated that query.

In this architecture, some of the costs of retrieval are duplicated. For k servers and a query
of q query terms, k · q inverted lists must be fetched, and, even though I, the total volume
of data handled, may be little different to the centralized case, there are potentially k times
as many disk seeks. The additional seeks are in parallel and do not slow the elapsed time
to resolve the query, but they do mean that execution of a query stream on k computers
is unlikely to be k times faster than execution of the same query stream on one computer,
unless there are significant caching benefits accruing from the more efficient memory usage.
In addition, some of the computation done by the computers is unnecessary, as only a
subset of the k · r′ documents ranked by the k servers is retained by the receptionist and
presented to the user in the final list of r highly ranked documents, and r′ = r is a typical
implementation assumption. Table 1, taken from Moffat and Zobel (2004), summarizes the
main costs associated with querying using document-partitioned distribution, and compares
them with the costs associated with a monolithic system executing on a single processor.

Document partitioning has several practical strengths. It can be used in a loosely-coupled
environment, where the databases are independently managed, and perhaps even employ dif-
ferent software and ranking heuristics. Insertion of new documents in a document-partitioned
collection is straightforward, as all the information about a given document is held on one
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Table 1 Comparison of costs associated with monolithic, document-partitioned, and term-partitioned re-
trieval, when a query of q terms is processed with a k-way data partition, to determine a ranked list of r
answers. Quantity I is the sum of the lengths of the inverted lists for the query terms, counted in pointers.
(Adapted from Moffat and Zobel (2004))

Performance indicator Monolithic system Document partitioned Term partitioned

Number of servers active on query 1 k q
Per processor
Disk seeks and transfers q q 1
Index volume transferred from disk I I/k I/q
Number of documents scored r r 0
Plus
Network volume n/a kr I
Computation load at receptionist n/a kr I + r
Total cost I + q + r I + kq + kr I + q + r

server. Query evaluation can proceed even if one of the servers is unavailable, in a graceful
rather than abrupt degradation of service. All querying modes, including phrase queries and
Boolean retrieval, are easy to support. The same cluster can be used to produce surrogate
document representations for the presentation of results as was used for the query evaluation.
Finally, the simple strategy of copying documents from one server to another provides useful
redundancy (Clarke et al., 2003).

Note that, in some of the relevant literature, document partitioning is referred to as the
local index approach.

2.2 Term-partitioned indexing and querying

An alternative to document partitioning is to use a term-partitioned index (Jeong and
Omiecinski, 1995; Ribeiro-Neto et al., 1999; Badue et al., 2001). In this approach, each
server is responsible for maintaining all index information pertaining to a given subset of the
terms. To evaluate a query, the receptionist asks the appropriate servers to supply the terms’
inverted lists. The receptionist then combines the inverted lists to generate the ranking. Term
partitioning is referred to as the global index approach in some of the relevant literature.

Compared to document-partitioned query evaluation, disk activity—which has the po-
tential in large systems to be a significant query-time cost—is greatly reduced. In the
term-partitioned approach, the servers are little more than disk controllers, and most of
the computation is undertaken by the receptionist. Compared to a monolithic system, the
cost of disk accesses is replaced by network transfers, possibly preceded by remote disk
accesses.

The load imbalance is a significant disadvantage to term distribution, and there is a real
risk that the receptionist process will become a bottleneck, and starve the servers of useful
work. There are also other disadvantages. One is that the individual servers do not have
enough information to reliably determine how much of each inverted list must be retrieved.
The receptionist may be able to estimate this information, but only if it maintains a complete
vocabulary with detailed statistics. A related disadvantage is that evaluation of phrase or
Boolean queries is inefficient, as it involves transmission of complete inverted lists including
word positions.

Another disadvantage is that index creation is more complex. For the experiments de-
scribed below we built a monolithic index and then partitioned it; more generally, each server
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needs to separately index a disjoint part of the collection, and then negotiate and execute a
set of pairwise exchanges of list fragments (Ribeiro-Neto et al., 1999). Either way, an extra
processing stage is required compared to a document-partitioned index.

Results from an implementation described by Badue et al. (2001) suggest that a term-
partitioned system is able to handle greater query throughput than a document-partitioned
one, assuming the receptionist has a large memory and that the distribution of query terms is
skewed, allowing effective caching. However, it is not clear that term-partitioned distribution
is more efficient than having a single computer with multiple disks and disk controllers.
Nor is it clear how well this strategy would perform for large collections, and the issue
of scalability was not addressed in the experiments carried out by Badue et al. The third
column of Table 1 shows the per-query costs associated with this evaluation mode in a
term-partitioned index. At face value, term partitioning appears to have an advantage over
document partitioning, because the latter includes a factor of k in the total execution cost.
However the difference is illusory, since there is a close relationship between k and I that is
not explicitly noted in the table entries.

2.3 Other approaches

An alternative to term or document partitioning is described by Xi et al. (2002) (see also
Sornil (2001)), in which unit-length inverted list fragments are distributed across all servers,
and query evaluation involves fetching all pieces of all lists corresponding to query terms.
Given the problems described later with term partitioning, and the observation that this
method has the additional disadvantage of more disk accesses and no clear advantages, we
have not investigated it further.

2.4 Threading

An issue that arises in all methods, but is particularly important to term partitioning, is the
impact of multi-threading of the execution flow. If execution is single-threaded, then only
one query is active in the receptionist at any given time. For a query of q terms and a cluster
of k > q servers, single-threading must, of necessity, imply that in a term-partitioned system
at least k − q servers are idle while this query is being handled. Moreover, q is likely to
grow slowly (if at all) as the collection grows, whereas k grows linearly. Hence, in a single-
threaded term-partitioned system, an increasing fraction of the servers are idle at any given
moment in time, and overall efficiency suffers. If server starvation is not to take place, this
reasoning suggests that the receptionist must operate at least k/q avg threads or that there must
be multiple receptionists, where qavg is the average number of terms per query.

In a document-partitioned system the difference between multi-threading and single-
threading is also important if the primary performance criterion is throughput rather than
average query response time (Orlando et al., 2001). Our experiments, discussed later, demon-
strate the importance of multi-threading in both distributed and monolithic retrieval systems.

2.5 Calculating similarity scores

Another issue that arises in all methods is the process of matching queries to documents. In
a typical search engine the indexes are used in a variety of ways. Most common are ranking
queries, in which (notionally) every document is assigned a similarity score with regard to
the query and the top-scoring documents are returned to the user. Some ranking queries
involve phrases, in which a Boolean process is used to intersect the inverted lists of the terms

Springer



Inf Retrieval (2007) 10:205–231 211

in the phrase, taking note of word positions to determine which documents contain the word
as a phrase. We do not consider evaluation of phrase queries in this paper.

The most effective measures for computing the similarity of a query and document
combine several forms of evidence of relevance, including how often each query term t
occurs in the document d (denoted fd,t), how rare the terms are in the collection overall (a
reciprocal function of Ft, the frequency of t in the collection), and how long the document is.
In the experiments in this paper, we calculate similarity using a Dirichlet-smoothed language
model (Zhai and Lafferty, 2004).

A straightforward and efficient way to use inverted lists to determine a ranking is to
process each inverted list in turn, starting with the list for the rarest term and proceeding
to the most common term. Each document referenced in an inverted list is allocated an
accumulator variable; and query evaluation proceeds by using the statistics held about each
document in each inverted list to add to each accumulator a contribution corresponding to the
term’s importance in that document. The maximum number of accumulators allocated may
be limited by one of a number of strategies, such as allowing only rare terms to create new
accumulators, and restricting common terms to updating existing ones (Moffat and Zobel,
1996), or by dynamically setting a threshold for accumulator creation and retention (Lester
et al., 2005a). The accumulators are maintained in a data structure, such as an ordered linked
list, that allows each additional list to be merged against it.

Other inverted list structures, such as impact ordering (Anh et al., 2001), allow faster
query evaluation. However, the standard structures described above are the norm in current
search engines, and have practical advantages such the ability to handle Boolean and phrase
queries, and simplicity of update.

3 Pipelined distribution

Our hypothesis is that in the document-partitioned approach there is a performance degrada-
tion caused by duplicated disk transfers. Those transfers are avoided in the term-partitioned
arrangement, but a competing risk is introduced, namely that the receptionist becomes over-
worked, and the servers are starved and unable to make an effective contribution. This section
explores an alternative approach that is designed to avoid both of these problems.

3.1 Query bundles

In the new pipelined approach we again make use of a term-partitioned index, but require
that the servers take more responsibility for query resolution, to relieve the load on the
receptionist. The receptionist maintains a global vocabulary that indicates which server is
responsible for each term, and on receipt of a new query, creates a query bundle that includes
a list of query terms, a processor routing sequence that indicates which hosts hold those
terms, and an initially-empty accumulator data structure.

Query evaluation proceeds by passing the partially processed query bundle through a
sequence of servers. Each server that holds information about the terms in a particular query
receives the query bundle, folds in its contribution to the ranking based on its fragment of the
global index, and then passes the query bundle on to the next server in the routing sequence.
The last server in the sequence extracts the r top-ranked document numbers and returns them
to the receptionist, which hands them on to the part of the system responsible for presenting
answer lists. The similarity scores so obtained are close to being identical to those that would
be calculated by a monolithic system, with the sole difference being that terms are applied on
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a per server basis, meaning that when the query bundle arrives at a server, all terms available
at that server are applied to it. As a result, queries with multiple terms present on the same
server may not have terms applied in strictly increasing Ft order, which might affect the final
similarity scores in a limited-accumulators environment.

Figure 1 provides details of the pipelined approach to distributed query evaluation, and
Fig. 2 shows how a query of three terms might be routed through a cluster of five servers.

Fig. 1 Pipelined query evaluation in a distributed computing environment

Fig. 2 Pipelined query processing with a term-partitioned index. In this example, the query contains terms
that necessitate routing the query bundle through processors 3, 1, and 4 in a system containing five servers
and five index partitions
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3.2 Relative merits

In terms of Table 1, pipelining requires that at most q processors act on each query; that,
when the query terms are on different servers, each processor that works on the query carries
out one disk seek to fetch an average of I/q index pointers; and that the total network volume
is given by (q − 1) · A, where A is the cost of moving the accumulator data structure. The
total cost is thus given by I + q + r + (q − 1) · A, with the difference between it and the other
methods determined by empirical constants, and the degree to which parts of the computation
can be parallelized.

A potential disadvantage of pipelining is that each transfer of a partially evaluated query
might require significant network resources—at the very least, a relatively large set of
numeric accumulator values must be communicated, accounted for as A in the analysis of the
previous paragraph. On the other hand, with a suitable dynamic query pruning regime, this
set could easily be smaller than an inverted list for a common term. Moreover, just two or
three such transfers are required during execution of a typical query, whereas many messages
are required in a document-partitioned system. In the pipelined implementation, this cost is
minimized by difference-encoding document numbers, and quantizing scores to 256 distinct
values, thereby shrinking twelve bytes of in-memory data per accumulator to around three
bytes when serialized for transfer.

A drawback of the pipelined approach is that it does not provide ready support for
phrase or proximity queries, which are most conveniently handled by direct merging of all
applicable index lists, rather than by processing the lists in turn—as in the case of similarity
queries—and aggregating numeric scores.

Another potential problem with pipelined evaluation is that the processing load can
become unevenly distributed between nodes. In an extreme case, a stream of queries might
consist of nothing but a single repeated term. In a pipelined system, only one node would be
active; in a document-partitioned one, the processing load would still be evenly distributed
between nodes (assuming that the term is evenly frequent throughout the partitions of the
collection). Even in a more typical query set, term frequencies are generally highly skewed,
both in the query set itself and in the collection, and an even balancing of work between
nodes cannot be assumed.

Pipelined evaluation has several potential advantages. There is the possibility of early
termination of query evaluation in step 4c, as in standard inverted indexes. The receptionist
does much less work, and if necessary, query evaluation can be terminated if the system
becomes congested, saving processing of some inverted lists. Finally, with an accumulator
limit enforced, and compression applied to the relevant data structures, the cost of shipping
the query bundles may be significantly less than that of shipping the corresponding inverted
lists.

4 Experimental framework

Critical to any experiment is a clear understanding of what is being measured; of what the
variable factors are and how they are controlled; and of what factors that could be variable
are in fact being held constant (Moffat and Zobel, 2004). This section considers previous
experimental investigations of distribution, and then describes the experimental environment
used. Section 5 below then presents results for monolithic, document-partitioned, term-
partitioned, and pipelined query evaluation.
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4.1 Previous investigations

Previous investigations of distributed retrieval have typically focused on the ratio of speedup
that is possible when additional servers are applied to a fixed task, such as querying a certain
volume of text; see for example Cahoon et al. (2000), MacFarlane et al. (2000), Badue et al.
(2001) and, Cacheda et al. (2004). But there are drawbacks to this approach. If the time
taken to process a fixed set of queries against a fixed collection is measured as k = 1, 2,
3, . . . computers are used, then there are two variables—additional processors are available,
and additional disk and memory resources are being deployed to handle the same volume of
data. It is thus hard to establish the extent to which any measured speedup is a consequence
of genuine processing parallelism rather than a consequence of fewer disk seeks because of
increased memory for caching.

To avoid this ambiguity, the results below make use of document collections of a range
of sizes, and the only inputs that we hold constant are the average number of distinct terms
in each of the queries in the input stream, and the number r of highly-ranked documents
that are returned as the answers to each query. That is, we suppose that queries are the same
length, regardless of the size of the collection that is being queried, an assumption that has
some basis in observed user behavior (Spink et al., 2001); and that r = 1,000 answers are
required for each query.

Web-based applications typically require far fewer than r = 1,000 answers per query.
However, computation time is only a small factor in the overall processing cost, and
identifying 1,000 documents (rather than 20, say) does not disadvantage any of the
distribution methods more than the others.

4.2 Measurement

There are several quantities that can be measured and reported in an investigation of dis-
tributed text retrieval. For example, we might be interested in knowing how many seconds
it takes, on average, for queries to be answered, assuming that each query arrives when
the system is idle. Alternatively, we might be interested in knowing what the peak query
processing rate is, to get an idea of the maximum throughput possible with the available
resources. In this paper, we concentrate on this latter measure, the maximal throughput of
the system.

One important concern with multi-dimensional throughput experiments—in which the
number of processors might be varied independently of the volume of data being handled—is
to be sure to compare like with like. To allow appropriate comparisons, the numbers reported
in the tables below all have the dimension “(queries × terabytes)/(machines × elapsed sec-
onds)”. That is, if an arrangement of k processors is able to handle q queries in s seconds
against a collection of T terabytes, then the number (q × T)/(k × s) is computed as a rate at
which useful work is being done, and referred to as the normalized throughput rate. Roughly
speaking, for a fixed query length, the total work to be performed grows as a linear function
of the number of queries and of the size of the collection, the latter because the lengths of the
inverted lists required for typical query terms contain a constant fraction of the documents
in the collection, regardless of collection size. Dividing this workload by the number of
processors used, and the time taken to do it, gives a “bang per buck” ratio that can be used to
assess the relative efficiency of competing approaches. Larger rates mean higher throughput,
and hence better performance.
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Use of this metric allows a wide range of comparisons:

� With the number of processors held constant, growth in the size of the document collection
allows any economies of scale caused by collection size to be quantified;

� With the collection size held constant, growth in the number of processors used allows
overheads due to inter-process communication to be measured; and

� With collection size and number of processors varied in tandem, the extent to which any
technique is scalable at a constant efficiency ratio can be established.

In factoring the number of machines in to this calculation, we are implicitly assuming that
no finer unit of resource is available, and that all machines are equivalent. This is clearly
not the case, and a more precise model might, for example, account for processors (or even
total gigahertz) and disk storage independently. Ultimately, the fundamental unit of cost is
dollars, and if we wish to be meticulous in the accounting, an allowance should be made for
software and air conditioning and insurance and so on, a rather complex analysis. Instead,
we stop at “machines”, and assume that there is some unit cost associated with each unit of
combined disk storage and processing power at a given clock speed.

4.3 Hardware and software

The hardware used for all of the experiments reported in this paper is a Beowulf-style cluster
of 8 computers, each a 2.8 GHz Intel Pentium IV with 1 GB of RAM and 250 GB local
SATA disk, connected by a 1 Gbit local network. These nodes are collectively served by a
dual 2.8 GHz Intel Xeon with 2 GB RAM running Debian GNU/Linux (sarge), with a 73 GB
SCSI disk for system files and twelve 146 GB SCSI disks for data in a RAID-5 configuration.
In each case, the receptionist process was executed on the interface machine, with as many as
eight of the cluster machines used as servers. The retrieval system makes use of a document-
level inverted index, with a byte-aligned code used for index compression (Scholer et al.,
2002), and is derived from the Zettair system, see http://www.seg.rmit.edu.au.
Index lists are stored in document number order, and represented as a sequence of alternating
d-gaps and corresponding fd,t values. Word positional offsets are not stored.

Queries were evaluated using a dynamic thresholding mechanism to maintain the number
of document accumulators at or near an accumulator target (Lester et al., 2005a). Under
this mechanism, query terms are processed in increasing order of term frequency Ft, and,
up to the accumulator target, every term occurrence creates a document accumulator. Once
the accumulator target has been reached, a threshold is set on the similarity contribution
for new accumulators to be added, and for existing ones to be retained. This threshold is
then dynamically adjusted to keep total accumulator numbers close to the target amount
as the remaining query terms are processed. For efficiency reasons, the pipeline model did
not strictly follow Ft ordering of all terms; instead, nodes were visited in increasing order
of the lowest Ft query term held on each node, with remaining terms on the same node
being processed before shipping the accumulator bundle to the next node. The difference
in resultant document rankings was slight, and is quantified later in the paper. The deemed
result of processing a query was a list identifying the top-ranked r = 1,000 documents for
that query, based on the accumulator values. Effectiveness results are given in a later section.

All experiments were carried out five times, and the throughput rates reported represent
the average of the rates attained over the five runs. In preliminary experiments, we observed
that experimental times varied by as much as 15%, depending on where physically the
blocks of the inverted index were placed on disk (Webber and Moffat, 2005). To avoid such
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Table 2 The various sample document collections. The final row shows the average volume of compressed
index data processed when executing each of the 10,000 test queries on that fractional collection

Collection
Attribute TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

Size (GB) 6.7 13.3 26.6 53.2 106.4 212.9 425.8
Documents ( × 106) 0.39 0.79 1.57 3.16 6.31 12.60 25.21
Terms ( × 106) 4.89 8.15 13.34 21.68 35.13 56.19 87.74
Index (GB) 0.3 0.7 1.2 2.4 4.5 8.7 16.6
Query cost (MB) 0.03 0.06 0.13 0.25 0.51 1.01 2.02

problems, care was taken throughout the experimentation to make sure that all index files
were served from similar physical locations on disk, and with minimal fragmentation.

4.4 Test data

The various document collections used in our experiments are all derived from the TREC
Terabyte (or GOV2 ) collection built in 2004 by crawling a large number of sites in the .gov
domain (see http://trec.nist.gov ). In total, the collection contains 426 GB. The full
collection is referred to in this paper as TB/01. To form sub-collections of different sizes, a
round-robin approach was adopted, andTB/01 split into approximately evenly sized parts by
selecting every nth file, of the 27,000 files that make up the complete collection, for different
values of n. For example, a “half” collection containing approximately 213 GB was formed
by taking every second file, and is referred to as TB/02. Similarly, the TB/08 division refers
to a one-eighth collection, containing approximately 54 GB of data. Table 2 summarizes the
seven collections used, and lists some pertinent statistics for them. Note the linear growth in
query cost as the collection expands (the quantity denoted I in Table 1), and that the number
of distinct terms in the collection also grows, but sub-linearly, as the collection grows.

Each collection was document-partitioned using a similar procedure to that used for
creating the smaller collections from the full TB/01 collection. To create an eight-way
partitioning of a given collection, for instance, every eighth file of the collection was extracted
into the first partition, every eighth plus one into the second, and so on. We note in passing
that this method of partitioning the collection provides for a more homogeneous spread of
term frequencies between the sub-collections, and therefore for a more even balancing of
workload, than simpler methods might, such as dividing the collection by time of document
creation or discovery.

Term partitioning was achieved by calculating a hash value for each term, and assigning
the term to a partition by taking the modulus of this hash value over the number of partitions.
No attempt was made to balance partitions by reference to the frequency of terms, either in
the collection or in a training query set. Exactly the same partitions were used in the term-
partitioned and pipelined runs. Section 6 discusses some of the consequences of this approach.

4.5 Test queries

A perennial problem in information retrieval research is finding suitable query sets. The
GOV2 collection consists solely of web pages and documents crawled from US government
web sites, and the query logs that are publicly available, such as the Excite or AltaVista
logs, are inappropriate, consisting for the most part of queries unlikely to be posed to a US
government site. In particular, queries taken from a whole-of-web search service are likely
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to contain terms that are relatively rare in GOV2, and as a result are likely to return fewer
relevant documents.

To address this issue, we generated a synthetic query stream, based upon a real-world
query log and a matching general web document collection (Webber and Moffat, 2005).
The query log was the Excite97 log, consisting of around 1 million queries submitted to
the Excite search engine on a single day in 1997. The collection was the wt10g collection
(Bailey et al., 2003), crawled from the general web in 1997 and thus a reasonable match for
the Excite97 queries. The Excite log was sorted in arrival order, with phrase and boolean
queries converted to non-conjunctive queries. It was then stopped with a list of 300 stop-
words, to a minimum of three words per query, with “the”, “and”, “a”, “are”, “of”, and
“is” unconditionally stopped. Terms longer than fifteen characters, including URLs, were
removed. Each query term in the cleaned log was then assigned a translation term in the
vocabulary of GOV2 of approximately the same relative collection frequency as the original
term had in wt10g. Translation terms were picked to maximize the number of documents in
which all terms for each query co-occurred. The resulting synthetic query stream preserves
identical query length and query term frequency distributions as the original, and has similar
query term ft and co-occurrence distributions (with respect to wt10g). The drawback of
this approach is that the resulting queries do not “make sense” (for example, the common
query term “sex” was translated into “vhs”); however, from the point of view of efficiency
experiments, they preserve the essential features of a real-world query log.

The first 20,000 queries from the resulting synthetic log were run against each of the
systems to measure their performance. The elapsed time between the release of the 10,001st
query into the system and the receipt of the result for the final completed query (not neces-
sarily the 20,000th query, due to the parallelized nature of query processing) was measured,
and used to calculate a normalized throughput rate. By delaying the timing until the second
10,000 queries, the system is able to make full use of main memory to cache index informa-
tion. Additionally, before starting each run, the index files were mapped into the system file
cache on each node, up to the limit of the node’s main memory. This is particularly important
where the index on a node was smaller than the node’s main memory: the entire index could
fit into memory, but since new terms keep occurring in queries, the 10,000-query warmup
run would be unable to actually load all of the index into memory.

The 10,000 timed queries contained an average of qavg = 2.15 terms per query. The last
row of Table 2 shows the index volume required to answer each query, measured as the
average number of megabytes of compressed index lists associated with the terms of each
query. Only the index processing stages of each query evaluation were performed, through
until the moment when a list of r = 1,000 documents had been identified as answers. Note
also that the indexes were completely unstopped, and that no stemming was performed on
either index or queries.

4.6 Accumulator limits and retrieval effectiveness

One of the key execution-time variables in the experimental software is the number of
accumulators permitted to the similarity computation (Lester et al., 2005b). On a mono-
lithic system, the main benefit in limiting the number of accumulators is in restricting the
amount of memory used during the query evaluation. That benefit carries through to each
of the distribution methods examined here. In addition, the pipelined method transfers in-
progress accumulator bundles between nodes, and is additionally sensitive to changes in
the accumulator target. Setting the accumulator target too low can adversely affect retrieval
effectiveness, by excluding documents whose low similarity on high-discriminating terms is
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compensated by high similarity on low-discriminating terms; setting it too high potentially
wastes resources. The ideal accumulator target is as low as is consistent with acceptable
retrieval effectiveness compared to an unrestricted evaluation.

In the presence of an accumulator target or limit, different distribution methods can pro-
duce slightly different retrieval results. For document partitioning, each node locally carries
out an independent query evaluation with its own accumulator target. In these experiments,
we assigned each document-partitioned node a proportion of the total accumulators: if there
were k nodes, and A accumulators system-wide, then each node would get A/k accumulators.
For the pipelined system, strict in-Ft-order processing is not followed, as described earlier.
In contrast, term partitioning replicates precisely the results of a monolithic system with the
same number of accumulators, regardless of the number of nodes.

In their study of accumulator restriction mechanisms in a monolithic environment, Lester
et al. (2005a) found that the GOV2 collection requires approximately 400,000 accumulators
if full retrieval effectiveness is to be achieved, when assessed using the 2004 TREC Terabyte
topics and mean average precision; but also found that the loss in effectiveness in reducing
this to 100,000 was insignificant. We thus took as a starting point the use of 100,000
accumulators, and verified, using the same queries, that consistent retrieval effectiveness
was obtained using the three distributed paradigms.

We also measured the effect of the target of 100,000 accumulators on the synthetic query
stream. In the absence of relevance judgments, we estimated the discrepancy between full
evaluation and accumulator-limited evaluation using the notion of ranking dissimilarity, and
compared different methods and targets against the baseline run of a monolithic system with
an unlimited number of accumulators.

Dissimilarity is established by comparing a ranking against a reference one. Items that
are at the same ranked position in both lists contribute zero to the score, whereas items that
have changed rank—or disappeared entirely—contribute a positive amount that inversely
depends on their rank position. This metric assigns greater “difference” to variations near the
top of the ranking than to variations at the bottom; two rankings that are completely disjoint
are assigned a score of 1.0, while two rankings that are identical are assigned a score of 0.0.
The exact calculation used is dependent on a damping factor T; if the item in position p of
one ranked list is in position �(p) in the other, then it contributes
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to the dissimilarity score. These contributions are summed over all of the r items in the
ranked list, and then normalized by the maximum score that could be attained if all r items
did not appear, to obtain a normalized dissimilarity.

The accumulator limit of 100,000 was again confirmed as being a suitably conservative
value, and only a small variation in rankings resulted.

Having selected 100,000 as the number of accumulators for the full TB/01 collection, it
was then necessary to consider whether to reduce the limit for the smaller collections, and if
so, by how much. It seems reasonable to vary the number of accumulators in proportion to the
collection size; as we halve the collection, we might halve the number of accumulators. This
is also attractive as it preserves an important relationship within the document-partitioned
experiments, which is that each node in a k-node partitioning of a collection does as much
work as each node in a (2k)-node partition of twice as much initial data. The effect of scaling
the number of accumulators with collection size on normalized dissimilarities is shown in
Table 3. Scaling the accumulators gradually increases dissimilarity, a consequence of the fact
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Table 3 Normalized dissimilarity over 10,000 synthetic queries, first holding ac-
cumulators constant at 100,000, and then scaling accumulators with collection size,
in all cases using a monolithic system. Dissimilarity values are relative to a baseline
of unlimited accumulators. For example, TB/04 is processed with 100,000 and then
25,000 accumulators. A score of zero indicates that the ranking is indistinguishable
from that obtained with unlimited accumulators; a score of 1.0 indicates that the two
rankings in question are disjoint

Accumulators
Fraction f Collection 100,000 100,000 / f

1 TB/01 0.022 0.022
2 TB/02 0.011 0.026
4 TB/04 0.004 0.031
8 TB/08 0.001 0.036
16 TB/16 0.000 0.045
32 TB/32 0.000 0.055
64 TB/64 0.000 0.057

that the number of results is not scaled, but kept constant at 1,000. However the overall level
of dissimilarity remains acceptable for our purposes and, in terms of execution time, errs
in favor of the reference document-distributed scheme. The scaled approach to accumulator
limiting was thus used in the experiments described below.

4.7 The effect of threading

The need for a threaded implementation of the receptionist and server software was raised
earlier. Threading is a valuable mechanism for exploiting potential parallelism, even in a
monolithic system, as it allows evaluation of one query to proceed while another is blocked
pending a response to a disk or network request. The next set of experiments was designed to
investigate the extent to which query concurrency was necessary for high throughput rates,
and to choose the number of threads to use in the subsequent experiments.

Running with the full TB/01 collection, and k = 8 nodes, we measured the throughput
of each distribution method with different values of t, the number of queries concurrently
executing system-wide. In the pipelined system, a query can only be in process on a single
server at any given point in time, so the average number of threads per server is t/k. In the
document-partitioned system, each query is simultaneously executed on every server, so the
number of threads on each server is potentially t. In practice, because some threads finish
their work before others, the actual active load per server was around 75% of this figure.

Pipelining’s throughput rises consistently as t is increased, whereas document distributed
throughput peaks at t = 32. The difference is a consequence of the average load per server,
and demonstrates the inhibiting effect of system load. Term partitioning plateaus after t = 4
threads, at which point the single evaluator node becomes saturated. Note that, with a
single thread, document partitioning achieves around 40% of maximum throughput, whereas
pipelining achieves less than 15%. The difference between these two approaches underlines
the importance of allowing parallel execution in the pipelined system.

While Table 4 suggests that using 64 threads for the pipelined system might give a
marginal improvement in throughput, it is desirable to be consistent across all of the systems.
In addition, unless the gain in throughput is large, increasing the number of threads increases
the elapsed time required to process each query by the same factor. Hence, we chose to use
t = 32 threads in all of the subsequent experiments.
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Table 4 Normalized throughput with various threading levels t, using k = 8
nodes, and collection TB/01. Throughput is presented in units of terabyte
queries per machine second, as discussed in the text

Method
Simultaneous
queries, t Document Term Pipelined

1 2.08 0.57 0.59
2 3.48 1.09 1.14
4 4.25 1.31 1.99
8 4.70 1.35 2.97
16 4.99 1.37 3.78
32 5.34 1.37 4.10
64 5.22 1.33 4.16

Indeed, there is a direct relation between throughput, number of threads, and average
query response time. Throughput is defined as “(queries × terabytes)/(machines × elapsed
seconds)”, from which it follows that “average response time in seconds =
(threads × terabytes) × (throughput × machines)”. For a given configuration, machines and
terabytes remain constant. Thus, if the number of threads is doubled without any increase
in throughput, the average query response time also doubles, where response time is mea-
sured from the moment a query begins executing on an available thread until the time it
completes. So, for example, the normalized throughput of 4.10 for document distribution
with 32 threads equates to an average query response time of (32 × 0.43)/(4.10 × 8) = 0.42 s,
whereas the normalized throughput of 4.16 with 64 threads gives an average query response
time of 0.83 s. Our approach in this paper is to concentrate primarily on query throughput;
a production system would also need to take into account average response time.

5 Experiments with distribution

This section establishes baseline results for monolithic runs, then describes the outcomes of
experiments with document-partitioned, term-partitioned, and pipelined querying.

5.1 Monolithic baseline

The first experiments executed the 10,000 queries against monolithic indexes of the different
collections, to establish baseline throughput results against which the three distribution
models can be compared. Results are presented in Table 5. In order to make the results
consistent, the monolithic system is also implemented using a receptionist/processor model,
with just a single processor. Thus, the “monolithic” system can be regarded as both a single-
processor document-partitioned system and a single-processor pipelined system. Table 5 also
shows the total amount of data read off disk (not including data supplied from in-memory file
buffers), and the proportion of the elapsed querying time spent waiting for I/O operations to
complete. As in all of the tables in this paper, query throughput is normalized by collection
size. If the collection size were to be doubled, and the number of queries processed per
second had halved as a result, the same normalized throughput figure would be attained.

The throughput results in Table 5 demonstrate that significant efficiencies of scale are
possible while the index remains small enough to fit into memory (TB/64 to TB/32); and
even when some of it is disk-resident (TB/16) , further gains are possible. However, once the

Springer



Inf Retrieval (2007) 10:205–231 221

Table 5 Throughput and read behavior as a function of collection size, using a single
processor, with at most t = 32 queries concurrently active. Throughput is presented
in units of terabyte queries per machine second. The column “data read” measures
data physically read off disk, and does not include any read requests supplied from
in-memory buffers. The column “I/O wait load” is the percentage of the total query
stream execution time that each server spent doing nothing except waiting for I/O to
complete

Collection Normalized throughput Data read (GB) I/O wait load %

TB/64 3.18 0.00 0.0
TB/32 4.25 0.00 0.0
TB/16 5.15 0.10 0.0
TB/08 5.41 0.38 4.7
TB/04 5.75 1.23 6.1
TB/02 6.67 3.33 5.5
TB/01 6.83 9.37 6.0

collection has reached the one-eighth size of TB/08 (with an index of 2.4 GB, see Table 2)
physical index reads from disk slow processing, and around 5% of time is spent waiting for
disk transfers. The increase in normalized throughput slows in this middle section of the
table. Finally, once the penalty of moving from memory-based to disk-based indexing has
been passed, normalized throughput sees greater gains (TB/02) and then eventual saturation
(TB/01). The 2 MB per-query average index volume in TB/01 (Table 2) is twice the size
of the 1 MB memory cache.

The total amount of inverted list data processed during the 10,000 queries is 20 GB.
Table 5 shows that in the TB/01 experiment almost half of all data is read off disk as it is
required, rather than supplied from in-memory buffers. Once the index no longer fits into the
available main memory, I/O wait load remains a steady fraction of elapsed processing time
as the collection grows.

5.2 Document partitioning

To test the document-partitioned system, each collection was processed on varying numbers
of machines, using the same set of 10,000 queries. Each server built an index for its assigned
sub-collection, including formation of a local vocabulary. All queries were executed with
global term statistics, based on an aggregate vocabulary maintained by the receptionist that
covered all sub-collections. (If a central vocabulary were not available, the servers could be
queried by the receptionist to obtain the set of local term weights, and then the aggregate
weights broadcast back to the servers, with little alteration in overall querying costs.) Each
server then executed the query using the global weights, and returned to the receptionist the
identifiers and scores of the top r′ = 1,000 documents in its sub-collection.

Table 6 is the first of three with the same structure, each of which records the results
achieved for one of the three different distributed retrieval systems. Each entry in the table is
a normalized throughput rate, expressed in terms of terabyte queries per machine second, so
that all numbers are directly comparable in a “bang per buck” sense. To evaluate the extent
to which collection growth can be managed via distribution, sets of values on a down-to-
the-right diagonal line should be considered. For example, starting at the (k = 1, TB/08)
entry, the next interesting combination is (k = 2, TB/04), in which twice the volume of
data is being processed on twice as many machines, and hence with the same volume of
data on each machine. Similarly, the (k = 4, TB/02) entry in Table 6 reflects a system with
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Table 6 Normalized throughput rates for document-partitioned distributed retrieval. All values are in units
of terabyte queries per machine second. The first row shows the corresponding values for a monolithic
configuration. As many as t = 32 queries were concurrently active. The receptionist is not counted as one of
the processors. Values shown are means over five runs

Collection
k TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

1 3.18 4.25 5.15 5.41 5.75 6.67 6.83
2 – 3.18 4.29 5.11 5.48 5.94 6.62
4 – – 3.13 4.25 5.11 5.42 5.89
8 – – – 2.91 4.15 5.08 5.34

four times as much data on four times as many machines as the (k = 1, TB/08) entry. Any
down-to-the-right diagonal line in the table allows a similar exploration of scalability.

The general pattern down these diagonals is consistent—as the volume of data grows in
proportion to the number of machines, normalized throughput tends to decrease slightly as
a result of two factors. First, the greater the number of partitions, the greater the network
overhead. This is particularly the case for 8-way TB/08 and TB/04, where the nodes finish
each query so rapidly that the receptionist is unable to dispatch queries quickly enough
to keep them busy. The second reason is the synchronized way in which the document-
partitioned system works. Since each query goes to every machine, the time taken to evaluate
it is determined by the slowest machine. Although document partitioning does very well at
evenly distributing the load, the system as a whole tends to run at the speed of the slowest
node. The more nodes that are added to the system, the greater the variance between the
average and worst-performing node, and (marginally) the slower the system becomes.

Another way of interpreting Table 6 is to look vertically down a column, which shows
what happens when the same volume of data is split into smaller parts and spread across an
increasing number of servers. The general trend down columns is for normalized throughput
to slightly decrease. That is, the system is most efficient when all the data is on a single
machine, and communication overheads mean that doubling the number of machines from
k to 2k does not double the number of queries per second the system as a whole can handle,
even though it (nearly) halves the average response time. Nevertheless, document partitioning
does scale reasonably well with cluster size.

5.3 Term partitioning

Table 7 shows the result of carrying out the same experiment with a term-partitioned ar-
rangement. Terms were assigned to servers arbitrarily, using a hashing technique, and the

Table 7 Normalized throughput rates for term-partitioned distributed retrieval. All values are in units of
terabyte queries per machine second. As many as t = 32 queries were concurrently active. The receptionist is
not counted as one of the processors. Values shown are means over five runs

Collection
k TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

1 – – – – – – –
2 – 2.46 3.32 4.13 4.74 5.22 5.47
4 – – 1.70 2.08 2.37 2.58 2.75
8 – – – 1.03 1.18 1.29 1.37
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partitioning was not influenced by any analysis of term frequency either in the collection or
in the query set.

Once a query had been parsed by the receptionist, requests were issued for the required
inverted lists, using a vocabulary-division table maintained by the receptionist. Complete
inverted lists were returned from each of the servers to the receptionist. When all of the
required inverted lists were back from the servers, the receptionist evaluated the query and
determined the top-ranked r = 1,000 documents.

As can be seen Table 7, term partitioning derives almost no advantage from distribution,
and throughput is only a small fraction of that achieved with document partitioning. The
columns in the table highlight how wasteful this approach is—as the number of processors is
doubled and the volume of data is held the same, the actual time taken to perform the query
run remains roughly constant, and normalized throughput halves. That is, term-partitioning
fails to scale at all.

Part of the problem is that the receptionist becomes a bottle-neck, and in all except the
smallest collections, spends roughly 98% of its time in a non-idle state. The receptionist is
essentially uni-processing all of the queries, and although the other machines are serving
index lists, they are largely idle. The pattern of results in Table 7 confirm the observations
of MacFarlane et al. (2000), while showing that the results of Badue et al. (2001) do
not generalize to large numbers of real queries. The other aspect of the term-partitioned
arrangement that creates problems is network load: recorded network traffic was 0.43 Gbit
per second for the TB/01 runs, close to the practical limit of the network connecting the
cluster. In contrast, the volume of network traffic generated by the document-distributed
arrangement is extremely small—no more than a few tens of kilobytes per query.

In addition, the methodology by which costs are normalized by the number of servers
significantly overestimates the true throughput of term distribution. In a document-partitioned
system the receptionist does relatively little work, and could easily share a machine with a
server; thus, it is reasonable to not count in the arithmetic the processor that is required to
support the receptionist. In term-distribution, however, the receptionist is a key bottleneck. If
the receptionist were properly counted as an extra machine the already poor results reported
for this approach would be further lowered, and the seemingly attractive throughput rates in
the k = 2 row would be reduced by a third.

5.4 Pipelining

Table 8 shows the corresponding throughput results for the new pipelined evaluation ap-
proach. There are two patterns to be noted. First, going down the “equal work per processor”
diagonals, k = 2 pipelining generally outperforms monolithic processing for the same volume

Table 8 Normalized throughput rate for pipelined query evaluation with a term-partitioned index. All values
are in units of terabyte queries per machine second. The first row shows the corresponding values for a
monolithic configuration. As many as t = 32 queries were concurrently active. The receptionist is not counted
as one of the processors. Values shown are means over five runs

Collection
k TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

1 3.18 4.25 5.15 5.41 5.75 6.67 6.83
2 – 3.72 4.54 5.18 5.58 5.98 6.37
4 – – 3.88 4.45 4.92 5.25 5.53
8 – – – 3.38 3.67 3.95 4.10
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of data per node. However, k = 4 pipelining has similar normalized throughput to the com-
parable k = 1 monolithic system, and k = 8 pipelining has worse.

Second, going down the columns, normalized throughput falls off sharply as machines
are added to the system. Comparing pipelining’s throughput rates with those for document
partitioning in Table 6 reinforces this pattern. Pipelining does not scale as well as does
document partitioning. For k = 8 partitioning of TB/01, pipelining is only able to achieve
slightly over 75% of the normalized throughput of the document-partitioned system.

Pipelining is clearly to be preferred as an architecture if querying must be supported on top
of a term-partitioned index. It gives much better throughput figures than term partitioning.
It also uses significantly less network bandwidth, recording an average rate of 0.10 Gbit per
second for the k = 8 TB/01 run, compared to 0.43 for term-partitioning.

Nevertheless, on the test data and queries, it is unable to match the document-partitioned
system. Either pipelining’s anticipated superiority in disk reads and memory usage do not
eventuate in reality, or they are outweighed by problems with workload balancing. Section
6 discusses these issues.

5.5 Tuning

Section 4 proposed an accumulator limit of 100,000, scaled with collection size, as offering
the best tradeoff between retrieval effectiveness and memory efficiency. Since the pipelined
system is required to ship accumulator bundles between nodes, it should suffer degraded
performance from a greater number of accumulators, and improved performance from a
lessened one, both in absolute terms and when compared with document partitioning. To
test the extent to which the accumulator limit was a factor in the measured performance, the
k = 8 TB/01 configurations for each of the distribution methods were compared, varying
the number of accumulators allowed during the similarity computation. Table 9 shows the
outcome of these experiments.

As expected, an increase in the number of permitted accumulators reduces the query
throughput that can be achieved. Performance degradation is heaviest for pipelining, but
occurs for all distribution methods. Document partitioning’s throughput falls roughly 35%
as the accumulator limit grows from 40,000 to 400,000, whereas pipelining’s falls roughly
50%, suggesting that the additional cost of shipping accumulator bundles, borne by pipelining
alone, is half as significant as the additional memory costs of the greater number of accu-
mulators, borne by all methods. Note that even with 400,000 accumulators, the pipelined

Table 9 Normalized throughput rates, measured in terabyte queries per
machine second, as the number of accumulators is varied. In each exper-
iment k = 8 processors were applied to the TB/01 collection. All values
are in units of terabyte queries per machine second. As many as t = 32
queries were concurrently active. The receptionist is not counted as one
of the processors. Values shown are means over five runs

Method
Accumulators Document Term Pipelined

40,000 5.83 1.64 5.03
100,000 5.34 1.37 4.10
200,000 4.34 1.13 3.34
400,000 3.73 0.88 2.48
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Table 10 Read behavior of document-partitioned and
pipelined distributed systems, k = 8 nodes, and TB/01. Fig-
ures are totaled across all nodes. Disk sectors are 512 bytes.
Numbers reflect physical disk activity only, and requests han-
dled from in-memory buffers are not included in the totals

Method
Statistic Document Pipelined

Sectors read ( × 106) 6.61 2.60
Distinct reads ( × 104) 10.27 1.46
I/O wait seconds ( × 101) 13.85 3.28

system is still well within the bandwidth limits of the network; network data shows an
average cluster-wide network traffic of 0.13 Gbit per second.

6 Workload distribution

Our opening hypothesis was that the pipelined method would gain a performance advantage
over document partitioning due to its better memory usage and consolidated representation of
index data on disk. Table 10 demonstrates that pipelining does indeed have these advantages.
For a k = 8-way run on TB/01 run, the pipelined system fetched only 40% as much data
from disk as the document-partitioned one, and took just 15% as many disk read operations
to do it, indicating better caching effectiveness and reduced fragmentation of data. As a
result, the pipelined system spent only 25% as much time blocked waiting on I/O as the
document-partitioned system did.

Despite these promising relativities, the throughput figures in Tables 6 and 8 indicate that
overall, pipelining’s performance is at best only comparable with document partitioning.
Moreover, pipelined distribution, as described here, scales poorly with cluster size.

As part of the explanation for the discrepancy between disk operations and overall through-
put, Fig. 3 shows the “busy load” at each node in an k = 8-node run on TB/01 over the
duration of the 10,000 queries, for the document-partitioned and pipelined distribution meth-
ods. Busy load is defined here as the proportion of the time a node spends doing anything

Fig. 3 Average per-processor busy load for k = 8 and TB/01, for document-distributed processing and
pipelined processing. The dashed line in each graph is the average busy load over the eight processors
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except the idle task; in particular, it includes time spent waiting for I/O to complete. The
left-hand graph shows that eight nodes in the document-partitioned have very similar busy
loads, indicating an even distribution of the processing workload. On the other hand, the
right-hand graph shows that nodes in the pipelined system have uneven busy loads, with
the most idle node being busy less than 40% of the time. Node two, busy on average 95%
through the query sequence, is a bottleneck for the system as a whole. The other nodes
become starved for work as queries with a term on node two queue up for processing.

The document-partitioned system has a much higher average busy load than the parti-
tioned one, 95.3% compared to 58.0%. On the one hand, this is to the credit of document-
distribution, in that it demonstrates that it is better able to make use of all system resources,
whereas pipelining leaves the system underutilized. On the other hand, the fact that in this
configuration pipelining is able to achieve roughly 75% of the throughput of document-
distribution using only 60% of the resources is encouraging, and confirms the model’s
underlying potential.

Figure 3 summarized system load for the 10,000-query run as a whole; it is also instructive
to examine the load over shorter intervals. Figure 4 shows the busy load for document-
distribution (top) and pipelining (bottom) when measured every 100 queries, with the eight
lines in each graph showing the aggregate load of this and lower numbered processors. That
is, the eighth of the lines shows the overall total as a system load out of the available 8.0 total
resource. Note how the document distributed approach is consistent in its performance over
all time intervals, and the total system utilization remains in a band between 7.1 and 7.8 out
of 8.0 (ignoring the trail-off as the system is finishing up).

The contrast with pipelining (the bottom graph in Fig. 4) is stark. The total system
utilization varies between 3.1 and 5.9 out of 8.0, and is volatile, in that nodes are not all busy
or all quiet at the same time. The only constant is that node two is busy all the time, acting
as a throttle on the performance of the system.

The reason for the uneven system load lies in the different ways the document-partitioned
and pipelined systems split the collection. The two chief determinants of system load in
a text query evaluation engine are the number of terms to be processed, and the length of
each term’s inverted lists. Document partitioning divides up this load evenly—each node
processes every term in the query, and the inverted list for each term is split approximately
evenly among the nodes. Variation is introduced only if term usage is not homogeneous
across the collection.

In the pipelined system the work load of any single query is potentially divided quite
unevenly between the nodes. For example, it is possible that all terms in the query are
handled by a single node; and even if no node is hit by more than one term, the length of the
inverted list for different terms can vary greatly. The weight of data generated by processing
many queries in parallel should dilute this effect; nevertheless, the arbitrary nature of query
input means that at any given time, some nodes are likely to be more heavily loaded, while
others are relatively idle.

Term frequencies tend to follow a power-law distribution, meaning that frequency is
highly skewed to the most frequent terms. Being frequent in the collection gives a term a
long inverted list; and being frequent in the query stream means that the list will be used
often. Multiplying a term’s frequency in the query set by the length of the term’s inverted
list in the index thus gives an estimate of the processing load arising from that term. For
the synthetic query set and collection used in these experiments, the highest term processing
load takes up 6.6% of the total query set processing load, and has 2.2 times the processing
load of the second highest term, and 3.5 times that of the third. Given the highly skewed
nature of term processing loads, a random distribution of terms amongst nodes (which is
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Fig. 4 Aggregate load over the eight processors in a k = 8 run on TB/01. The eight lines in the top graph
reflect the pointwise aggregate load utilization of the eight processors in a document-distributed system; the
eight lines in the lower graph reflect the pointwise aggregate load utilization of the eight processors in an
equivalent pipelined system. Load is measured every 100 queries in a 10,000 query run

what our hash-based term partitioning scheme hopes to approximate) is likely to result in an
uneven node processing load.

Figure 5 shows the total list processing load on each node in a k = 8-node run on TB/01.
In the left-hand graph, document partitioning divides the load almost perfectly evenly, and
all nodes process an equal amount of the index data. Pipelining is again uneven, with the
most heavily weighted node (node two) have almost three times the processing load of the
most lightly weighted one. As it turns out, the hashing algorithm used for term assignments
to nodes placed the first, third, and fourth heaviest terms onto this one node; and while it
might be tempting to dismiss this as bad luck and choose a different hash, the properties of
the query stream cannot be known when the system is partitioned, and any random process is
likely to run into similar problems. The problem becomes worse as the number of partitions
increase—at sixteen partitions, for example, the dominant term would need to have a node to
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Fig. 5 Total inverted list lengths processed on each node, in GB, for a k = 8-node run on TB/01. Both
systems process the same total volume of index data, but share the work differently

itself if processing load is to be balanced. On the other hand, the problem of load imbalance
would likely be reduced if answers to frequently asked queries were cached, as is commonly
done in production systems, since frequent queries are likely to contain frequent words. This
is an area that requires further investigation.

7 Future directions

To establish how well pipelining might perform if the workload between nodes was more
balanced, the synthetic query generation process was modified to generate a more benign
set of queries. The same vocabulary of translated terms was used as before, but instead
of mapping the original queries term-by-term based on relative frequency, queries were
generated by randomly choosing terms from the vocabulary. The same distribution of query
lengths was maintained, but the distribution of query term frequencies became much more
even, removing one of the two factors causing skew in term processing load. The unevenness
caused by differing inverted list lengths was left unchanged.

The modified query log was again executed against k = 8-node document-partitioned and
pipelined indexes of TB/01. Removing the query set term frequency skew leads to a lower
overall processing load; the total size of inverted lists processed for the 10,000 query run fell
from 19.7 GB to 8.7 GB. Not surprising, therefore, was that throughput of the document-
partitioned system rose from 5.34 to 6.83 terabyte queries per machine second. But the
improvement in the throughput of pipelining was far more dramatic. With the original query
set, throughput was 4.10 terabyte queries per machine second, as shown in Table 8. With
the random query translation, this doubled, to 8.29 terabyte queries per machine second,
over 20% more than document-partitioned. Different term inverted list lengths meant that
the busiest node processed 1.5 GB of data compared to the lightest load of 1.0 GB, so further
balancing might yield additional gains.

These positive results cannot, of course, be claimed as improvements, since they involve
an atypical query stream. But they do offer encouragement, in that if a way of balancing
the processing requirements of the pipelined scheme can be found, it should be possible to
fully crystallize the benefits generated by its inherent advantages in terms of disk operations.

Springer



Inf Retrieval (2007) 10:205–231 229

Recent work has explored both dynamic load balancing and reassignment of lists while the
query stream is being processed, and also selective list replication (Moffat et al., 2006).

It is also worth noting that even 426 GB is not an especially large document collection
by web standards. Further experimentation on larger data sets will be pursued as part of the
ongoing investigation.

8 Conclusions

We have undertaken a detailed experimental comparison of existing approaches to distribut-
ing query evaluation in a cluster, and compared them to a new pipelined approach. Key
features of our results are that they are based on actual experiment rather than simulation;
make use of a large volume of data rather than having been extrapolated from small-scale
experiments; are based on a long stream of realistic queries rather than on small, inappropri-
ate, or simplisticly simulated query sets; and explore several crucial implementation issues,
such as the use of concurrent query threads to ensure that peak throughput is achieved and
resources are not unnecessarily idle. We have also provided detailed instrumentation of the
testing, so as to accurately identify the various costs that make up the overall processing time
in a distributed system.

Our experiments have demonstrated that the new pipelined approach to distribution of-
fers much better performance on top of a term-partitioned index than the traditional term-
partitioned evaluation method, while still maintaining the latter’s desirable I/O properties.
The drawback of the new method is that poor balancing of workload means that it fails to
outperform document distribution, and the workload balance issues become more serious as
the degree of distribution increases.

The new method does have some advantages over document distribution. It makes better
use of the memory resources available on the nodes, and requires significantly fewer disk
seeks and transfers. These desirable attributes mean that further work to address the load
balancing problems—perhaps via selective list replication or dynamic list redistribution—
may lead to a system capable of out-performing document distribution.
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