
Efficient Building and Querying of Asian

Language Document Databases

Phil Vines Justin Zobel

Department of Computer Science, RMIT University
PO Box 2476V Melbourne 3001, Victoria, Australia

Email: phil@cs.rmit.edu.au
Phone: +61 3 9925 3310
Fax: +61 3 9662 1617

Abstract

Over recent years there has been great interest in Asian-language information
retrieval. Much work has been done on the identification of appropriate in-
dex terms, usually involving one or more of characters, words, or bigrams,
or some combination thereof. Although the relative effectiveness of these ap-
proaches has received considerable scrutiny, efficiency considerations have had
less attention, but are of at least equal importance in the implementation of
commercial systems. In this paper we explore the relative efficiency of several
indexing approaches used for Asian-language text, and investigate the tradeoffs
between effectiveness and efficiency.

1

Efficient Building and Querying

of Asian Language Document Databases

Abstract

Over recent years there has been great interest in Asian-language information
retrieval. Much work has been done on the identification of appropriate in-
dex terms, usually involving one or more of characters, words, or bigrams,
or some combination thereof. Although the relative effectiveness of these ap-
proaches has received considerable scrutiny, efficiency considerations have had
less attention, but are of at least equal importance in the implementation of
commercial systems. In this paper we explore the relative efficiency of several
indexing approaches used for Asian-language text, and investigate the tradeoffs
between effectiveness and efficiency.

1 Introduction

Although research on various aspects of Asian-language information retrieval
has been underway for some time [6], there has been a noticeable increase in
recent years. This is partly due to the increased interest in information retrieval
generally, resulting from the growth of the Web and the interest it has focused
on search engines and retrieval techniques. In addition the decision to include
a Chinese retrieval track in the TREC [7] experiments further fuelled interest
in this area [1, 3], and more recently a similar effort has been undertaken for
the Japanese language [2].

Most of the work on Asian text retrieval has focused on the effectiveness of
different indexing, ranking, and query strategies. In English language informa-
tion retrieval it is generally accepted that words, once stopped and stemmed,
are the most appropriate unit of indexing for most applications. The situ-
ation is much less clear in languages such as Chinese, Japanese and Korean
(the CJK group), which do not have explicit word boundaries. Most research
has looked at characters, words, and bigrams (pairs of adjacent characters), or
some combinations of these. It appears that words and bigrams, either sepa-
rately or combined, provide more effective retrieval performance than simple
characters [3].

The growth of the Web has lead to a significant increase in the use of search
engines that operate as the back end to Web search tools. Use of the Web and
hence these search engines is currently increasing at an exponential rate, and
the providers of the more popular search engines continue to make significant
investments in computing hardware in order to maintain performance. Because
of the enormous demand for these services, providers are continually looking
for more efficient ways to implement the search engines, and frequently adopt
approaches that sacrifice retrieval effectiveness in return for increased efficiency.
It is tempting to suppose that this is a passing problem that will be solved once

1

the next generation of computers arrives. However, the amount of data on and
use of the Web is increasing at a rate that significantly outstrips increasing
hardware speeds, and, while CPU speeds have grown by an order of magnitude
every few years, the increase in the speed of disk access time has been negligible
by comparison, limiting the efficiency improvements available through advances
in hardware.

Thus efficiency is an important issue for search engines. While words and bi-
grams have been shown to be effective for Asian-language information retrieval,
the resource requirements of these techniques, in particular bigrams, are signif-
icantly greater than for characters. In this paper we experimentally measure
the resource requirements for indexing and querying two large test collections.
These experiments allow us to examine the implications for efficiency of differ-
ent kinds of indexing. We show that bigrams lead to much bigger vocabularies
and indexes, and slower querying, but, in our Japanese collection, significantly
greater effectiveness. For Chinese, word indexing is both more efficient and
more effective.

2 Measuring Efficiency

Most research to date has concentrated on the effectiveness of different indexing
approaches. This is measured in terms of recall (that is, how many of the rele-
vant documents where found) and precision (what proportion of the documents
returned were actually relevant). A common way to characterize this is with
interpolated recall-precision values, which are the precision at fixed levels of
recall. These figures are often averaged to give an overall recall-precision (non-
interpolated). Another common characterization is to give precision figures for
various fixed numbers of documents fetched.

The retrieval system we use is mg [4, 8], a freely available retrieval sys-
tem that provides efficient full-text indexing of documents and supports free
form text queries. However the system was not originally designed to handle
Asian-language documents, and we have dealt with this by preprocessing the
documents before they are indexed by mg . Our document collections use a mix-
ture of 16-bit codes for the Chinese and Japanese characters, interspersed with
English-language words represented by 8-bit ASCII codes. It is relatively easy
to distinguish between the ASCII and other codes, as the Chinese and Japanese
codes always have the high order bit set in each byte, where as in plain ASCII
encoding this is not the case. (The Extended ASCII coding set often used for
various European languages also uses the high order bit, and hence it would not
be possible to embed this form of encoding within Chinese or Japanese.) We
converted 16-bit CJK codes to ASCII by simply using the hexadecimal repre-
sentation as an ASCII string, for example the code bab016 was converted to the
ASCII string “bab0”. If the indexing unit was to be characters we would simply
emit these codes, separated by spaces, as input to mg , which treats these as
indexable tokens and processes them in the normal way. If words are used as
the unit of indexing, a two character word would be encoded as “bab0cdef”,
and so on. While this process is, as a retrieval mechanism, somewhat indirect,
it has no impact on our measurements of retrieval speed or database size.

2

Table 1: Collection statistics for the TREC Chinese and NTCIR Japanese
collections.

Size Number of Distinct Distinct Distinct
(Mb) documents characters words bigrams

Chinese coll’n 163.2 164,789 15,520 88,683 1,589,685
Japanese coll’n 312.7 339,483 12,252 459,673 1,379,443

For the purpose of our experiments we have used data and queries from
two collections, the TREC collection of Chinese documents and 28 queries [7].
and the NTCIR collection of Japanese documents and 53 queries [2]. Some
statistics relating to the size and numbers of distinct terms according to the
indexing method used are shown in Table 1; the segmentation technique used
to extract words is discussed below.

3 Indexing Approaches

For English text retrieval, queries and documents are usually matched at the
word level. For Asian text retrieval, the two most common levels of matching
are characters or words. These techniques tend to suffer from being too general
or too specific, respectively. Many words are two characters long, and often
the individual characters have a number of meanings or combine with other
characters to form a range of specific meanings. This means that character-
based matching tends to retrieve irrelevant documents, because query terms
match documents with characters in common, but are actually part of words
with different meanings. Word-based matching, on the other hand, misses
relevant documents in which the words are similar in meaning to those in the
query, typically with a character in common, but are not identical.

Character Indexing

Character indexing is the simplest and most obvious form of indexing for CJK
languages. The number of distinct characters, while not well defined, is about
15,000 for Chinese (counting all character-level tokens), and somewhat less for
Japanese and Korean. There is a small number of terms, and the size of the
dictionary is quite small.

In a text database, each distinct indexed term is held in a dictionary (or
vocabulary). For each term there is an inverted list identifying the documents
containing that term. A consequence of character-based indexing is that the
number of inverted lists is small, but each list is relatively long. For a large
database, fetching and processing a long inverted list is a significant component
of query evaluation costs.

3

Word Indexing

As there are no spaces between characters in CJK languages, word indexing
requires a preprocessing step to parse the character stream into words. There
has been much research on how best to do this [9]. The most common way to
this is via dictionary segmentation, using a dictionary of known words to parse
the text. Generally, such methods are reasonably successful, although there is
always some degree of ambiguity. For example, if the dictionary contained the
word entries ab, abc, and cd, the string abcd could be parsed as ab|cd or abc|d.
Greedy parsing will choose the latter, which in this case is more likely to be
wrong. However parsing the entire text in reverse will overcome this problem,
and tend to produce better results. Other researchers have used a technique of
generating multiple possible parse sequences and using a word-scoring system
to choose the most probable correct one.

One of the problems that all dictionary-based techniques suffer from is that
they don’t recognize words which are not in the dictionary, such as names
of people and places. Statistical techniques have been proposed to overcome
this problem. While segmentation is never perfect it is probably not a great
problem [5]. Provided a that a word segmented incorrectly in a document is
also segmented in the same incorrect manner in the query the terms will still
match, and in most cases the document will still be retrieved.

Word-level indexing reduces the number of tokens in each document, thus
reducing overall index size. For dictionary-based segmentation, the size of the
database vocabulary cannot exceed the sum of the size of the dictionary and
the size of the character set; however, much Asian-language text includes text
in other languages, in particular English, which can further increase vocabulary
size. On average inverted lists will be much shorter than with character-based
indexing.

Bigram Indexing

Bigram indexing generates terms by using overlapping pairs of characters. Thus
the character string abcd would give ab, bc, and cd as index terms. Bigrams
give better coverage of the text and several researchers have shown that retrieval
effectiveness is typically slightly better than words and characters [3]. However
they generate much bigger dictionaries than characters or words. In Chinese
for example there are roughly 104 characters and roughly 105 words. Because
bigrams can arise out of the random juxtaposition of words they can potentially
number in the order of 108. To examine dictionary size we processed the first
n kilobytes of text from the Japanese collection for a range of values of n,
observing the number of distinct bigram terms as shown in Figure 1. As can
be seen in the graph, there is no obvious trend toward a limit in the number
of terms as the collection size increases. However, individual inverted lists are
expected to be short.

4

100 1000 10000 100000

Kilobytes of text

10000

100000

D
is

ti
nc

t
bi

gr
am

s

Figure 1: Rate of increase in vocabulary terms for Japanese data indexed using
bigrams.

4 Resource Requirements

There are two distinct activities in the normal use of a text retrieval or document
database system, the building of the database and the querying of it. The
building occurs infrequently, and possibly on a more powerful machine than that
used to answer the queries. A production system will process many queries and
must be able to do this efficiently, and thus it pays to do as much pre-processing
as possible during the building stage, to make the query processing as efficient
as possible. The experiments in this paper were all performed on a PC with a
333 Mhz Intel PII processor and 256 Mb of RAM, running the Linux operating
system.

Collection Building

For the mg system, text database construction is a two-pass process. The
first pass builds a dictionary of all the index terms encountered, while the
second pass constructs the inverted lists. For efficiency reasons it is desirable to
hold the dictionary in memory during both passes. However some approaches
tend to have particularly large vocabularies and thus may have large memory
requirements. Table 2 shows the time taken by the first and second pass of the
collection building process, and the total size of all the files needed by the mg
system for the collection including the text and all indexes. These are all stored
in a compressed format, both to save space and to facilitate faster access [8].
It is usual for this total to be less than the original size of the uncompressed
text—163 Mb and 312 Mb respectively for the Chinese and Japanese collections.

An interesting observation is that the collection size of the Chinese word-
indexed files is less than that of the character-indexed collection. When each
document is segmented into words, there are significantly less tokens compared
to using characters. In the Chinese collection there were 77 million index terms
using character segmentation, and 52 million using word segmentation. For
the Japanese collection there were around 101 million terms using character

5

Table 2: Database sizes and build times for Chinese and Japanese collections.

Number First pass Second pass Total time Database
of terms (sec) (sec) (sec) size (Mb)

Chinese collection
Characters 15,520 519 876 1395 133
Words 88,683 906 1371 2277 117
Bigrams 1,589,685 963 1727 2690 285
Japanese collection
Characters 12,252 598 1095 1693 161
Words 647,256 723 1275 1503 254
Bigrams 1,379,443 1620 3030 4650 508

indexing and 94 million using word indexing, a much smaller difference. In
addition, there was a surprising number of distinct word terms in the Japanese
collection, leading to the larger overall collection size. Most of these terms are
English words (with many misspellings).

In both collections the bigram indexing approach generated a much larger
number of distinct index terms, took longer to process, and the total database
size was significantly larger. This is because there are many terms which occur
infrequently, giving short inverted lists that do not yield much compression.
sheer number of terms greatly adds to the size of the indexes. The bigram
collections where about 170% of the size of the original text, whereas the other
approaches varied from 50% to 80% of the original collection size. Perhaps
more importantly, the number of new bigram terms appeared to be growing
almost linearly in proportion to the collection length, as shown in Figure 1.
This suggests that there will be problems in scaling this technique for larger
collections.

Collection Querying

Querying time tends to be proportional to the number of terms in in a query.
The reason for this is that each term requires that the list of documents contain-
ing that term be fetched, and included in a vector product computation. Each
term index must be fetched from disk, and in terms of elapsed time this is by far
the most time-consuming activity, and the processor will often lie idle waiting
for the disk. A typical example is shown in Figure 2, where the number of terms
in a query is plotted against the CPU time required to retrieve the top 1000
documents from the Chinese collection, using character indexing. The time is
averaged over all 28 queries; queries of n terms were generated by choosing the
first n characters from each query. As mentioned above it is advantageous to
compress the term indexes, so that each disk access can effectively fetch more
data, reducing the total number of accesses and improving caching [8].

The fact that times are proportional to the number of terms in the queries

6

10 20 30 40 50

Terms

0.5

1.0

1.5

Se
co

nd
s

Figure 2: Number of query terms vs CPU time: Chinese collection, character
indexing.

Table 3: Query times for different indexing techniques on the Chinese and
Japanese collections.

Total time Av. no Time per term
(sec) of terms per query (sec)

Chinese collection
Characters 135 116 0.021
Words 57 65 0.016
Bigrams 188 116 0.030
Japanese collection
Characters 420 385 0.021
Words 255 191 0.025
Bigrams 423 385 0.021

is again illustrated by the total query times for each of the indexing methods,
as shown in Table 3. Word indexing has only about half the number of terms
per query as character or bigram indexing, and consequently runs about twice
as fast. We have excluded the processing time taken to segment the query,
however this would be small, provided it was running on a machine that could
afford to keep the dictionary loaded in memory. The average time to process
each term in each query is also shown. Although the test queries are long,
Figure 2 show that the processing cost is roughly linear in query length, and
the relative efficiency of the indexing methods is as applicable to short queries
as to long queries.

Retrieval Effectiveness

The average recall precision for the different indexing methods for each of the
collections is shown in Table 4. For the Chinese collection, word and bigram

7

Table 4: Average precision for different indexing techniques

Chinese Japanese
Characters 0.449 0.212
Words 0.502 0.234
Bigrams 0.494 0.332

indexing give about the same performance; both are slightly better than charac-
ter indexing. For the Japanese collection, character and word indexing produce
similar results, while bigram indexing is noticeably better. Although we have
only shown the average precision it was in this case a good indicator of the
relative performance according to each measure. The similarity measures used
are the best identified in our work with Chinese text at TREC.

5 Conclusions

We have investigated the relationship between efficiency and effectiveness for re-
trieval of Asian-language text. The effectiveness of several indexing methods—
in particular, character-based, word-based, and bigram-based—has been widely
explored in previous work. In this paper we have re-examined these indexing
techniques with regard to efficiency.

Word indexing is the most efficient indexing technique for Chinese. It yields
modest vocabulary size, small database size, fast query evaluation, and high
effectiveness. Retrieval results for the Chinese collection suggest that word
indexing performs similarly to bigram indexing, and other researchers have
come to similar conclusions [3]. We conclude that, overall, word-based indexing
is the best method for Chinese text.

For our Japanese collection—which, unlike the Chinese collection, contains a
significant quantity of English text—the results are more mixed. Word indexing
provides the fastest query evaluation, with effectiveness better than character
indexing but significantly worse than bigrams; while character indexing leads
to the smallest storage overheads. Thus each technique is the best on one of
our comparison criteria and no overall conclusion can be drawn.

References

[1] A. Chen, J. He, L. Xu, F. Gey, and J. Meggs. Chinese text retrieval without
using a dictionary. In Proc. ACM-SIGIR International Conference on Research
and Development in Information Retrieval, pages 42–49, Philadelphia, July 1997.

[2] K. Kageura. NACSIS Corpus Project for IR and terminological research. In Natural
Language Processing Pacific Rim Symposium, pages 493–496, Phuket, Thailand,
December 1997.

[3] K. L. Kwok. Comparing representations in Chinese information retrieval. In Proc.
ACM-SIGIR International Conference on Research and Development in Informa-
tion Retrieval, pages 34–41, Philadelphia, July 1997.

8

[4] MG public domain software for indexing and retrieving text, including
tools for compressing text, bilevel images, grayscale images, and tex-
tual images, 1995. Available from ftp://munnari.oz.au/pub/mg and from
http://www.mds.rmit.edu.au/mg/.

[5] V. B. H. Nguyen, P. Vines, and R. Wilkinson. A comparison of morpheme and word
based document retrieval for Asian languages. In R. R. Wagner and H. Thoma,
editors, International Conference on Database and Expert System Applications —
DEXA 96, pages 24–33, Zurich, Switzerland, 1996. Springer.

[6] Y. Ogawa, A. Bessho, and M. Hirose. Simple word strings as compound keywords:
An indexing and ranking methos for japanese texts. In Proc. ACM-SIGIR Inter-
national Conference on Research and Development in Information Retrieval, pages
227–236, Pittsburgh, June 1993.

[7] R. Wilkinson. Chinese document retrieval at TREC-5. In D. K. Harman, editor,
The Fifth Text REtrieval Conference (TREC-5). NIST, November 1996.

[8] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, New York, 1994.

[9] Z. Wu and G. Tseng. Chinese text segmentation for text retrieval: Achievements
and problems. Journal of the American Society for Information Science, pages
532–542, October 1993.

9

