
Memory Efficient Ranking

Alistair Moffat

Department of Computer Science,

The University of Melbourne,

Parkville, Victoria 3052,

Australia

Justin Zobel

Department of Computer Science,

Royal Melbourne Institute of Technology,

GPO Box 2476V, Melbourne, Victoria 3001,

Australia

Ron Sacks-Davis

Collaborative Information Technology Research Institute,

723 Swanston St., Carlton, Victoria 3053,

Australia

June 27, 2002

Correspondence should be addressed to the first author.

Electronic mail: alistair@cs.mu.oz.au.

Telephone: +61 3 3445230. Facsimile: +61 3 3481184.

Memory Efficient Ranking

Abstract

Fast and effective ranking of a collection of documents with respect to a query

requires several structures, including a vocabulary, inverted file entries, arrays of

term weights and document lengths, an array of partial similarity accumulators,

and address tables for inverted file entries and documents. Of all of these

structures, the array of document lengths and the array of accumulators are

the components accessed most frequently in a ranked query, and it is crucial to

acceptable performance that they be held in main memory. Here we describe an

approximate ranking process that makes use of a compact array of in-memory

low precision approximations for the lengths. Combined with another simple

rule for reducing the memory required by the partial similarity accumulators,

the approximation heuristic allows the ranking of large document collections

using less than one byte of memory per document, an eight-fold reduction

compared with the space required by conventional techniques. Moreover, in our

experiments retrieval effectiveness was unaffected by the use of these heuristics.

2

Memory Efficient Ranking

1 Introduction

Ranking techniques are used to find the documents in a document collection

that are most likely to be the answers to an informally-phrased query [15, 17].

When the documents are stored in a database that is indexed by an inverted

file [4, 8, 19], several structures must be used if ranked query evaluation is to

be acceptably fast. These structures include the vocabulary of the document

collection; the inverted file entries that record, for each term, which documents

contain that term; the word weights; the document lengths; and address tables

into the inverted file and the text itself. It is also usual for a set of accumulators

to be required, normally containing one accumulator for each document in the

collection.

In this paper we briefly survey methods that can be used to reduce the

memory space required by the various search and index structures, then focus

on the cost of storing the document lengths. We show that using a relatively

small number of bits to represent lengths does not, up to a point, significantly

affect ranking effectiveness, so long as an appropriate compaction technique is

chosen. We discuss two techniques, one model-based and one frequency-based,

and demonstrate their relative effectiveness on test databases. These techniques

make only a small difference to retrieval speed but can reduce the memory space

required for document lengths by a factor of between four and eight. We also

describe an alternative use of the compacted document lengths, in which they

are employed to restrict the number of disk accesses required by a full and

‘exact’ ranking of the collection.

The accumulators, storing partial similarity values for the documents of the

collection as the ranking is carried out, are the second major demand on random

access memory, and we also consider methods by which the memory allocated

to these can be reduced. By effectively switching from an ‘or’ query to an ‘and’

query at some predetermined point, the space required by accumulators can

be cut to just one or two bits per document. In our experiments this strategy

resulted in a negligible deterioration in retrieval effectiveness even when the

number of permitted non-zero accumulators was just a small percentage of the

number of documents.

Together, these mechanisms allow ranking for even large document collec-

tions to be carried out in limited memory space. For example, using the tech-

niques we describe, it would be possible for ranking on a collection of one million

documents to be carried out within one megabyte of main memory. That is, we

might consider a situation in which large document collections are distributed

3

Memory Efficient Ranking

on CD-ROM and accessed via informal queries on low-powered personal com-

puters.

In the description of our techniques we assume that the database is static,

which allows parameters such as the minimum and maximum document length—

required before compaction takes place—to be determined. For this reason our

results will be most directly applicable to situations involving read-only media.

However, we also believe that the methods we describe will readily generalise

to dynamic collections.

The ranking technique we use to evaluate our techniques is the cosine mea-

sure, introduced in Section 2. This is just one of the possible mechanisms that

can be used to perform ranking, and there are many others—see, for example,

Salton [15] for a description of alternatives. The cosine measure suits our pur-

poses because, if anything, it is one of the more demanding similarity measures,

in that the similarity value assigned to each document depends not just upon

that document, but also upon all of the other documents in the collection. Cer-

tainly, our techniques will in full or in part also be applicable to other similarity

measures.

The structures used by document databases and the query evaluation tech-

nique are described in Section 3, and in Sections 4 and 5 we show how the

array of document lengths can be reduced in size, while still retaining either

fast performance or exact ranking. Section 6 then discusses methods by which

the space required for partial similarity measures can be correspondingly re-

stricted. Finally, in Section 7 we briefly discuss how dynamic databases might

be handled.

2 The cosine measure

The ranking technique we will use in this paper is the cosine measure [15, 17],

one of the most effective ranking techniques [1]. The cosine measure evaluates

the relevance of a document to a query via the function

cosine(q, d) =
∑

t wq,t · wd,t√∑
t w2

q,t ·
√∑

t w2
d,t

,

where q is the query, d is the document, and wx,t is the weight of word t in

document or query x. The expression
√∑

t w2
x,t is a measure of the total weight

or length of document or query x in terms of the weight and number of words

in x. We will refer to the length of document d as Wd, and the length of the

query as Wq.

4

Memory Efficient Ranking

One commonly used function for assigning weights to words in document or

query x is the frequency-modified inverse document frequency, described by

wx,t = fx,t · loge(N/ft) ,

where fx,t is the number of occurrences of word t in x, N is the number of

documents in the collection, and ft is the number of documents containing t.

This is commonly called the tf · idf weighting. Note that this function includes

both global information—the word weight loge(N/ft)—and local information—

the ‘within document’ term frequency fx,t.

Ranking techniques are tested by applying them to standard databases and

query sets, in which the queries have been manually compared to the documents

to determine relevance. The databases we use in this paper are Cacm, abstracts

from Communications of the ACM; Cisi , abstracts of library science articles;

Time, articles from Time magazine; and, most importantly, TREC , a large

collection of articles on finance, science, and technology, from several sources.

The parameters of these collections are shown in Table 1. Before deriving the

figures given in this table, the words in the collections were stemmed—that

is, all letters folded to lowercase and variant endings removed—using Lovin’s

algorithm [10]. The queries were preprocessed to remove a small set of common

stop-words, and were similarly case-folded and stemmed.

Cacm Cisi Time TREC

Number of records 3,204 1,460 425 742,985
Average words per record 33 72 349 474
Distinct words in collection 5,510 6,278 12,750 538,497
Number of queries 64 112 83 47
Retrieval effectiveness (%) 28.5 26.0 62.8 17.4

Table 1: Parameters of document collections

Throughout this paper, for Cacm, Cisi , and Time the retrieval effectiveness

is measured using an eleven point recall-precision average based upon a total

ordering of the entire collection. For TREC , the recall-precision average was

also calculated as an eleven point average, but, because of the size of the collec-

tion, was based only upon the top 200 retrieved documents rather than a total

ranking. This was the methodology suggested during the TREC experiment,

and we have chosen to continue with this convention. Precision was taken to be

zero at recall values that would have required that more than 200 documents be

5

Memory Efficient Ranking

accessed, and so the retrieval effectiveness cited can be regarded as maximally

pessimal. For example, if more documents are retrieved the efficiency increases,

since more non-zero ‘recall’ points are brought into the average. With 1,000

documents retrieved for each TREC query, the effectiveness increased to 24.6%;

if only the top 100 are accessed, the effectiveness drops to 13.6%.

3 Document databases

In an inverted file document database, each distinct word in the database is held

in a vocabulary [4, 8, 11, 19]. The vocabulary might be an array, or a search

structure such as a B-tree that can be efficiently updated. The vocabulary

entry for each word contains an address pointer to an index entry , a list of the

documents containing the word. To support the cosine measure, the vocabulary

should also hold, for each word t, either ft, the number of documents that

contain t, or, equivalently, the value log(N/ft). Knowledge of the value ft

also allows the useful heuristic of ‘process the shortest inverted file entry first’

to be exploited. This is particularly important for boolean queries—that is,

queries for which the answers are exactly those documents that contain all of

the terms specified in the query—as it allows the space and time needed to find

the intersection of the inverted file entries to be minimised. For ranked queries,

where the list operation is effectively an ‘or’ rather than an ‘and’, knowledge of

the number of items in the inverted file entries is also useful, and allows several

time-saving heuristics to be employed [4, 11].

The index entry for each word stores a list of the documents that contain

that word, and, for ranked queries, the ‘within document frequency’ fd,t must

be held with each document number. This allows the weight of each word in

each document to be computed. The storage of these ‘document number, within

document frequency’ pairs is a major component of the overall cost of storing

the information retrieval system, and index compression has long been exploited

to reduce the need for secondary disk space [3]. In the absence of compression,

and with a naive implementation, we might choose to expend a four byte integer

to store each of the two values, or a total of 64 bits for each term-document

pair. Using parameterised compression techniques such as those described by

Moffat and Zobel [12, 13], it is possible for the space required to be reduced

to under eight bits per pointer. On the two gigabyte TREC collection these

techniques compress the inverted file from 1000 megabytes to 135 megabytes,

a dramatic saving. For this reason, if the information retrieval system is to be

6

Memory Efficient Ranking

available on CD-ROM, and if we wish to maximise the amount of information

stored on each disk, we should employ compression of both the index and also

the stored text [2, 3, 9]. This is the environment that we consider here.

The vocabulary, the ft values, and the inverted file address table can be

stored either on disk or in memory. If they are stored in memory, a typical

query of 25 terms will require that 25 inverted file entries be accessed from

disk before the query can be processed. If, to conserve memory space, the

vocabulary and associated information are merged on disk with the inverted

file entries and some form of hashing (such as extensible hashing [14]) is used,

the expected number of disk accesses can kept to about 1.2 on average per

query term, but at the cost of a 20%–30% expansion in the size of the inverted

file. A more practical solution is to allow two accesses per query—the first into

the index file containing the vocabulary and term information, including the

inverted file entry address, and the second to actually retrieve the inverted file

entry. In this case the 20% space wastage caused by hashing is restricted to

the vocabulary alone, which is normally an order of magnitude smaller than the

inverted file. Fox et al. have considered the use of minimal perfect hashing [6, 7];

this allows the vocabulary to remain compact (indeed, the words need not be

stored at all), but a non-trivial amount of memory space is required for the

description of the hash function, approximately 2–4 bits per key, and two disk

accesses will still be required per query term if the address table is stored on

disk.

The document address table can also be stored either on disk or in mem-

ory. In a typical application perhaps the top 25 ranked documents would be

displayed in response to a query; and even if the address table is held on disk,

display of answers will require about 50 disk operations, assuming that the top

25 documents can be identified without access to their text.

To make this whole inverted file based ranking process possible, the final

data structure required is an array storing the length of each document—that

is, the vector of values Wd. These document lengths are query invariant, and

for efficiency should be computed at database creation time.

There are several methods for determining which of the documents in a

collection will have a high cosine measure with respect to a query. In small

databases, it is feasible to compute cosine for each document and so form a

total ranking. In this case the document lengths can be stored on disk with the

corresponding documents. However, for most databases this approach yields

unacceptable response times because of the volume of text to be processed, and

7

Memory Efficient Ranking

so techniques have been developed to reduce the set of candidate documents

examined. One effective technique of this kind is to inspect the vocabulary

to determine which words in the query are the most important, construct a

boolean query out of these words, and rank the documents retrieved by this

query [16].

Another method for determining the ranking is to directly use the inverted

file structure and document lengths [4, 8, 11], as we choose to do. In this

method, the index entry for each word in the query is retrieved in turn. An ac-

cumulator variable is created for each document containing any of these words,

in which the result of the expression
∑

t wq,t · wd,t is accrued. In some cases,

it is not necessary to access the index entries for words of low weight because

they are unlikely to affect the ranking, and so a possible heuristic is to access

the entries in decreasing order of weight [18], as is done to minimise processing

time for boolean queries. Buckley and Lewit [4] and Lucarella [11] have further

explored this possibility.

Once all of the index entries have been inspected, for each document with a

non-zero accumulator value the document length Wd is accessed and the final

ranking is formed. A further heuristic that can be applied at this stage is to

access the document lengths in the order given by their
∑

t(wq,t ·wd,t) values for

the query under consideration, since when this value is small it is unlikely that

the document will be ranked highly enough to be judged worthy of presentation

to the user. We will expand upon this heuristic below.

The effect of applying the document lengths is to reorder the ranking, some-

times significantly. Because of this reordering, to determine the final ranking

and identify the top (say) 25 documents, the lengths of 200 or more documents

might need to be consulted. Certainly, the number of accesses to the docu-

ment lengths will usually exceed, often by an order of magnitude, the number

of answers; and if, because of pressure of memory space, the document lengths

are stored on disk, these accesses could become the dominant cost of answering

queries.

One method that has been suggested for avoiding this bottleneck is to store,

in the inverted file entries, not the raw fd,t values described above, but instead

scaled values fd,t/Wd [4, 11]. Then, as the partial similarities are built up in

the accumulators, they will be ‘self-normalising’, and no explicit access to the

document lengths will be required.

Unfortunately, this approach cannot be reconciled with the need to compress

the inverted file entries. Consider a single ‘document number, within document

8

Memory Efficient Ranking

frequency’ pair from an inverted file entry. After compression of each such

entry the fd,t component is typically represented in 1–2 bits [13], and storing a

normalised value in the same restricted space is simply impossible. Indeed,

in normalising every fd,t value, the length Wd of document d is effectively

being stored once for every term that appears in the document, and, from a

compression perspective, the inverted file must expand, since more information

is being represented. Hence, this ‘self-normalising’ technique will only work if

the pairs comprising the inverted file are to be stored as four byte quantities.

If we are interested in minimising the disk space required by the inverted file,

we must seek an alternative solution.

To further illustrate this argument, let us start with a hypothetical system

that retains in main memory all data structures except the compressed inverted

file entries and the indexed documents themselves. In this system a query of

25 terms and 25 displayed answers would require a total of 50 disk accesses.

If, to conserve main memory, the vocabulary and inverted file address table

are moved to disk, an additional 25 disk operations might be required. If the

document address table also migrates to disk, 25 more disk accesses will be

necessary, and the total might reach 100, a roughly twofold increase in response

time over the original system. But if the array Wd of document lengths—which

must be accessed because the inverted file is compressed—is moved to disk,

query response time might degrade by a further factor of four or more. For this

reason it is important that the document lengths, or, as we shall describe, some

approximation of them, be held in memory, even if there is insufficient space

for any of the other access structures.

4 Approximating document lengths

Since ranking is an approximate process it is reasonable to suppose that com-

putation of cosine with approximate numbers will be sufficiently accurate. One

obvious method to reduce the space required for the document lengths is to sim-

ply use fewer bits to represent each number. However, if the greatest advantage

is to be taken of the few bits available for each number, it is not sufficient to

simply take the most significant digits; rather, a mapping is needed that reflects

the distribution of the numbers being represented. In this section we outline

two mappings, one model-based, and one based on the frequency of each of the

values to be represented. Both mappings generate b-bit approximate values,

where b is fixed in advance. It would also be possible to employ some variable

9

Memory Efficient Ranking

width encoding, such as a Huffman code, but for fast access a fixed width code

is preferable, and we have not explored this further possibility.

4.1 Model-based mapping

One technique for coding a b-bit approximation of a set of numbers is as follows.

We assume that each number x that we wish to represent is such that L ≤ x <

U , for some strictly positive lower bound L and upper bound U . Since U must

be strictly larger than the largest value to be represented, we would normally

take U to be the largest length plus ε, for some small value ε.

For a base B = (U/L)2
−b

, chosen so that logB(U/L) = 2b, the value f(x) =

blogB(x/L)c will then be integral in the range 0 ≤ f(x) < 2b and will require

only b bits as a binary code. The use of logarithms in this approximation

allows a wide range of magnitudes to be represented while still being reasonably

accurate for small values of x.

If x is represented by code c, that is, f(x) = c, an approximation x̂ to x can

be computed as x̂ = g(c + 0.5), where g is the inverse function g(c) = L × Bc

and 0.5 is added because truncation rather than rounding was used to compute

f(x). In effect, each code value c corresponds to a range of values x that

are all assigned the same approximation, that is, the x values in the range

g(c) ≤ x < g(c + 1). In fact, at the implementation level, there is no need to

add the 0.5, since the rank order will be the same if we take x̂ = g(c). The

calculation of g(c) would then normally be implemented by table look-up.

Let us calculate some example codes. Suppose for some collection that the

smallest document length is 20.47, that the largest document length is 347.12,

and that we wish to use 3-bit approximate lengths, that is, we desire b = 3.

Taking ε = 0.01, we then have lower bound L = 20.47, upper bound U = 347.13,

and base B = (347.13/20.47)0.125 = 1.4245. Using this code the value x = 87.14

would be coded as blogB(87.14/L)c = b4.09c = 4, and, when decoded, would

be approximated by x̂ = L×B4+0.5 = 100.61. Table 2 shows the complete code

assignment that would be created by this choice of parameters.

We tested recall effectiveness when the document lengths were represented

using this scheme, taking L to be the smallest length observed in each collection

and U to be a little greater than the largest length. The retrieval efficiency and

average degradation in retrieval efficiency caused by the use of approximate

document lengths are shown in Table 3.

Compaction of the document lengths has the expected effect: for very small

values of b the effectiveness is worse than if the document lengths were simply

10

Memory Efficient Ranking

Code c Code value Corresponding range for x x̂ = g(c + 0.5)

000 0 [20.47, 29.16) 24.43
001 1 [29.16, 41.54) 34.80
010 2 [41.54, 59.17) 49.58
011 3 [59.17, 84.30) 70.63
100 4 [84.30, 120.08) 100.61
101 5 [120.08, 171.06) 143.32
110 6 [171.06, 243.68) 204.17
111 7 [243.68, 347.13) 290.84

Table 2: Example code assignments with L = 20.47, U = 347.13, and b = 3

b Cacm Cisi Time TREC Degradation (%)

exact 28.5 26.0 62.8 17.4 0.0
8 28.5 26.0 62.9 17.5 0.0
6 28.3 26.0 64.1 17.7 −0.8
4 27.8 26.0 64.6 16.0 +1.9
3 27.8 25.9 65.4 14.5 +3.8
2 24.6 25.2 62.4 7.9 +18.0
0 28.7 23.4 53.5 1.0 +29.6

Table 3: Retrieval effectiveness with reduced document length precision (%)

ignored. For example, with b = 2 the documents are being grouped into just

four categories, ‘very short’, ‘short’, ‘long’, and ‘very long’, and the calculation

of x̂ means that the ranking process will strongly favour ‘short’ documents over

‘long’, even when a ‘long’ document has a much larger value for the accumu-

lator and is only slightly longer in reality. This result was expected. More

surprising was the small improvement in retrieval effectiveness—that is, nega-

tive degradation—that was obtained for b = 8, b = 6, and, in one case, b = 4.

While we would hesitate to claim this improvement as a ‘feature’ of the com-

paction technique, it gives us some confidence in claiming that 8-bit or 6-bit

approximations to the document lengths are perfectly acceptable and appear to

have no measurable effect on retrieval effectiveness. For TREC , changing from

32-bit to 8-bit lengths for the Wd array released over two megabytes of main

memory, and, as is shown in Table 3, there seems little reason to use a larger

value of b.

11

Memory Efficient Ranking

It is interesting to note that with the small collections, use of no scal-

ing at all has little effect on retrieval effectiveness, but for TREC the use of

b = 0 gives both poor retrieval effectiveness and slow execution. The poor re-

trieval effectiveness is caused by the very large variation in document lengths

in TREC—the shortest document, just a few hundred bytes, had a length of

7.6; while the longest document was over 2.5 megabytes, and had a length of

64,000. Given this large range, and the ‘no scaling by document length’ im-

plied by b = 0, performing a ranked query is tantamount to retrieving all of the

longest documents, since the common words in long documents will outweigh

the information-bearing words in short documents by sheer weight of numbers.

On the other hand, scaling by the document length, as required by the exact

cosine method, appeared to discriminate against the long documents, and they

were never retrieved in the course of normal processing. Based upon these ob-

servations, one possibility for increased retrieval effectiveness might be to use a

weaker normalisation process, dividing perhaps by the square root of the length;

or to produce a greater number of more uniform length documents by indexing

at a paragraph level, and retrieving documents in which any of the paragraphs

are judged to be strongly relevant.

The slow execution with b = 0 arises because, with no normalisation at all,

each query resulted in between 80 and 200 megabytes being extracted from the

database. Moreover, our system compresses the text of the collection as well

as the index, and all of this data needed to be decompressed. As a result, the

processing run with b = 0 took more than 24 hours, compared with about 25

minutes for the large values of b.

4.2 Frequency-based mapping

The compaction technique described in Section 4.1 provides a mapping from

a bag of numbers (that is, a set with duplicates) onto integers between 0 and

2b−1. The mapping was defined by a function f , which broke the input bag

into 2b groups; it could, however, have been defined by a sorted array of length

2b−1 specifying the boundaries between the groups. So long as the boundaries

are such that the groups of numbers are of roughly equal size, one might expect

that the resultant encoding would be a good approximation to the actual values.

A pragmatic way of computing the mapping is to order the n values; find the

numbers occurring at n/2b, 2 ·n/2b, 3 ·n/2b, . . . , (2b−1) ·n/2b; and make these

numbers the boundaries of the 2b codewords. To ensure that no two boundaries

are identical, and that no codewords are unused, it is necessary to search up or

12

Memory Efficient Ranking

down from k · n/2b until adjacent numbers have different values. For example,

if the values in the array

2 9 9 12 12 12 32 36

are to be represented with a 2-bit code, the mapping might be ≤ 2, ≤ 9, ≤ 12,

and ≤ 36 for codes 0, 1, 2, and 3 respectively.

Intuition suggests that the mapping derived by this pragmatic technique

should lead to better performance than the mapping defined by f , since it will be

a closer fit to the skew of the distribution of numbers. However, in practice this

method performed poorly on our test collections. Table 4 shows, for the three

small collections, the retrieval effectiveness achieved when document lengths

are approximated by this technique. These results were too poor to justify our

undertaking the substantial programming effort required to test this technique

on TREC , which was responsible for most of the decline in performance in

Table 3.

b Cacm Cisi Time Degradation (%)

exact 28.5 26.0 62.8 0.0
8 28.5 25.9 62.7 +0.2
6 27.4 25.9 62.9 +1.4
4 27.1 25.3 61.7 +3.1
3 24.9 24.9 61.7 +6.2
2 21.9 23.0 59.9 +13.1
0 28.7 23.4 53.5 +8.0

Table 4: Effectiveness of frequency-based compaction (%)

The reason for the poorer performance of the frequency-based mapping is

interesting. We had expected that an approximate code based upon the actual

values to be coded would, de facto, result in better approximations, and that

ranking effectiveness would improve. However, this was not the case. With

the model-based technique the ratio x/x̂ is bounded below by 1/
√

B and above

by
√

B. For the frequency-based approximation the average error can also be

bounded, but there is no such bound for individual values of x. Experiments

showed the distribution of log x values for these document collections to be bell-

shaped, and the frequency-based code at its worst, that is, with x/x̂ furthest

from unity, for x either very small or very large. These two situations are

exactly the cases when the document length is crucial to the ranking process.

13

Memory Efficient Ranking

On the other hand, at the extremes of the range of x the model-based code

was creating buckets with very few x values, but still with reasonably accurate

approximations x̂.

Given that the model-based approach also requires no storage of decoding

tables, it is the method of choice for this application.

5 Exact ranking

In the previous section we described a technique for approximating document

lengths in terms of saving memory space at the price of possible degradation of

retrieval effectiveness. We can also use the approximate document lengths as

a guide to document retrieval when ‘exact’ ranking must be performed, at the

cost of slightly increased query time.

Suppose that we maintain b-bit model-based approximate lengths in mem-

ory, but also store the full 32-bit length as a field in the document address table

on disk. The approximate length gives a guide as to the final value of the cosine

measure, since if the coded length for some document is c, the actual length x is

such that g(c) ≤ x. Hence, once all the inverted file entries have been scanned

and the values of the query dependent components of cosine(q, d) accumulated,

it is possible to use the approximate length to calculate, for each document d,

an upper bound on the value of cosine(q, d).

To generate an exact ranking of the first k documents we must be sure, for

each document that is not considered, that document’s value of cosine is less

than the kth largest value of cosine. This can be achieved by the following

method. Suppose that xi is the length of document i; that ci is the b-bit code

assigned to document i; that g(c) is the inverse function described in Section 4.1;

and that Ai is the value of the accumulator for document i,

Ai =
∑

t(wq,t · wi,t)
Wq

,

where Wq is, as previously defined, the length of the query. The assumption

we make is that ci and Ai are available without consulting the set of exact

document lengths xi, but that the xi values are available on disk if required.

First, for every document i with a non-zero accumulator Ai we calculate an

upper bound Ĉi on the value of cosine(q, i) using

Ĉi =
Ai

g(ci)
.

Next, we order this list of Ĉi values from largest to smallest. The k documents

required might be amongst the first k on this list, and so we access the exact

14

Memory Efficient Ranking

lengths xi for all of the first k documents on this ordered list and calculate the

exact values Ci of cosine(q, i) for these documents.

We must now check any other documents for which Ĉi is larger than the

smallest of the k exact values. We do this by accessing the exact value xi for

such documents, still in decreasing Ĉi order, and, after each access, calculating

the exact value Ci and updating the list of the k highest values of C established

so far. As we do this, the kth smallest cosine value will be non-decreasing,

while the Ĉi values are non-increasing, and so we can expect, after some small

number of values xi have been retrieved, that it will be possible to say that

the kth smallest of the known Ci values is larger than Ĉi for all remaining

documents, and that no further exact lengths need to be fetched.

Note that we do not in fact require a total ordering on the Ĉi values, only

that the top k of the Ĉi be initially identified, and, thereafter, that the ‘next

largest’ be repeatedly available. The natural structure to support this sequence

of queries is the heap [5], requiring O(N + k′ log N) time to find the k′ largest

of N items. A total ordering would require O(N log N) time.

Finally, the actual documents are required. If the exact lengths of docu-

ments are interleaved on disk with the document addresses, a further k disk

operations will suffice to fetch the documents selected, since the addresses of

the required records will already be available in main memory.

Table 5 shows the number of exact document lengths that were required

to guarantee exact ranking, for various combinations of k and b, averaged over

the queries comprising each of our test collections. For example, with b = 4—

that is, assuming that 4-bit approximate lengths using the model-based code

were available in main memory—and k = 25, an average of 29.2 lengths were

required before the top 25 documents could be unambiguously identified for the

Cacm queries. Coupled with the 25 disk accesses required to actually fetch the

documents, we have the choice of either spending 50 disk accesses to perform

an approximate ranking of the type described in Section 4.1, or of spending

(on average) 54.2 disk accesses to ensure that the ranking performance is not

degraded by the use of the approximate code. In either case, just four bits per

document of main memory is sufficient to give fast, effective ranking. Including

the the 50 or so disk operations already required to access the inverted file for

a 25 term query, the overhead cost of guaranteeing an exact ranking is perhaps

as little as 5%.

The overheads on the TREC queries are, not surprisingly, much greater

than for the three small collections, simply because TREC is more than an

15

Memory Efficient Ranking

k b Cacm Cisi Time TREC

1 8 1.0 1.0 1.1 1.3
6 1.0 1.1 1.2 3.9
4 1.6 1.6 1.1 56.3
3 3.1 2.6 2.6 390
2 10.0 7.3 5.0 4,150
0 320 210 56.2 64,100

5 8 4.3 5.2 5.2 6.0
6 4.9 5.5 5.4 13.9
4 7.1 7.1 6.7 112
3 11.8 11.0 8.9 610
2 29.0 23.8 14.5 6,300
0 450 360 108 80,300

25 8 20.9 25.5 25.4 30.0
6 22.4 26.9 26.4 48.5
4 29.2 33.2 30.3 240
3 40.4 44.4 37.5 1,090
2 73.5 77.8 54.1 9,800
0 580 580 200 108,000

Table 5: Number of document lengths required for exact ranking

order of magnitude larger. Even so, with b = 8, the top 25 documents out of

nearly 750,000 can be determined with fewer than 30 disk accesses to retrieve

lengths. Similarly, with b = 8 the top 200 documents can be determined using

an average of 219 exact lengths, and the top 1,000 documents can be identified

using an average of just 1077 exact lengths.

Note that with b = 0 a large number of lengths are required to effect the

ranking, thereby justifying our claim of Section 3 that fast access to document

lengths or some approximation thereof is crucial to efficient ranking. Note also

that there are values in the table less than k, caused by the presence of queries

in which there were fewer than k documents with non-zero accumulators.

6 Bounding the accumulator space

In the previous sections we described mechanisms by which the space required

for document lengths can be reduced to four or six bits per document. Through-

out that description we supposed that it was possible to store, for each document

16

Memory Efficient Ranking

in the system, an accumulator variable in which to build up the cosine contribu-

tions. The simplest data structure we might use to support these accumulators

is an array of (say) four byte floating point values, with each entry initialised

to zero.

Alternatively, if we are prepared to assume that the number of non-zero

accumulators is small compared to the number of documents stored, we might

consider using a dynamic data structure such as a balanced search tree or a

hash table [5]. In this case we require storage of the document number for each

non-zero accumulator, so that the set can be searched, and also some pointers

or other structural information. In total, we might consume sixteen to twenty

bytes of memory for each non-zero accumulator.

For each of the TREC queries there were on average more than 600,000 non-

zero accumulators, and in this case the array is the more economical structure.

However, at four bytes per document, the array of accumulators is no less

expensive than the array of document lengths—three megabytes for the TREC

collection, for example—and methods whereby this space might be reduced

are also of practical importance. The inverted file techniques of Buckley and

Lewit [4]; Harman and Candela [8]; and Lucarella [11] similarly assume that it

is possible to perform random access upon a set of accumulators.

To guarantee that the space required by the accumulators could not become

large, we placed an a priori bound on the number that would be permitted to

be non-zero, and used a dynamic search structure to store these accumulators

and their corresponding document identifiers. Two strategies for processing

the inverted file whilst observing this bound were then considered. The first

possibility is to process inverted file entries in increasing order of ft, and simply

‘quit’ processing when the number of accumulators exceeded the bound, going

on at that point to the normalisation and ordering steps of the ranking algo-

rithm. This has the advantage of providing a ‘short-circuit’ to the processing

of inverted file entries and hence faster ranking, but at the possible expense of

poor retrieval performance.

The second heuristic we tested continued the processing of inverted file

entries, but allowed no new documents into the accumulator set. In this case, we

effectively perform an ‘or’ query until the bound on the number of accumulators

is reached, and then switch to an ‘and’ query, continuing to process inverted file

entries but searching only for document numbers that already appear in the set

of accumulators. Both heuristics generate the same set of candidate documents,

but in a different permutation, and so when the top k documents are extracted

17

Memory Efficient Ranking

from this set and returned, different retrieval effectiveness can be expected.

A third possibility would be to incorporate some replacement rule, so that,

whilst observing the bound on accumulators, new documents might be allowed

to replace poorly performing documents in the pool of candidates if it seemed

likely that they would eventually have a higher cosine value. We are currently

experimenting with several different variations on this third possibility. To date

we have carried out preliminary experiments exploring the first two alternatives:

quitting all processing at the bound; and continuing to add cosine contributions,

but allowing no new accumulators.

Number of 11pt effectiveness (%)
accumulators Quitting Continuing

742,985 17.4 17.4
74,298 13.5 17.8
7,429 9.5 17.7
742 7.9 14.7

Table 6: Retrieval effectiveness for TREC with a bounded number of non-zero

accumulators, 200 answers, 47 queries

Table 6 shows the results of these experiments. The first row shows the

retrieval effectiveness when every document is permitted an accumulator; the

second when 10% of the documents are permitted accumulators; and so on.

The ‘quit’ strategy is clearly inferior, and retrieval effectiveness drops quickly.

On the other hand, the ‘continue’ strategy appears quite insensitive to the

number of accumulators allowed. Since the two strategies extract the same set

of candidates from the database, just in a different order, we conclude that the

primary terms—those processed while the set of accumulators is growing—act

only as a crude filter on the database to extract a set of documents for further

consideration, and that it is the secondary terms, processed after the transition

point is reached, that are responsible for the good behaviour of the cosine

measure. For this reason, our results support the strategy proposed by Salton,

Fox and Wu [16]. Even when as few as 1% of the documents are permitted

accumulators, the ‘continue’ strategy gives good retrieval effectiveness.

Noting from Table 3 that approximate ranking with b = 6 also gave slightly

improved retrieval effectiveness, we ran a further b = 6 experiment, allowing

74,298 accumulators, and found that effectiveness again slightly increased, to

18.0%. That is, the two heuristics we suggest appear to be independent of each

18

Memory Efficient Ranking

other.

A dynamic search structure will require about 16 bytes—128 bits—for each

candidate. If 1% of documents are permitted accumulators, then about 1.3 bits

per document must be allowed. Including the 6 bits previously allocated for the

approximate length, a little under one byte per document is sufficient to allow

in-memory ranking, with no measurable degradation in retrieval effectiveness.

Buckley and Lewit [4] and Lucarella [11] describe techniques whereby, given

that all accumulators can be held in memory, the number of inverted file entries

processed can be minimised whilst still guaranteeing that the top k ranked doc-

uments are retrieved, even if not in exactly the ‘correct’ order. An interesting

research problem is to consider whether the ‘bounded accumulator’ approach

we describe here can be married with those heuristics to allow short-circuiting

of the processing of inverted file entries. Our results here should, however,

be considered also as a caution—the ‘short circuit’ heuristics attempt to stop

processing inverted file entries as soon as the set of k documents has been iden-

tified, yet Table 6 clearly shows that for large values of k the ordering within

this set of answers is important. One should not perform a retrieval of this kind

to obtain the top k documents, and then only look at a few of them. Either all

should be examined, or the retrieval repeated with a smaller k.

7 Dynamic databases

The techniques we have described in this paper are best suited to static doc-

ument collections, for two main reasons. First, with the cosine measure, doc-

ument insertion can change all word weights and hence all document lengths.

Second, the model used to represent values in a small number of bits requires

the range of values in advance.

These problems are, however, relatively easy to address. Although the cosine

measure is poor with regard to update, other ranking measures do not have this

limitation [4, 8], and moreover, as we have seen, only crude approximations

to length are needed for effective ranking. It would probably be sufficient to

recompute lengths each time the database doubled in size, requiring perhaps ten

full passes over the data in the lifetime of the database. If a new document had

a length outside the given range, the approximation to the length could simply

be the minimum or the maximum in the current range. If the database already

contains a sufficiently representative set of documents, the error introduced by

this approximation would be slight.

19

Memory Efficient Ranking

Alternatively, the original code might be designed to allow for values in the

range L/2 ≤ x < 2U , where L and U are the bounds for the current set of

documents; this would bring a small degradation in resolution compared with

the more exact code, but would permit expansion of the collection without

distortion of the code.

8 Conclusions

We have shown that the memory required for ranking of static document col-

lections held on disk can be substantially reduced. This saving derives from the

observations that very little precision is required to specify the numbers used

for document ranking, and that the number of non-zero accumulators can be

safely held at a small percentage of the number of documents. Our techniques

are of particular importance when large, static, collections are being compressed

for distribution on relatively slow read-only media such as CD-ROM. In these

situations, when database access will be on a low-powered machine, it is of

paramount importance that the text and index be compressed; that the num-

ber of disk accesses be kept low; and that only moderate demands be placed

upon main memory.

We have presented two techniques for representing ranges of values in small

numbers of bits: a model-based method that maps numbers into small integers,

and a frequency-based method that groups numbers into a small number of

equal-sized bags. Of these, the model-based method appears to be the more

effective.

If ‘exact’ retrieval efficiency is to be maintained, the approximate lengths

can be used to guide the ranking process, with accurate lengths kept on disk.

In our experiments this expanded query processing time by at most about 20%,

an acceptable price for the four- to eight-fold reduction in memory usage that

results.

More generally, the exact ranking technique allows retrieval effectiveness

to be held high, with the tradeoff between increased space or increased time

controlled by the parameter b. Similarly, the approximate ranking technique

allows time to be held low, with the choice of b controlling the tradeoff between

increased space and reduced precision.

We have also described a simple rule that allows the memory required by

the document accumulators—the partial similarities—to be bounded. Even

when as little as two bits per document is available, it is possible to perform

20

Memory Efficient Ranking

the ranking with no measurable degradation in retrieval effectiveness. When

coupled with the use of six bit approximate document lengths, collections can

be ranked using as little as one byte per document. Given that even personal

computers are likely to have two or more megabytes of memory, collections of

up to one million documents can be handled in this way.

Acknowledgements

We would like to thank James Thom for a number of helpful suggestions, and

Neil Sharman for his assistance with the implementation. This work was sup-

ported by the Australian Research Council.

21

Memory Efficient Ranking

References

[1] S. Al-Hawamdeh and P. Willett. Comparison of index term weighting

schemes for the ranking of paragraphs in full-text documents. Int. J. of

Inf. and Lib. Research, pages 116–130, 1990.

[2] T.C. Bell, A. Moffat, C.G. Nevill-Manning, I.H. Witten, and J. Zobel.

Data compression in full-text retrieval systems. Journal of the American

Society for Information Science. To appear.

[3] A. Bookstein, S.T. Klein, and D.A. Ziff. A systematic approach to com-

pressing a full-text retrieval system. Information Processing & Manage-

ment, 28(5), 1992.

[4] C. Buckley and A.F. Lewit. Optimization of inverted vector searches. In

Proc. ACM-SIGIR International Conference on Research and Development

in Information Retrieval, pages 97–110, Montreal, Canada, June 1985.

ACM Press, New York.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

The MIT Press, Massachusetts, 1990.

[6] E.A. Fox, Q.F. Chen, A.M. Daoud, and L.S. Heath. Order-preserving

minimal hash functions and information retrieval. ACM Transactions on

Office Information Systems, 9(3):281–308, 1991.

[7] E.A. Fox, L.S. Heath, Q. Chen, and A.M. Daoud. Practical minimal per-

fect hash functions for large databases. Communications of the ACM,

35(1):105–121, January 1992.

[8] D. Harman and G. Candela. Retrieving records from a gigabyte of text on

a minicomputer using statistical ranking. Journal of the American Society

for Information Science, 41(8):581–589, 1990.

[9] S.T. Klein, A. Bookstein, and S. Deerwester. Storing text retrieval systems

on CD-ROM: Compression and encryption considerations. ACM Transac-

tions on Office Information Systems, 7(3):230–245, January 1989.

[10] J.B. Lovins. Development of a stemming algorithm. Mechanical Transla-

tion and Computation, 11(1-2):22–31, 1968.

[11] D. Lucarella. A document retrieval system based upon nearest neighbour

searching. Journal of Information Science, 14:25–33, 1988.

22

Memory Efficient Ranking

[12] A. Moffat and J. Zobel. Coding for compression in full-text retrieval sys-

tems. In J.A. Storer and M. Cohn, editors, Proc. IEEE Data Compression

Conference, pages 72–81, Snowbird, Utah, March 1992. IEEE Computer

Society Press, Los Alamitos, California.

[13] A. Moffat and J. Zobel. Parameterised compression for sparse bitmaps. In

N. Belkin, P. Ingwersen, and A.M. Pejtersen, editors, Proc. ACM-SIGIR

International Conference on Research and Development in Information Re-

trieval, pages 274–285, Copenhagen, June 1992. ACM Press, New York.

[14] R. Sacks-Davis and K. Ramamohanarao. Recursive linear hashing. ACM

Transactions on Database Systems, 9(3):369–391, 1984.

[15] G. Salton. Automatic Text Processing: The Transformation, Analysis, and

Retrieval of Information by Computer. Addison-Wesley, Reading, MA,

1989.

[16] G. Salton, E.A. Fox, and H. Wu. Extended Boolean information retrieval.

Communications of the ACM, 26(11):1022–1036, 1983.

[17] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, New York, 1983.

[18] A.F. Smeaton and C.J. van Rijsbergen. The nearest neighbour problem in

information retrieval. ACM SIGIR Forum, 16:83–87, 1981.

[19] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing technique

for full-text database systems. In L.-Y. Yuan, editor, Proc. International

Conference on Very Large Databases, pages 352–362, Vancouver, Canada,

August 1992.

23

