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Abstract

Documents are co-derivative if they share content: for two documents to be co-derived, some portion of one must be

derived from the other, or some portion of both must be derived from a third document. An existing technique for

concurrently detecting all co-derivatives in a collection is document fingerprinting, which matches documents based on the

hash values of selected document subsequences, or chunks. Fingerprinting is hampered by an inability to accurately isolate

information that is useful in identifying co-derivatives. In this paper we present SPEX, a novel hash-based algorithm for

extracting duplicated chunks from a document collection. We discuss how information about shared chunks can be used

for efficiently and reliably identifying co-derivative clusters, and describe DECO, a prototype package that combines the SPEX

algorithm with other optimisations and compressed indexing to produce a flexible and scalable co-derivative discovery

system. Our experiments with multi-gigabyte document collections demonstrate the effectiveness of the approach.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many document collections contain sets of
documents that are co-derived. Examples of co-
derived documents include plagiarised documents,
document revisions, and documents written by
amending a template. Knowledge of co-derivative
document relationships in a collection can be used
for returning more informative results from search
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engines, detection of plagiarism, and management
of document versioning in an enterprise.

Depending upon the application, we may wish to
identify all pairs of co-derived documents in a given
collection (the n� n or discovery problem) or only
those documents that are co-derived with a specified
query document (the 1� n or search problem). We
focus in this research on the more difficult discovery
problem. While it is possible to naı̈vely solve the
discovery problem by repeated application of an
algorithm for solving the search problem, such an
application becomes too time-consuming for prac-
tical use.

Though the task of detecting co-derivative docu-
ments is superficially similar to that of document
search or categorisation, there are marked differ-
ences. Ranking and categorisation are concerned
.
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with the semantics of documents, while co-deriva-
tive detection is concerned with a document’s
syntactic structure. While independently authored
documents can have similar semantics (student
essays on the same topic are an example), it is
exceedingly unlikely for documents from different
sources to have the same syntactic structure.

Existing feasible techniques for solving the
discovery problem are based on document finger-
printing, in which a compact representation of a
selected subset of contiguous text chunks occurring
in each document—its fingerprint—is stored. Pairs
of documents are identified as possibly co-derived if
enough of the chunks in their respective fingerprints
match. Fingerprinting schemes differ primarily in
the way in which chunks to be stored are selected.

In this paper we introduce SPEX, a novel and
efficient algorithm for identifying those chunks that
occur more than once within a collection. We
present the DECO package, which uses the shared-
chunk indexes generated by SPEX as the basis for
accurate and efficient identification of co-derivative
documents in a collection. We show that DECO ef-
fectively addresses some of the deficiencies of
existing approaches to this problem. Using several
collections, we experimentally demonstrate that
DECO is able to reliably and accurately identify co-
derivative documents within a collection while using
fewer resources than previous techniques of similar
capability. Our results also suggest that DECO scales
well to large collections.

2. What is co-derivation?

We consider two documents to be co-derived if
some portion of one document is derived from the
other, or some portion that is present in both
documents is derived from a third. The notion of co-
derivation is in many ways analogous to the idea of
a genetic or ‘blood’ relationship in a human family.

While the above is an intuitive and appealing
definition, it is purely qualitative. It tells us nothing
of how to detect co-derivation, or even what
characteristics we expect a pair of co-derived
documents to have. Formulating such a quantitative
definition is not straightforward.

Broder [1] defines two measures of co-deriva-
tion—resemblance and containment—in terms of the
number of shingles (we shall use the term chunks) a
pair of documents have in common. A chunk is
defined by Broder as ‘a contiguous subsequence’;
that is, each chunk represents a contiguous set of
words or characters within the document. An
example chunk of length six taken from this paper
would be ‘each chunk represents a contiguous set’.
The intuition is that, if a pair of documents share a
number of such chunks, then they are unlikely to
have been created independently. Such an intuition
is what underlies fingerprinting-based approaches,
described later.

Two difficult issues in defining co-derivation are
boilerplate and template text. Boilerplate text
appears in many documents that are otherwise of
separate heritage. One example of such text is the
GNU Public License1 (GPL), which is a tract of
licensing text that is included in many items of
Linux documentation that were otherwise written
separately. While the GPL is clearly the work of a
single group of authors, does its inclusion in two
works mean that they are co-derived? Template text
is used as the basis for the creation of a certain class
of document: Sanderson [2] cites an example of
financial reports in a collection of Reuters newswire
documents that seemed nearly identical but in fact
referred to different events. Should the presence of
boilerplate or template text in two documents mean
they are co-derived? The answer to this and other
such questions is ultimately application-dependent.

3. The relationship graph

We introduce the concept of a relationship graph

for representing and analysing co-derivation rela-
tionships within a collection. In a relationship graph
for a given collection, each document is represented
by a vertex. A co-derivation relationship between a
pair of documents is indicated by the presence of an
edge between the vertices representing these docu-
ments. The relationship graph emphasises the
essentially pairwise nature of the co-derivation
relationship, and allows for easy visualisation and
analysis of text reuse patterns within a collection.

In this context, it becomes clear that the task of
the discovery problem is to identify the structure of
this graph, whereas the task of the search problem is
to identify the set of edges incident upon a
particular vertex.

Fig. 1 shows a hypothetical relationship graph for
a collection of eight documents. It shows a co-
derivation relationship between documents 3 and 4,
and a triangular co-derivation relationship between
documents 2, 5, and 7. Document 6 is co-derived

http://www.gnu.org/copyleft/gpl.html
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Fig. 1. An example of a relationship graph for a collection of

eight documents.
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with documents 1 and 8, but they are not co-derived
with each other. This means that documents 1 and 8
have commonality with different parts of document
6; perhaps each contains an excerpt from document
6, or maybe document 6 is an aggregation of a
number of different documents. Note that this
graph is for illustration only: in most practical cases
we would expect the relationship graph to be far
sparser than this, with a significant number of
vertices having degree zero; that is, not being co-
derived with any other document in the collection.

Note that, as the possible number of edges in a
graph is quadratic in the number of nodes, the task
of discovering the structure of the relationship
graph is a formidable one: for example, a collection
of 100,000 documents contains nearly 5 billion
unique document pairings. Clearly, it is infeasible to
individually investigate this number of relation-
ships. We must rely on intelligent processing and the
relative sparsity of the relationship graph in most
situations2 in order to attempt the discovery
problem.
2In most cases there will be many documents in a collection

that are not co-derived at all. However, even if this is not so, it is

reasonable to assume that most documents are co-derived with at

most a few others in the collection. The low order of vertices in

the graph will therefore ensure that the graph is increasingly

sparse.
4. Existing work: strategies for co-derivative

discovery

There are several approaches to solving the search
problem, most of which can be categorised as
being either relative-frequency or fingerprinting
methods:

4.1. Relative-frequency techniques

Relative-frequency techniques such as relative
frequency matching [3] and the identity measure [4]
are based on the intuition that co-derived docu-
ments are likely to contain the same words with
similar frequencies. In particular, identical docu-
ments will contain an identical word-frequency
profile, and insertions and deletions will only
gradually degrade this correlation. Thus, relative
word frequencies should constitute a robust signifier
of the co-derivation of documents.

In comparisons between relative-frequency meth-
ods and fingerprinting [3,4], the relative-frequency
methods tended to more reliably identify co-derived
documents, though there was also a higher rate of
false positives. It is worth noting that the compar-
isons were carried out by the proponents of these
systems.

These results suggest that relative frequency
approaches are a good choice for the search
problem. However, the only computationally fea-
sible algorithms for the discovery problem to date
have used the process of document fingerprinting.

4.2. Fingerprinting

The key observation underlying document finger-
printing [5–8,4] mirrors that behind the definitions
of Broder [1]: if documents are broken into small
contiguous chunks, then co-derivative documents
are likely to have a large number of these chunks in
common, whereas independently derived documents
with overwhelming probability will not. Finger-
printing algorithms store a selection of chunks from
each document in a compact form and flag
documents as potentially co-derived if the number
of chunks their fingerprints have in common
exceeds a specified threshold.

While fingerprinting algorithms vary in many
details, their basic process is as follows: documents
in a collection are parsed into units (typically either
characters or individual words); representative
chunks of contiguous units are selected through
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the use of a heuristic; the selected chunks are then
hashed for efficient retrieval and compact storage;
the hash-keys, and possibly also the chunks
themselves, are then stored, often in an inverted
index structure [9]. The index of hash-keys contains
all the fingerprints for a document collection and
can be used for the detection of co-derivatives.

The principal way in which document fingerprint-
ing algorithms differentiate themselves is in the
choice of selection heuristic, that is, the method of
determining which chunks should be selected for
storage in each document’s fingerprint. The range of
such heuristics is diverse, as reviewed by Hoad and
Zobel [4]. The simplest strategies are full selection,
in which every chunk is selected, and random
selection, where a given proportion or number of
chunks is selected at random from each document
to act as a fingerprint. Other strategies pick every
nth chunk, or only pick chunks that are rare across
the collection [7]. Taking a different approach is the
anchor strategy [5], in which chunks are only
selected if they begin with certain pre-specified
combinations of letters. Simpler but arguably as
effective is the modulo heuristic, in which a chunk is
only selected if its hash-key modulo a parameter k is
equal to zero. The winnowing algorithm of Schlei-
mer [10] passes a window over the collection and
selects the chunk with the lowest hash-key in each
window. Both the anchor and modulo heuristics
ensure a level of synchronisation between finger-
prints in different documents, in that if a particular
chunk is selected in one document, it will be selected
in all documents.

4.2.1. Fingerprinting for the search problem

The task of the search problem is to identify the
documents in the collection that are co-derived with
a given query document. When the system is
presented with a candidate or query document, it
once again uses a selection heuristic to select chunks
from this document. This can be done either by
using the same selection heuristic as is used for
archiving documents, or a separate—typically more
exhaustive—selection heuristic. Each of the chunks
selected from the query document is then hashed,
and the corresponding postings lists retrieved from
the fingerprint index. All the retrieved postings lists
will be merged, sorted and aggregated, thus
determining the number of common hash-keys the
fingerprint of each document has with the query
document. Any document containing more than a
user-specified number of hash-keys in common (the
threshold) with the query document will be con-
sidered by the algorithm to be co-derived.

For example, if the phrases selected from the
query document were fo, ob, and ar, then each of
those phrases would be hashed and the postings list
at those locations in the hashtable retrieved. Let
us say that the postings list for the three phrases
above were ofo: 3, 6, 94, oob: 2, 4, 64 and
oar: 6, 9, 114, respectively. After aggregating
the number of fingerprints that the fingerprint of
each document shares with the query document,
we get the following list of tuples: f (2: 1) (3: 1)

ð4 : 1Þð6 : 3Þð9 : 2Þð11 : 1Þg. If the user were to specify
a cutoff of two matches, then the system would flag
the documents 6 and 9 as co-derived with the query
document.

In their comparative experiments, Hoad and
Zobel [4] found that few of the fingerprinting
strategies tested could reliably identify co-derivative
documents in a collection. Of those that could,
Manber’s anchor heuristic was the most effective,
but its performance was inferior to their relative-
frequency based identity measure system. Similarly,
Shivakumar and Garcı́a-Molina [3] found that the
COPS fingerprinting system [6] was far more likely
than their SCAM ranking-based system to fail to
identify co-derivative documents.

4.2.2. Fingerprinting for the discovery problem

There have been several previous explorations of
using document fingerprinting for the discovery
problem:

Manber [5] counts the number of identical
postings lists in the chunk index, arguing this can
be used to identify clusters of co-derived documents
in the collection. However, as Manber points out,
there are many cases in which the results produced
by his method can be extremely difficult to interpret.

Broder et al. [8] describe an approach in which
each postings list is broken down to a set of
document-pair tokens, one for each possible pairing
in the list. For example, a postings list

oquick brown fox : 3; 7; 9; 134

would be expanded to

o3; 74o3; 94o3; 134o7; 94o7; 134o9; 134.

All these document-pair tokens are then sorted and
aggregated so that each pair of documents has
associated with it the number of chunks the two
documents share. This count is then used as the
basis for a set of discovery results. Broder et al. [8]
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show that the ratio of shared chunks to the total
stored chunks for the two documents provides an
unbiased estimator for the resemblance measure.
However, the variance of this estimator is not
discussed.

While this approach usually yields far more
informative results than that of Manber [5], taking
the Cartesian product of each postings list means
that the number of tokens generated is quadratic in
the length of the list; this can easily cause resource
blowouts and introduces serious scalability pro-
blems for the algorithm.

The probabilistic counting technique was used for
iceberg database queries [11] and was later applied
by the same team to the task of finding co-
derivatives [12]. The process is very simple: for each
document pair, instead of storing a token, the pair is
hashed and a counter at the relevant field in a
hashtable is incremented. A second pass generates
a list of candidate pairs by discarding any pair
that hashes to a counter that recorded insuffi-
cient hits. Assuming the hashtable is of sufficient
size, this pruning significantly reduces the number
of tokens that must be generated for the exact
counting phase.

4.3. Redundancy and lossiness in fingerprinting

algorithms

A fundamental weakness of fingerprinting strate-
gies is that they cannot identify and discard chunks
that do not contribute towards the identification of
any co-derivative pairs. Unique chunks form the
vast majority in most collections, yet do not
contribute toward solving the discovery problem.
We analysed the LATimes newswire collection (see
Section 7) and found that out of a total of
67,808,917 chunks of length eight, only 2,816,822
were in fact instances of duplicate chunks: less than
4.5% of the overall collection. The number of
distinct duplicated chunks is 907,981, or less than
1.5% of the collection total.

The inability to discard unused data makes full
fingerprinting too expensive for most practical
purposes. Thus, it becomes necessary to use
chunk-selection heuristics to keep storage require-
ments at a reasonable level. However, this intro-
duces lossiness to the algorithm: current selection
heuristics are unable to discriminate between
chunks that suggest co-derivation between docu-
ments in the collection and those that do not. There
is a significant possibility that two documents
sharing a large portion of text are passed over
entirely.

For example, Manber [5] uses character-level
granularity and the modulo selection heuristic with
k ¼ 256. Thus, any chunk has an unbiased one-in-
256 chance of being stored. Consider a pair of
documents that share an identical 1KB (1024 byte)
portion of text. On average, four of the chunks
shared by these documents will be selected. Using
the Poisson distribution with l ¼ 4, we can estimate
the likelihood that C chunks are selected as
PðC ¼ 0Þ ¼ e�4 � 40=0! ¼ 1:8% and PðC ¼ 1Þ ¼
e�4 � 41=1! ¼ 7:3%. This means that a pair of
documents containing a full kilobyte of identical
text have nearly a 2% chance of not having a single
hash-key in common in their fingerprints, and a
greater than 7% chance of only one hash key in
common. The same results obtain for an identical
100-word sequence with a word-level chunking
technique and k ¼ 25, as used by Broder et al. [8].
Such lossiness is unacceptable in many applications.

Schleimer et al. [10] make the observation that the
modulo heuristic provides no guarantee of storing a
shared chunk no matter how long the match.
Whatever the match length, there is a nonzero
probability that it will be overlooked. Their
winnowing selection heuristic is able to guarantee
that any contiguous run of shared text greater than
a user-specifiable size w will register at least one
identical hash-key in the fingerprints of the docu-
ments in question. However, a document that
contains fragmented duplication below the level of
w can still escape detection by this scheme: it is still
fundamentally a lossy algorithm.

4.3.1. Algorithms for lossless fingerprinting

We make the observation that, as only chunks
that occur in more than one document contribute
towards identifying co-derivation, a selection strat-
egy that selected all such chunks would provide
functional equivalence to full fingerprinting, but at a
fraction of the storage cost for most collections. The
challenge is to find a way of efficiently and scalably
discriminating between duplicate and unique
chunks.

The simplest way to eliminate the redundant
unique phrases in a fingerprint index is as a
postprocessing step; perform full fingerprinting,
then scan through the resulting index to eliminate
all entries that contain just one reference. The
problem with this technique is that, although the
resulting index is minimal, the peak resource usage
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is as high as if the technique were not applied. This
means that we need as much disk space for this
method as for full fingerprinting. Clearly, we need a
method that is able to identify duplicate chunks at
an earlier stage in the fingerprinting process.

Hierarchical dictionary-based compression tech-
niques such as SEQUITUR [13] and RE-PAIR [14] are
primarily designed to eliminate redundancy by
replacing strings that occur more than once in the
data with a reference to an entry in a ruleset. Thus,
passages of text that occur multiple times in the
collection are identified as part of the compre-
ssion process. This has been used as the basis for
phrase-based collection browsing tools such as
PHIND [15] and RE-STORE [16]. However, the use of
these techniques in most situations is ruled out by
their high memory requirements: the PHIND techni-
que needs about twice the memory of the total size
of the collection being browsed [15]. To keep
memory use at reasonable levels, the input data is
generally segmented and compressed block by
block; however, this negates the ability of the
algorithm to identify globally duplicated passages.
Thus, such algorithms are not useful for large
collections.

Suffix trees are another potential technique for
duplicate-chunk identification, and are used in
this way in computational biology [17]. However,
the suffix tree is an in-memory data structure
that consumes a quantity of memory equal to
several times the size of the entire collection. Thus,
this technique is also only suitable for small
collections.
5. The SPEX algorithm

Our contribution in this work is the SPEX algo-
rithm, a resource-efficient technique for lossless
chunk selection. The SPEX algorithm is a novel hash-
based method for duplicate-chunk extraction and
has far more modest and flexible memory require-
ments than the algorithms discussed in Section 4.3
and is thus the first selection algorithm that is able
to provide lossless chunk selection within large
collections. In the case of large collections, the
memory needs of SPEX are in most cases many times
smaller than the size of the collection. SPEX identi-
fies repetition by use of repeated passes over the
data, and thus is slower than some of the
alternatives, but is, as we show, more accurate for
a given space overhead.
The fundamental observation behind the opera-
tion of SPEX is that it is only possible for a chunk to
be a duplicate if all subchunks of that chunk are
also duplicates. Thus, we only need to demon-
strate the uniqueness of one subchunk in order to
discount the possibility that a chunk as a whole
is non-unique. For example, if the chunk ‘quick
brown’ occurs only once in the collection, there
is no possibility that the chunk ‘quick brown
fox’ is repeated. SPEX uses an iterated hashing
approach to discard unique chunks and leave only
those that are likely to be duplicates. This iterative
approach has shared facets with data mining
algorithm such as a priori [18] that find various
data relationships by iteratively refining from more
general relationships.

Our iterated approach begins with subchunks of
length one—that is, individual words. The collec-
tion is linearly parsed and each word is added to a
large hash-based accumulator. The hash-based
accumulator (or hashcounter) is simply a large
array of counters. When an item is added to the
hashcounter, the location in the table corresponding
to the hash of the item is incremented. Two
particulars are noteworthy: first, collisions are not
resolved, guaranteeing constant-time performance
at the expense of the possibility of false positives;
second, the counters need take on only three distinct
values (zero, one, and ‘greater than one’), thus
allowing each field to occupy only two bits of
memory. This means that a large hashcounter can fit
into a relatively modest quantity of memory: 64MB
of memory is sufficient for over 256 million fields.

The number of words in a collection of docu-
ments is in most cases relatively modest relative to
the overall size of the collection: the highly skew
distribution of word use is a well-studied phenom-
enon [19]. This, combined with the large size of the
hashcounter, means that the number of collisions at
this stage will be minimal. After the hashcounter has
been fully populated, querying it on a particular
word in the collection will return either a one or a
‘greater than one’. If the returned count is one, then
that word is unique in the collection. If it is greater
than one, then it is assumed to occur multiple times,
though false positives are possible due to hashing
collisions.

Once the initial hashcounter for chunks of length
one has been fully populated from the collection, a
new hashcounter is initialised. A second pass of the
collection begins, this time sequentially extracting
all two-word chunks. Rather than simply inserting
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each chunk into the new hashcounter, it is first
broken down into two subchunks of size one. Each
of these subchunks is used as a query against the
first hashcounter; if either of the words is marked as
unique in the collection, then the chunk is not
the  quick  brown
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Fig. 2. The process for inserting a new chunk into the
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location in the new hashcounter is incremented.

Algorithm 1 The SPEX algorithm

1: // C: Collection of chunks
2: // l: Target chunk length
3: // cn: chunk of length n

4: // cnfp . . . qg: The subchunk composed of words p

5: // #ðcÞ: The hash value of chunk c

6: // hn: Hashcounter for chunks of length n

7:
8: for all c1 2 C do

9: h1½#ðc1Þ�  h1½#ðc1Þ� þ 1
10: end for

11: for n 2 ½2; l� do
12: for all cn 2 C do

13: if hn�1½#ðcnf1 . . . n� 1gÞ�41 and hn�1½#ðcnf2 . .
14: hn½#ðcnÞ�  hn½#ðcnÞ� þ 1
15: end if

16: end for

17: end for
inserted into the second hashcounter: as one
of its subcomponents is unique, it too must be
unique.

After the second pass, the process is repeated for
chunks of length three: each of these chunks is
broken into two subchunks of length two, which are
queried against the hashcounter for chunks of this
length. Note that the memory for the initial
hashcounter can now be reclaimed, as the informa-
tion it contains is no longer needed. At any stage
there need be no more than two hashcounters in
memory. Fig. 2 provides an illustration of one
iteration of the SPEX process.

The process is iterated until we reach the desired
chunk length; we use a length of eight words. When
the desired length is reached, an inverted index of
shared chunks can be created by only indexing
chunks whose subchunks all hash to fields that
indicate multiple hits. The entire SPEX process is
described more formally in Algorithm 1.

In each iteration of the SPEX algorithm, the
chunks become longer, and thus the cost of hashing
each chunk grows. However, a larger factor in
determining execution time is the number of chunks
that must be hashed. We have empirically verified
that the execution time of each iteration closely
mirrored the number of hashcounter insertions
made.
through q of chunk cn

. ngÞ�41 then
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Fig. 3 illustrates how SPEX works. Part (a) tracks
the occupancy of the hashcounter after each pass of
the algorithm for the all-newswire (see Section 7)
collection. The solid line shows the number of fields
in the hashcounter that recorded just a single hit
(corresponding to unique chunks), whereas the
dashed line shows the number of fields in the
hashcounter that recorded multiple hits (non-unique
chunks or hash collisions). As discussed earlier, the
number of single-word chunks (both unique and
duplicated) is low. This means that SPEX does not
yet have much discriminative power: only chunks
that contain a unique subchunk are discarded by the
algorithm and there are not that many unique
subchunks at this stage. However, as the number of
unique chunks grows in subsequent passes, more
can be discounted. The compounding effect of
discounting chunks at each pass eventually means
that the overall number of occupied hashcounter
entries begins to drop dramatically, keeping the
hashcounter from becoming flooded.

Fig. 3(b) shows what happens if the SPEX process
of stepwise refinement is not used and all chunks are
inserted into the hashcounter at each stage. At the
first couple of passes, the lines track quite closely.
However, at chunk size three, they begin to diverge
dramatically. Where SPEX is not used, the unique
chunks are not weeded out. They therefore begin to
occupy more and more space in the hashcounter,
thus increasing the possibility of collisions. At
chunk size of seven, the hashcounter where SPEX was
not used is showing a significantly higher number of
fields that had recorded more than one hit. As the
number of true duplicate chunks remains the same,
these extra fields are false positives created by hash
collisions. This directly leads to the creation of a
larger index.

6. The DECO package

Our DECO system for co-derivative detection is a
software package that combines the SPEX algorithm
with advanced indexing techniques, sophisticated
scoring functions, and other previous innovations in
the field.

DECO operates in two phases: index construction
and relationship graph generation.

6.1. Index construction

DECO uses a multi-stage ‘selection pipeline’ dur-
ing index construction in order to minimise index
size and allow the user to adjust the tradeoffs
between build time, size, and reliability. The first
stage is to eliminate exact duplicates. These are
identified by taking one hash of each entire
document and then sorting these hashes. Docu-
ments with the same hash are considered to be
identical, and only one of these documents is
indexed. All documents that are co-derived with
the ‘representative’ document are also flagged as co-
derived with its duplicates. This exact technique was
used by Broder et al. [8]. Though they did not
quantify the savings made by eliminating duplicates,
they can be quite significant. This is even more true
in the case of SPEX, as every chunk in a pair of
identical documents will be indexed, meaning that
identical documents take up a disproportionate
amount of space within the index. In order to
minimise the possibility of collision—a collision
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with one document could be a way for a document
to avoid being detected as co-derived with an-
other—we have chosen to use the reasonably secure
MD5 message digest algorithm [20], which produces
hash-keys 160 bits in length, for this phase.

DECO currently supports the SPEX and modulo

selection schemes, which can be used individually
or together in the selection pipeline. By default,
SPEX is used. However, it can be combined with
the modulo heuristic so that a chunk is only indexed
if it is selected by both algorithms. This allows for
the creation of compact indexes that still support
identification of co-derivatives. The selection pipe-
line code was written in such a way as to facilitate
the creation of additional ‘plug-ins’ for the pipe-
line. For example, one could easily write a new
selection filter for the anchor heuristic, or a filter
that selected chunks only if they contained certain
words.

The low-level index operations in DECO are based
on code from the Zettair3 search engine being
developed at RMIT University. Zettair implements
flexible, optimised, compressed indexes using vari-
able-byte encoding and various other techniques.
6.2. Relationship graph generation

DECO uses the probabilistic counting technique of
Shivakumar and Garcı́a-Molina [12] to efficiently
keep scores for all the document pairs in the
relationship graph generation phase.

Several parameters must be specified to guide this
process: the most important of these are the scoring

function and the inclusion threshold. DECO calculates
the co-derivation score for a pair of documents u

and v using one of the following formulae:

S1ðu; vÞ ¼
X

c2u^c2v

1; S2ðu; vÞ ¼
X

c2u^c2v

1=min ū; v̄,

S3ðu; vÞ ¼
X

c2u^c2v

1=mean ū; v̄,

S4ðu; vÞ ¼
X

c2u^c2v

1=f c

mean ū; v̄
,

where ū is the length (in words) of a document u,
and f c is the number of collection documents a
given chunk c appears in. Function S1 above simply
counts the number of chunks common to the two
documents; this elementary scoring method is how
3http://www.seg.rmit.edu.au/zettair/
fingerprinting algorithms have worked up to now.
Functions S2 and S3 attempt to normalise the score
relative to the size of the documents, so that larger
documents do not dominate smaller ones in the
results. They are similar to the resemblance measure
of Broder [1] but are modified for more efficient
computation. Function S4 gives greater weight to
phrases that are rare across the collection. These
scoring functions are all simple heuristics; further
refinement of these functions and the possible use of
statistical models is a topic for future research.

The inclusion threshold is the minimum value of
Sðu; vÞ for which an edge between u and v will be
included in the relationship graph. We wish to set
the threshold to be such that pairs of co-derived
documents score above the threshold while pairs
that are not co-derived score below the threshold.

7. Experimental methodology

We seek to experimentally investigate two facets
of the DECO package: the accuracy and reliability of
the package in identifying co-derivative document
pairs, and the scaling characteristics of the system.

Document collections: We make use of six docu-
ment collections for our experiments. The
webdataþ xml and linuxdocs collections were accu-
mulated by Hoad and Zobel [4]. The webdataþ xml

collection consists of 3307 web documents totalling
approximately 35MB, into which have been seeded
9 documents (the XML documents), each of which
is a substantial edit by a different author of a
single original report discussing XML technology.
Each of these nine documents shares a co-derivation
relationship with each of the other eight documents,
though in some cases they only have a relatively
small quantity of text in common. The linuxdocs

collection consists of 78,577 documents (720MB)
drawn from the documentation included with a
number of distributions of RedHat Linux. While
the webdataþ xml collection serves as an arti-
ficial but easily analysed testbed for co-derivative
identification algorithms, the linuxdocs collection,
rich in duplicate and near-duplicate documents,
is a larger and more challenging real-world collec-
tion.

The all-newswire collection is an aggregation of
the newswire collections gathered for the TREC
project [21]. This collection includes a large number
of articles from newswires originating from sources
such as the Wall Street Journal, the Los Angeles
Times, Associated Press and the Financial Times.

http://www.seg.rmit.edu.au/zettair/
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Fig. 4. An example of a computer-generated relationship graph.

The dashed line indicates a spurious inclusion; the two dotted

lines show co-derivation relationships that were not detected by

the algorithm.
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This collection totals to about 5.3GB in size. This
relatively large collection will be used to investigate
the scaling properties of the DECO package.

The GOV1 and GOV2 collections were also
created for various tracks of the TREC project.
Both are crawls of the .gov domain, the former
consisting of 18.1GB of data, while GOV2 contains
426GB of data, making it the largest publicly
available collection of web documents.

The LATimes collection is a subset of the all-

newswire collection, consisting of 476MB of articles
from the Los Angeles Times. This is used to
investigate the index growth we may expect from a
typical collection of documents.4

Metrics for evaluation: We define a collection’s
reference graph as the relationship graph that would
be generated by a human judge for the collection.5

The coverage of a given computer-generated rela-
tionship graph is the proportion of edges in the
reference graph that are also contained in that
graph, and the density of a relationship graph is the
proportion of edges in that graph that also appear
in the reference graph.

While coverage and density are in many ways
analogous to the traditional recall and precision
metrics used in query-based information retrieval
[22], we choose the new terminology to emphasise
that the task is quite different to querying: we are
not trying to meet an explicitly defined information
need, but are rather attempting to accurately
identify existing information relationships within
the collection.

Fig. 4 shows a hypothetical example of a
computer-generated relationship graph for the same
collection as Fig. 1. The dashed line shows a
spurious co-derivation judgement between docu-
ments 3 and 5. The dotted lines show the omission
of co-derivation relationships between documents 2
and 7, and between documents 5 and 7. Given that
the algorithm identified four of the six co-derivation
relationships in the reference graph, it has a
coverage of 67%. As four of the five co-derivation
relationships identified existed in the reference
graph, it has a density of 80%.
4Though in one sense there is no such thing as a ‘typical’

collection of documents, LATimes is neither cleaned of co-

derivatives nor deliberately contrived to contain them, in contrast

to the webdataþ xml and linuxdocs collections.
5Although the concept of an ‘ideal’ underlying relationship

graph is a useful artifice, the usual caveats of subjectivity and

relativity must be borne in mind.
While the notion of a human-generated reference
graph is a useful one, it is infeasible to construct one
for any but the smallest of document collections.
Doing so would require for side-by-side judgements
of every document pair in the collection to be made.
For a relatively modest collection of 10,000 docu-
ments this amounts to nearly 50 million judgements.
Given the impracticality of generating a full
reference graph, it is not possible to directly
determine the coverage and density of the relation-
ship graph generated by an algorithm. We must
therefore resort to estimates.

To estimate the density of a relationship graph,
we take a random selection of edges from the graph
and judge whether the documents they connect are
in fact co-derived. To estimate the coverage of a
relationship graph, we select a number of represen-
tative documents and manually determine a list of
documents with which they are co-derived. The
coverage estimate is then the proportion of the
manually determined pairings that are identified in
the relationship graph. A third metric, average
precision, is simply the average proportion of co-
derivative edges to total edges for the documents
selected to estimate coverage. While it is an inferior
measure to density, it plays a role in experimenta-
tion because it is far less time-consuming to
calculate.
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8. Testing and discussion

8.1. Index growth rate

In order to investigate the growth trend of the
shared-chunk index as the source collection grows,
we extracted subcollections of various sizes from the
LATimes collection and the linuxdocs collection,
and observed the number of duplicate chunks
extracted as the size of the collection was increased.

This growth trend is important for the scalability
of SPEX and by extension the DECO package: if the
growth trend were quadratic, for example, this
would set a practical upper bound on the size of the
collection that could be submitted to the algorithm,
whereas if the trend were linear or n logðnÞ then far
larger collections would become practical.

We found that, for the tested collections at least,
the growth rate follows a reasonably precise linear
trend, as illustrated in Fig. 5. While further testing is
warranted, a linear growth trend suggests that the
algorithm has potential to scale extremely well.

8.2. Scalability to larger collections

In order to test the ability of SPEX and DECO to
scale to larger collections, we ran DECO on the all-

newswire collection, which is over 5GB in size. This
took a little over 4 h on a lightly-loaded machine
with dual Intel Pentium III processors and 768MB
of RAM. We consider an indexing speed in excess of
1GB/h on an ageing machine to be acceptable for
this application.

The index generated by DECO was approximately
2.3GB in size. This index included the full text of
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Fig. 5. The total number of duplicate chunks found as the size of

the LATimes collection is increased.
each shared chunk (not just the hash-key), but was
nonetheless less than 50% of the size of the source
collection. This is not an unreasonable proportion,
and can be further reduced by omitting the full
chunk text from the index; doing so would result in
a significant space saving at the expense of not being
able to explicitly list the chunks shared between two
documents. Furthermore, there would be a slight
risk of hashing collisions if full text is not stored.

More recent experiments have had DECO success-
fully indexing the 18.1GB GOV1 collection, with a
total index size of 7.6GB, much in line with the
ratio above. Early experiments on the 426GB
GOV2 collection have also indicated that DECO is
able to scale to collections of this size on a standard
production server.

The precise relationship between collection size
and memory requirements is ultimately dependent
upon the level of duplication inherent in the
particular collection being indexed. However, our
results show that the algorithm is certainly able to
scale to quite large collections without running up
against resource limitations.

8.3. Effect of identifying and excluding exact

duplicates

As discussed in Section 6.1, DECO optionally
includes a preprocessing stage in which exact
duplicate documents are omitted from the indexing
process. The justification for this is that it is
relatively easy to identify such exact duplicates
and that they consume a disproportionate amount
of space in the shared chunk index.

Turning on this preprocessing step for the all-

newswire collection reduced the size of the resultant
shared-chunk index from 2.3 to 2.1GB, a reduction
in size of approximately 10%. While this is not a
spectacular result—somewhat less so than antici-
pated—it is nonetheless a worthwhile saving.

When investigating the reason for the modesty of
the saving, we found that a large number of
documents were nearly identical, but differed in
just a few words. In many newswires, for example,
the same article was released multiple times for
different editions. As the edition heading differed,
the documents were not considered identical and
thus no exclusions resulted. While this problem
might be especially characteristic of newswire
collections, there are many cases where one can
imagine this such trivial differences thwarting this
simple preprocessing step.
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Table 2

Coverage estimates, as percentages, for the webdataþ xml

collection calculated on the percentage of XML document

pairings identified

T1 T2 T3 T4 T5

S1 100.0 97.2 36.1 8.3 0.0

S2 100.0 100.0 83.3 58.3 25.0

S3 100.0 91.7 72.2 52.8 16.7

S4 100.0 97.2 91.7 58.3 22.2

The average precision was 100% in all cases.
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Problems such as this are what motivates systems
such as I-Match [23] and parts of the Talent system
[24]. I-Match is an algorithm that is designed to
detect near-duplicates by selectively extracting
words from each document using statistical techni-
ques (for example, extracting only the least fre-
quently occurring words) and hashing the
aggregation of these words. Documents with the
same hash-value are then flagged as duplicates or
near-duplicates. This is nearly as fast and efficient a
process as our current naı̈ve preprocessing method,
and we are looking at extending our preprocessing
algorithm in a similar manner in order to improve
its effectiveness.

8.4. Effectiveness in identifying co-derivatives

Because the webdataþ xml collection contains
the nine seed documents for which we have exact
knowledge of co-derivation relationships, it makes a
convenient collection for proving the effectiveness
of the DECO package and determining good para-
meter settings. Using DECO to create a shared-chunk
index with a chunk size of eight took under 1min on
an Intel Pentium 4PC with 512MB of RAM. For
this collection, we tested DECO using the four scoring
functions described in Section 6. We tested a range
of five inclusion thresholds for each scoring func-
tion, making for a total of 20 combinations. These
thresholds are named—in order of increasing
value—T1–T5; the values vary between the scoring
functions and were chosen based on preliminary
experiments. Exact values are listed in Table 1. We
use the notation Sx=Ty=Kz to denote a run with
scoring function x, threshold y and modulo factor z.
For example, run S3=T2=K16 indicates the run using
scoring function S3, threshold T2 and a modulo
parameter k equal to 16.

Each of the 20 generated relationship graphs were
then tested for the presence of the 36 edges
connecting the XML documents to each other.
Table 1

The values of thresholds T1–T5 for the various scoring functions

S1 S2 S3 S4

T1 20 0.03 0.02 0.02

T2 100 0.05 0.05 0.05

T3 200 0.10 0.10 0.20

T4 500 0.15 0.15 0.50

T5 1000 0.30 0.30 1.0
As can be seen in Table 2, the estimated coverage
values strongly favour the lower inclusion thresh-
olds. Indeed, for all scoring functions using the
inclusion threshold T1, 100% of the pairings
between the XML documents were included in the
relationship graph. In all cases the average precision
was also 100%. These values—100% coverage and
100% average precision—suggest a perfect result,
but are certainly overestimates. The nature of the
test collection—nine co-derived documents seeded
into an entirely unrelated background collection—
made it extremely unlikely that spurious edges
would be identified. This not only introduced an
artificially high average precision estimate but also
strongly biased the experiments in favour of the
lower inclusion thresholds, because they allowed all
the correct edges to be included with very little risk
that incorrect edges would likewise be admitted.

In order to test DECO in a less artificial environ-
ment, we repeated our experiments on the linuxdocs

collection. We again used DECO to create a shared-
chunk index with a chunk size of eight, taking
approximately 30min on an Intel Pentium 4 PC
with 512MB of RAM. For generation of relation-
ship graphs we used the same range of scoring
functions and inclusion thresholds as in the previous
section.

To estimate the coverage of the relationship
graphs, we selected 10 documents from the collec-
tion representing a variety of different sizes and
types, and manually collated a list of co-derivatives
for each of these documents. This was done by
searching for other documentation within the
collection that referred to the same program or
concept; thus, the lists may not be entirely
comprehensive. Estimated coverage and average
precision results for this set of experiments are given
in Table 3.

Overall, the results are very good. In general,
scoring functions S2, S3, and S4 were more effective
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Table 4

Coverage and average precision estimates, as a pair X=Y of

percentages, for DECO applied to the linuxdocs collection for

indexes that store chunks only if their hash-key equals zero

modulo 16 and 256

T1 T2 T3 T4 T5

Fingerprinting modulo 16

S1 90=72 88=76 56=94 36=96 34=100
S2 90=75 90=75 80=94 78=100 57=100
S3 88=82 86=91 74=100 74=100 47=100
S4 88=85 86=93 86=93 69=100 60=100

Fingerprinting modulo 256

S1 54=95 54=95 54=95 54=95 34=97
S2 54=97 54=97 54=97 54=97 44=97
S3 54=97 54=100 54=100 51=100 42=100
S4 54=97 54=100 54=100 44=100 31=100

Table 3

Coverage and average precision estimates, as a pair X=Y of

percentages, for DECO applied to the linuxdocs collection, using a

full shared-chunk index

T1 T2 T3 T4 T5

S1 100=70 89=71 56=93 36=95 34=100
S2 100=57 100=75 100=92 89=94 57=100
S3 98=75 96=84 94=100 84=100 47=100
S4 99=83 96=91 94=100 78=100 30=100
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than the simple chunk-counting S1 scoring function.
This is as expected and demonstrates the impor-
tance of normalising results to the size of the
documents in question.

A number of combinations yielded excellent
results. In particular, it is worth noting the extremely
high reliability of the system. A number of
combinations were able to identify all or nearly all
pairs of co-derivative documents in our test set with
very few false positives, or none at all. This is a
highly desirable characteristic for such an algorithm.

We had insufficient human resources to complete
an estimate of density for all of the relationship
graphs generated. Instead, we selected a range of
configurations that seemed to work well and
estimated the density for these configurations. This
was done by picking 30 random edges from the
relationship graph and manually assessing whether
the two documents in question were co-derived. The
results corresponded very closely with the average
precision for the same runs: S2=T3=K1, S3=T2=K256,
and S4=T3=K16 all scored a density of 93.3% (28
out of 30) while S4=T3=K1 and S2=T1=K16 both
returned an estimated density of 100%. This
suggests that the average precision is a good
predictor of the true density value.

8.5. Effects of introducing lossy selection

In order to test the relationship between the
lossiness of a selection heuristic and the degradation
in the reliability of co-derivative identification, we
performed the same experiments on the linuxdocs

collection as above, this time with the modulo

heuristic added to the selection pipeline. We
experimented with the k operator set to 16 and
256. The only change to the experimental para-
meters (apart from the inclusion of the modulo

heuristic) was that the inclusion thresholds for these
experiments were adjusted downward commensu-
rately with the modulo operator so as not to
prejudice the results. In other words, the thresholds
were divided by 16 and 256, respectively, as this is
the expected decrease in the number of shared hash-
keys between a given pair of documents.

The results for these experiments are presented in
Table 4. When the modulo heuristic is used with
k ¼ 16, the results are noticeably inferior to those
using the full shared-chunk index generated by SPEX.
Nonetheless, they are still reasonably good. In an
application where finding every single co-derived
document pair is not critical, the loss of a few
percentage points in reliability in return for a 16-
fold reduction in the number of chunks indexed
might be a very attractive trade-off.

For the modulo 256 index, no configuration was
able to find more than 54% of the relevant edges.
This is almost certainly because the other 46% of
document pairs simply do not have any chunks in
common that evaluate to 0 modulo 256 when hashed
using our particular hash function. This risk exists
to a certain degree with any lossy selection scheme,
but especially so when the lossiness is too aggres-
sive. Two documents with a significant number of
shared chunks could be overlooked even at the
lowest thresholds because not one of their shared
chunks is included in the index. This is not
acceptable in many situations.

9. Future work & conclusions

There are many reasons why one may wish to
discover co-derivation relationships amongst the
documents in a collection. Previous feasible solu-
tions to this task have been based on fingerprinting
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algorithms that used heuristic chunk selection tech-
niques. We have argued that, with these techniques,
one can have either reliability or acceptable resource
usage, but not both at once.

We have introduced the SPEX algorithm for effi-
ciently identifying non-unique chunks in a collection.
Unique chunks represent a large proportion of all
chunks in the collection—over 98% in one of the
collections tested—but play no part in discovery of co-
derivatives. Identifying and discarding these chunks
means that document fingerprints only contain data
that are relevant to the co-derivative discovery
process. In the case of the LATimes collection, this
allows us to create an index that is functionally
equivalent to full fingerprinting but is one-fiftieth of
the size of a full chunk index. Such savings allow us to
implement a system that is effective and reliable yet
requires only modest resources.

Tests of our DECO system, which used the
SPEX algorithm, on two test collections demon-
strated that the package is capable of reliably
discovering co-derivation relationships within a
collection, and that introducing heuristic chunk-
selection strategies degraded reliability.

There is significant scope for further work and
experimentation with DECO. Although we have
demonstrated that the system is able to scale to
quite substantial collection sizes, it is important
to continue to investigate additional optimisations
to the algorithms and systems; this is both to
increase the speed of the system and to allow it to
scale to the extremely large multi-terabyte collec-
tions that are being managed in many domains.

A number of potential applications for systems
such as DECO were mentioned in the paper; we are
currently investigating the effect of text reuse on
search effectiveness. Our results thus far indicate
that document redundancy is a significant problem
for search engines and that using DECO we are able
to substantially improve search effectiveness.

One current area of difficulty is that SPEX is a one-
shot algorithm: it must have access to the entire
collection in order to build a shared-chunk index for
it. It is not possible to later add additional
documents to the collection without rebuilding the
entire index. The difficulty of extending the index is
the one major defect of SPEX compared to many
other fingerprinting selection heuristics. We believe
that it is possible to write an adjunct to SPEX that,
while it would carry some overhead, would allow
for incremental building of the shared-chunk index
as new documents are added to the collection.
However, the sensitivity, reliability and efficiency
of SPEX make it already a valuable tool for analysis
of document collections.
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