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Abstract

Query expansion is a well-known method for improving average effectiveness in information retrieval. The most

effective query expansion methods rely on retrieving documents which are used as a source of expansion terms. Retrieving

those documents is costly. We examine the bottlenecks of a conventional approach and investigate alternative methods

aimed at reducing query evaluation time. We propose a new method that draws candidate terms from brief document

summaries that are held in memory for each document. While approximately maintaining the effectiveness of the

conventional approach, this method significantly reduces the time required for query expansion by a factor of 5–10.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Standard ranking techniques in information
retrieval return documents that contain the same
terms as the query. While the insistence on exact
vocabulary matching is often effective, identification
of some relevant documents involves finding alter-
native query terms. Previous work has shown that
query expansion (QE) often significantly improves
retrieval effectiveness [1–4].

Global analysis techniques (see for instance [5,6])
rely on heuristics such as term co-occurrence that
are applied to the collection as a whole and are not
directly query dependent. These techniques are
inherently efficient during query evaluation as most
of the analysis can be done at indexing time.
e front matter r 2005 Elsevier B.V. All rights reserved

2005.11.002

ing author.

sses: bodob@cs.rmit.edu.au (B. Billerbeck),

au (J. Zobel).
However, they have been found to be generally less
effective [2,7].

For local analysis methods, the original query is
used to determine top-ranked documents from
which expansion terms are subsequently extracted.
A major drawback of such methods is the need to
retrieve those documents during query evaluation,
greatly increasing costs. In other work [8], we
explored the use of surrogates built from past
queries as a cheap source of expansion terms, but
such surrogates require large query logs to be
usable.

In this paper, we identify the factors that
contribute to the cost of QE, and explore the
alternatives for reducing these costs. Many of these
approaches compromise effectiveness so severely
that they are not of practical benefit. However, one
approach is consistently effective: the use of brief
summaries of each document that contain the most
document-characteristic terms. These surrogates are
much smaller than the source documents, and can
.
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be rapidly processed during expansion. In experi-
ments with several test sets, we show that our
approach reduces the time needed to expand a query
by a factor of 5–10, while approximately maintain-
ing effectiveness compared to standard QE.

The remainder of the paper is structured as
follows. Background on automatic QE and ranking
functions used for the experiments in this paper is in
Section 2. The steps involved in expanding queries
using local analysis techniques are examined in terms
of the effect on query throughput in Section 3. We
then propose several approaches that are aimed at
reducing the effect of the investigated practicalities
in Section 4. Finally, we describe the experiments
undertaken and analyse the results in Section 5.
1The factor of 1
3
was recommended by unpublished correspon-

dence with Steve Robertson. It de-emphasises expansion terms

and prevents query drift, that is, ‘‘alteration of the focus of a

search topic caused by improper expansion’’ [17]. We confirmed

in unpublished experiments that the value of the factor is suitable.
2. Background

Relevance feedback is used to refine a query using
knowledge of whether documents retrieved by the
query are relevant. Weighted terms from judged
documents are added to the original query, where
they act as examples of the terms that should or
should not occur in relevant and non-relevant
documents. The modified query is then reissued, in
the hope of ranking the remaining relevant docu-
ments more highly [1,9]. Interactive QE can
significantly increase effectiveness [10], although
on average—for non-expert users—automatic QE
is more likely to lead to better performance [11].

In automatic QE, also called pseudo relevance
feedback, the query is augmented with expansion
terms from highly ranked documents [3]. An
alternative [12,13] is to examine the document
collection ahead of time and construct similarity
thesauri to be accessed at query time. The use of
thesauri in general has been shown to be less
successful than automatic QE [14], though the two
approaches can be successfully combined [7].

An effective method for QE, used throughout this
paper, is based on the Okapi BM25 measure [3,15].
Slightly modified, this measure is as follows:

bm25ðq; dÞ¼
X
t2q

wt�
ðk1þ1Þf d;t

k1ðð1�bÞþb�ðjdj�NÞ=
P

i2N jdijÞþf d ;t

,

where terms t appear in query q; the collection
contains N documents; a particular term t occurs in
a particular document df d;t times; constants k1 and
b, respectively, are set to 1:2 and 0:75; and jdj is a
measurement for the document length in a suitable
unit.
The term weight wt is based on the document
frequency f t (which measures how many documents
contain term t) and calculated by a derivation of the
inverse document frequency:

wt ¼ log
N � f t þ 0:5

f t þ 0:5

� �
.

This formulation of wt reduces the impact on the
ranking of query terms that are common in the
collection, and the second term of the bm25 formula
promotes documents that contain a high proportion
of query terms. The modifications to the original
formulation (see [16] for a detailed explanation) is
the omission of a component that deals with
repeated query terms. We made the assumption
that in most queries terms occur once only.

In this paper we use the expansion method
proposed by [3], where E terms with the lowest
term selection value are chosen from the top R

ranked documents:

TSVt ¼
f t

N

� �rt R

rt

� �
,

where a term t is contained in rt of the top-ranked R

documents. The expansion terms get added to the
original query, but instead of using wt, their weight
[3] is chosen by the formula1:

w0t ¼
1

3
� log

ðrt þ 0:5Þ=ðR� rt þ 0:5Þ

ðf t � rt þ 0:5Þ=ðN � f t � Rþ rt þ 0:5Þ

� �
.

We have shown previously that best choices of R

and E depend on the collection used and should in
principle be carefully optimised [18]; to reduce the
complexity of the experiments, in this paper we use
the standard values of R ¼ 10 and E ¼ 25.

Although there has been a great deal of research
on efficient evaluation of ranked queries [19,
pp. 207–210], there is no prior work on efficient
QE for text retrieval, the focus of this paper.

3. Query expansion practicalities

In most expansion methods making use of local
analysis, there are five key stages. First, the original
query is used to rank an initial set of documents.
This set is then retrieved from disk and all terms are
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2For WT10g the inverted list of a common term is up to 45MB

in size (2MB if the list does not contain offsets to words, but only

the document number and a count of how often a term appears

within that document); the list of a less common term would be

around 200KB (or 100KB without word offsets). Word offsets

are needed in order to quickly evaluate phrase queries.
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extracted from those documents. Terms are eval-
uated and ranked in order of their potential
contribution to the query. The top ranked terms
are appended to the query, and finally the reformu-
lated query is reissued and a final set of documents
is ranked.

Each phase of the ranking process has scope for
efficiency gains, but some of the gains involve
heuristics that can compromise effectiveness. In this
section we explore these options; this exploration
provides a focus for the experiments reported later
in this paper. Some of the concepts introduced
here—in particular, associations and surrogates—
are described in more detail in the next section.

3.1. Initial ranking

During the first stage, documents are ranked
according to the original query. For each query
term the inverted list is retrieved, if it has not
already been cached, and processed. An inverted
list specifies which documents that particular
term occurs in. For each document referenced
in the list, a score is calculated and added to a list
of scores that is kept for (say) 20,000 docu-
ments [20]. Once all query terms have been
processed, the top R documents are used for the
next stage.

The cost of accessing an inverted list depends on
the disk access time which is made up of three
components: the seek time, the rotational delay, and
the transfer time.

Seek time. A typical hard disk has an average seek
time of roughly 10ms. The seek time is only
indirectly dependent on the list size, since average
seek times are lower if inverted lists to be fetched are
small, as they are more likely to be proximate on
disk.

Rotational delay. Typically the average rotational
delay is about 3ms [21, p. 683]; since there is very
little one can do to improve on rotational delay
(apart from using fewer disk accesses), we do not
consider it further.

Transfer time. The transfer time—that is, the time
required to read a file from the hard drive into
memory once the head is positioned correctly—is
directly proportional to the size of the file and
depends on the disk throughput. Disk throughput
is the rate at which bytes are read from disk and
fed onto the bus. It is typically on the order of
100MB per second. Given that the size of a typi-
cal inverted list for a query term is far less than
1MB2 (inverted lists are typically stored in com-
pressed form), the transfer time would usually be
smaller than 10ms.

If the list is organised by document identifier, the
whole list must be fetched for each query term. A
way of reducing the cost of retrieving and proces-
sing the inverted lists is to cut down the volume of
list information that has to be retrieved. This has
been achieved by, for example, Anh and Moffat
[22], where documents are not stored in the order
they are encountered during indexing, but in order
of the impact a term has in a particular document.
For instance, a term has more impact in a document
in which it occurs twice, than in another document
of the same length in which it occurs once. Using
this ordering means that either the processing of
lists can be stopped once a threshold is reached, or
that the lists are capped to begin with, leading to
lower storage requirements, reduced seek times, and
allowing more lists to be cached in memory. We
have not used impacts in our experiments, but the
performance gains that they provide are expected to
be in addition to the gains that we achieve with our
methods. Efficiency should be increased even more
than expected, since the expanded queries are—by
definition—longer than original queries and there-
fore stand to gain considerably by using impact-
ordered indexes.

Another way to reduce list length, discussed in
more detail later, is to index only a fraction of the
document collection for the initial ranking. The
initial ranking is in all previous work on the
document collection, but there is no particular
reason why other collections should not be used.
Another option of this kind is to use document
surrogates, described in more detail in Section 4. A
drawback of these approaches is that the full index
still needs to be available for the final ranking and
thus is loaded at the same time as auxiliary indexes.
This means that some of the advantage of using
shorter lists is negated by having less space available
to cache them.

However, using the full text collection makes the
initial ranking relatively least efficient, since in this
case the index, including the in-memory dictionary
and the inverted lists (stored on disk), is large. This
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means that disk seek and transfer times for the
inverted lists are increased and the likelihood of an
inverted list being cached is decreased, given that
memory volume is fixed and the dictionary as well
as all inverted lists cannot be held in memory
simultaneously.

3.2. Fetching documents

Having identified the highly ranked documents,
these need to be fetched. In the vast majority of
cases these documents are not cached from a previ-
ous expansion or retrieval process (assuming a typi-
cal memory size), and therefore have to be fetched
from disk, at a delay of a few milliseconds each.

Fetching documents or surrogates from disk is
costly, since disk accesses are slower than memory
accesses by orders of magnitudes [21, pp. 390–391],
whereas the larger the collection accessed, the higher
the typical cost, due to greater seek times and
reduced opportunity for caching.

Traditionally, full-text documents are fetched.
Due to the high cost associated with disk accesses,
which are much slower than memory access times,
this is the most expensive stage of expansion and
therefore the area where the greatest gains are avail-
able. We have shown previously that surrogates—
which are a fraction of the size of the documents—
can be more effective than full-text documents [8].
Using surrogates such as query associations is more
efficient, provided that those surrogates can be pre-
computed, as discussed in Section 4.

Another approach is limiting the number of
documents available for extraction of terms, which
should result in higher efficiency, due to reduced
cache misses when retrieving the remaining docu-
ments and otherwise smaller seek times as it can be
expected that the limited number of documents are
clustered on disk. Documents could be chosen by,
for example, discarding those that are the least often
accessed over a large number of queries [23].

A more radical measure is to use in-memory
document surrogates that provide a sufficiently
large pool of expansion terms, as described in the
following section. If such a collection can be made
sufficiently small, the total cost of expansion can be
greatly reduced. Typically full text document
collections do not fit into main memory, but well-
constructed surrogates may be only a small fraction
of the size of the original collection. Our surrogates
are designed to be as small as possible while
maintaining effectiveness.
3.3. Extracting candidate terms

Next, candidate terms (that is, potential expansion
terms) are extracted from the fetched documents.
These documents need to be parsed, and terms need
to be stopped. (We do not use stemming in our
experiments.)

This phase largely depends on the previous phase;
if full text documents have been fetched, these need
to be parsed and terms need to be stopped. In the
case of query associations, the surrogates are pre-
parsed and pre-stopped and extraction is therefore
much more efficient. Since no additional informa-
tion from disk is needed, costs are much greater
than R, the number of documents fetched, and their
length.

The in-memory surrogates we propose can be
based on pointers rather than the full terms in
memory. The pointers reference terms in the
dictionary used for finding and identifying statistics
and inverted lists. They have a constant size
(4 bytes) and are typically smaller than a vocabulary
term. This approach also eliminates the lookups
needed in the next stage.

3.4. Selecting expansion terms

In this phase, all candidate terms are considered
using the heuristics from the expansion method
employed, and the best terms are then appended to
the original query.

The information (such as the inverse document
frequency) necessary for calculation of a term’s TSV

is held in the vocabulary, which may be held on disk
or, as in our implementation, in memory; even when
held on disk, the frequency of access to the
vocabulary means that typically much of it is
cached. As a result, this phase is the fastest and
can only be sped up by providing fewer candidate
terms for selection.

Query associations typically consist of 20–50
terms, as opposed to the average of 200 or more
for web documents. Use of surrogates could make
this stage several times more efficient than the stan-
dard approach. Surrogates are a strict subset of full
text documents, and usually are a tiny fraction
thereof, ensuring that selection is efficient.

3.5. Final ranking

Finally the document collection is ranked against
the reformulated query. Similar considerations as in
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the first phase are applicable here. We have shown
previously [8] that final ranking against surrogates
is, unsurprisingly, ineffective. The only option for
significant efficiency gains at this stage is to use
an approach such as impact-ordering, as discussed
earlier.

4. Methods of increasing efficiency for QE

In the previous section we identified costs and
plausible approaches for reducing them. In this
section, we consider the most promising methods in
more detail, setting a framework for experiments. In
particular, we propose the novel strategy of using
bag-of-word summaries as a source of expansion
terms.

4.1. Query associations

Query associations [24] capture the topic of a
document by associating past user queries with the
documents that have been highly ranked by that
query. Typically, for the association process a query
log is used. Associations are derived as follows:
every query of the query log is in turn submitted to a
search system, and a similarity score is calculated
based on the similarity of the query at hand to
documents that contain query terms. The query
then becomes associated with a fixed number of top
documents that are returned. For efficiency, an
upper bound is imposed on the number of queries
that can become associated with a single document.
Once a document has a full set of associations, the
least similar associated query is dynamically re-
placed with a new, more similar query.

We have previously shown [8] that associations
are effective when useful query logs are available.
Query associations have since also been successfully
used to increase the weighting of terms that
encapsulate the ‘‘aboutness’’ of a document [25]. A
disadvantage of using associations is that an extra
index needs to be loaded and referenced during
query evaluation. This extra index is small but not
insignificant. The size of the associations is roughly
3% of the full text collection: for the 2GB news wire
collection of TRECs 5–8, associations take up
73MB, or 233MB for the 10GB WT10g collection
from TRECs 9 and 10. The advantages are that
associations are usually pre-stemmed and stopped,
stored in a parsed form, and cheap to retrieve. Most
importantly, though, disk access times are much
reduced: transfer times are reduced since associa-
tions are smaller than the documents they represent,
which also means that seek times are reduced,
assuming that associations are stored continuously.
The cost of the term selection phase is also lower,
since fewer candidate terms need to be evaluated.

Rather than indexing the associations, it would be
possible in principle to rank using the standard
index, then fetch and expand from the associations,
but in our earlier work [8] we found that it was
necessary to rank against the associations themselves.

We have assumed in the discussion above that
associations are pre-computed; in a live environ-
ment such as the web, associations might need to be
updated continuously.

4.2. Reducing collection size for sourcing expansion

terms

The intuition underlying expansion is that, in a
large collection, there should be multiple documents
on the same topic as the query, and that these
should have other pertinent terms. However, there
is no logical reason why the whole collection should
have to be accessed to identify such documents.
Plausibly, documents sampled at random from the
collection should represent the overall collection in
respect of the terminology used. In our experiments,
we sampled the collection by choosing every nth
document, for n of 2 and 4. Other options would be
to use centroid clusters or other forms of represen-
tative chosen on the basis of semantics. Documents
could also be stored in a pre-parsed format (such as
a forward index, see for instance [26]), which we
have not tested.

4.3. In-memory document summaries

The major bottleneck of local analysis is the
reliance on the highly ranked documents for useful
expansion terms. These documents typically need to
be retrieved from disk. We propose that summaries
of all documents be kept in memory, or in a small
auxiliary database that is likely to remain cached. A
wide range of document summarisation techniques
have been investigated [27], and in particular Lam-
Adesina and Jones [28] have used summarisation for
QE. In this work, representative sentences are
selected, giving an abbreviated human-readable
document.

However, summaries to be used for QE are not
for human consumption. We propose instead that
the summaries consist of the terms with the highest
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in developing Zettair is to test techniques for efficient information
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edu.au/.

B. Billerbeck, J. Zobel / Information Systems 31 (2006) 573–584578
tf :idf values, that is, the terms that the expansion
process should rank highest as candidates if given
the whole document. To choose terms, we use the
function:

tf :idf ¼ log
N

f t

� �
� logð1þ f d ;tÞ,

where N is the number of documents in the
collection, f t of which contain term t, and f d ;t is
the number of occurrences of t in document d.

Given these values, we can then build summaries
in three ways. One is to have a fixed number S of
highly ranked terms per document. The second is to
choose a global threshold C, in which case each
summary consists of all the document terms whose
tf :idf value is lower than C. The third is to limit the
volume of terms used in the summary to P% of the
underlying document, up to a maximum of 100
terms. Again, the terms with the lowest tf :idf scores
are chosen. Instead of representing summaries as
sequences of terms, it is straightforward to instead
use lists of pointers to the vocabulary representation
of the term, reducing storage costs and providing
rapid access to any statistics needed for the TSV.
During querying, all terms in the surrogates that
have been ranked against the original query are then
used for selection. This not only avoids long disk I/
Os, but also the original documents—typically
stored only in their raw form—do not need to be
parsed. S, C, and P can be chosen depending on
collection size or available memory.

Although it is plausible that query-biased sum-
maries [29]—as provided in most contemporary web
search engines—would be more effective [28], such a
method cannot be applied in the context of efficient
QE, as query-biased summaries cannot be pre-
computed.

4.4. Other approaches

Since the original query terms effectively get
processed twice during the ranking process, it seems
logical to only process the original query terms
during the initial ranking, and then, later, process
the expansion terms without clearing the accumu-
lator table that was used for the initial ranking.

However, as explored previously [20], limiting the
number of accumulators aids efficiency and effec-
tiveness. To support this strategy, query terms must
be sorted by their inverse document frequency
before the query is processed. Because most expan-
sion terms have a high inverse document fre-
quency—that is, they appear in few documents
and are relatively rare—they must be processed
before most of the original query terms, which
typically have lower values. (The effect is similar,
albeit weaker, to that of impact ordered indexes as
discussed previously.) This means that the original
query must be processed again with the expansion
terms for final ranking. Intuition suggests that this
argument is incorrect, and the original query terms
should be allowed to choose the documents;
however, in preliminary experiments we found that
it was essential to process the original terms a
second time. Processing only expansion terms in the
second phase reduced costs, but led to poor
effectiveness.

Other strategies could also lead to reduced costs.
Only some documents, perhaps chosen by frequency
of access [23] or sampling, might be included in the
set of surrogates. A second tier of surrogates could
be stored on disk, for retrieval in cases where the
highly ranked documents are not amongst those
selected by sampling. Any strategy could be further
improved by compressing the in-memory surro-
gates, for example with d-gapping [19, pp. 115] and
a variable-byte compression scheme [30].

Note that our summaries have no contextual or
structural information, and therefore cannot be
used—without major modifications—in conjunction
with methods using such information, such as the
local context analysis method of Xu and Croft [7] or
the summarisation method of Goldstein et al. [27].
5. Experiments

Evaluating these approaches to QE requires that
we test whether the heuristics degrade effectiveness,
and whether they lead to reduced query evaluation
time. To ensure that the time measurements were
realistic, we used Zettair3 as the underlying search
engine. In order to cut down the size of the
vocabulary without affecting effectiveness signifi-
cantly, we indexed only terms that contain no more
than a certain number of non-alphabetical char-
acters [31]. This reduces the total number of unique
terms by 30–40%, and leads to a similar decrease in
the combined size of the inverted lists. In addition, it

http://www.seg.rmit.edu.au/
http://www.seg.rmit.edu.au/
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Table 1

Effectiveness of expansion of TREC-8 queries on the TREC

newswire data

Expansion Query AvP P@10 R-P Mem

method time (ms) (MB)

None 15 0.221 0.440 0.262 n/a

Standard 98 0:248z 0.464 0:291z n/a

Associations 72 0.227 0.444 0:269y Index

Eighth 1 80 0.183 0:330z 0.228 Index

Eighth 2 71 0.172 0:338z 0:211y Index

Eighth 3 85 0.175 0:360z 0.222 Index

Eighth 4 70 0.200 0:364z 0.243 Index

Eighth 5 73 0:143z 0:334z 0:190z Index

Eighth 6 72 0:147z 0:328z 0:199y Index

Eighth 7 71 0.186 0:368z 0.227 Index

Eighth 8 69 0:177y 0:356z 0.230 Index

Quarter 1 55 0:182y 0:362z 0.234 Index

Quarter 2 55 0.206 0.394 0.245 Index

Quarter 3 69 0.234 0.410 0:280z Index

Quarter 4 56 0.227 0.396 0.269 Index

Half 1 76 0.234 0.428 0:281z Index

Half 2 65 0.236 0.426 0:280y Index

S ¼ 1 20 0:232z 0.448 0.265 6

S ¼ 10 20 0:237z 0.444 0:272z 24

S ¼ 25 21 0:241z 0.450 0:274y 54

S ¼ 50 22 0:244z 0.452 0:277z 102

S ¼ 76 24 0:246z 0.462 0:285z 146

S ¼ 100 26 0:242z 0.456 0:279z 179

C ¼ 0:5 21 0:231y 0:416y 0:273z 11

C ¼ 1:0 22 0:244z 0.446 0:278z 54

C ¼ 1:25 23 0:246z 0.456 0:287z 82

C ¼ 1:5 24 0:244z 0.446 0:280z 106

C ¼ 3:0 24 0:241z 0.458 0:279z 79

C ¼ 0:25–1.25 22 0:243y 0.454 0:284z 81

P ¼ 1 21 0:230y 0.452 0:275z 8

P ¼ 10 21 0:244z 0.446 0:272y 38

P ¼ 15 22 0:246z 0.460 0:279z 55

P ¼ 25 23 0:244z 0.454 0:279z 85

P ¼ 50 25 0:241z 0.456 0:281z 137

P ¼ 100 25 0:242z 0.456 0:279z 179

Results shown are average precision (AvP), precision at 10

(P@10), and R-Precision (R-P). Also shown is the average query

time over 10,000 queries and the amount of overhead memory

required for each method; ‘‘index’’ marks the need to refer to an

auxiliary index during expansion. A y marks results that are

significantly different to the baseline of no expansion at the 0.10

level, and z at the level of 0.05. S is the number of summary terms

used, C specifies the cutoff threshold for the selection value, and

P is the maximal percentage of the original document to be used

for summaries.
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increases the likelihood that in-memory summaries
contain useful candidate terms.

The test data is drawn from the TREC confer-
ences [32]. We used two collections. The first was of
newswire data, from TREC 7 and 8. The second was
the WT10g collection, consisting of 10GB of web
data crawled in 1997 [33] for TREC 9 and 10. Each
of these collections has two sets of 50 topics and
accompanying relevance judgements. As queries, we
used the title field from each TREC topic.
We use the Wilcoxon signed rank test to evaluate
the significance of the effectiveness results [34].

For timings, we used 10,000 stopped queries
taken from two query logs collected for the Excite
search engine [35]; these are web queries and thus
are suitable for the WT10g runs. Since we were not
able to obtain appropriate query logs for the
newswire data, we used the same 10,000 queries
for this collection. We used a dual Intel Pentium IV
2.8GHz with 2GB of main memory running
Fedora Core 2. In earlier experiments, not reported
here, we used an otherwise similar machine with
much less main memory (768MB) and observed
comparable differences in timings [36].

5.1. Results

We used the TREC 8 and TREC 10 query sets to
explore the methods. Results for this exploration
are shown in Tables 1 and 2. These results are also
summarised in Table 3. We applied the best
methods found in these tables to the TREC 7 and
TREC 9 query sets, as shown in Table 4. The tables
detail the collection, the method of expansion,
average precision, precision at 10, and r-precision
values, as well as auxiliary memory required. A
second index is needed for the runs where associa-
tions or fractional collections are used for initial
ranking and candidate term extraction.

For TREC 8 and to a lesser extent TREC 10,
standard QE improves over the baseline, but in both
cases query evaluation takes around nine times as
long. Several of the methods proposed do not
succeed in our aims. Associations take nearly as
long as standard QE, and effectiveness is reduced.
For TREC 8 the surrogates are arguably inap-
propriate, as the web queries may not be pertinent
to the newswire data; however, this issue highlights
the fact that without a query log associations cannot
be used.

Using halves (n ¼ 2) or quarters (n ¼ 4) of the
collection also reduces effectiveness, and has little
impact on expansion time; this is due to the need to
load and access a second index. Larger n led to
smaller improvements in QE; in experiments with
n ¼ 8, QE gave no improvements. Reducing R to
roughly a quarter of its original size in order to cater
for a smaller number of relevant documents—as
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Table 2

As in Table 1, showing effectiveness of expansion of TREC 10

queries on the WT10g collection

Expansion Query AvP P@10 R-P Mem

method time (ms) (MB)

None 30 0.163 0.298 0.190 n/a

Standard 296 0.186 0.304 0.205 n/a

Associations 264 0.171 0.278 0.212 Index

Eighth 1 273 0.142 0:206z 0.175 Index

Eighth 2 259 0:125y 0:218z 0.155 Index

Eighth 3 279 0.143 0.263 0.172 Index

Eighth 4 270 0:127z 0:214z 0:147z Index

Eighth 5 249 0.146 0.267 0.172 Index

Eighth 6 259 0.143 0:247z 0.173 Index

Eighth 7 297 0.149 0:229z 0.185 Index

Eighth 8 253 0:130y 0:220z 0.163 Index

Quarter 1 277 0.157 0:247y 0.188 Index

Quarter 2 258 0.142 0:245z 0.164 Index

Quarter 3 276 0.153 0.265 0.202 Index

Quarter 4 269 0:134z 0:218z 0:163y Index

Half 1 303 0.164 0.282 0.197 Index

Half 2 283 0.145 0:229z 0.173 Index

S ¼ 1 62 0.158 0.280 0.201 19

S ¼ 10 78 0.176 0.300 0:212y 76

S ¼ 25 81 0.179 0.306 0.202 165

S ¼ 50 82 0.184 0.314 0.208 292

S ¼ 60 83 0:188y 0.318 0.212 336

S ¼ 100 86 0:186y 0.302 0.208 476

C ¼ 0:5 79 0.166 0.296 0.190 44

C ¼ 1:0 83 0:183y 0.312 0.202 186

C ¼ 1:05 81 0:185y 0.312 0.202 200

C ¼ 1:5 84 0.184 0.308 0.206 306

C ¼ 3:0 86 0:186y 0.302 0.208 444

C ¼ 0:25–1.05 79 0.182 0.308 0.202 197

P ¼ 1 71 0.170 0.294 0.214 27

P ¼ 10 75 0:180y 0.312 0.206 114

P ¼ 17 76 0:187z 0.316 0.205 171

P ¼ 25 79 0:187z 0.302 0.208 225

P ¼ 50 81 0:184y 0.306 0.206 348

P ¼ 100 82 0:186y 0.302 0.208 477

Table 3

Summarising the best effectiveness results from tuning collections

TREC 8 and TREC 10 shown in Tables 1 and 2, respectively

Data Expansion Query AvP P@10 R-P Mem

set method time

(ms)

(MB)

TREC 8 None 15 0.221 0.440 0.262 n/a

Standard 98 0:248z 0.464 0:291z n/a

S ¼ 76 24 0:246z 0.462 0:285z 146

C ¼ 1:25 23 0:246z 0.456 0:287z 82

P ¼ 15 22 0:246z 0.460 0:279z 55

TREC 10 None 30 0.163 0.298 0.190 n/a

Standard 296 0.186 0.304 0.205 n/a

S ¼ 60 83 0:188y 0.318 0.212 336

C ¼ 1:05 81 0:185y 0.312 0.202 200

P ¼ 17 76 0:187z 0.316 0.205 171
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intuition might suggest—only further degrades
results. These results are consistent with previous
work that shows that retrieval effectiveness, espe-
cially in the top-ranked documents, is greater for
larger collections than for sub-collections [37]. This
means that there is a higher likelihood of sourcing
expansion terms from relevant documents when
using local analysis QE if the largest collection is
used. It was also found that QE works best when
expansion terms are sourced from collections that
are a superset of documents of the one targeted [38].

However, our simple tf :idf summaries work well.
Even one-word (S ¼ 1) summaries yield signifi-
cantly improved average precision on TREC 8, for a
memory overhead of only a few megabytes. The best
cases were S ¼ 76 on TREC 8 and S ¼ 60 on TREC
10, where overall processing costs were less than a
third those of standard QE. These gains are similar
to those achieved by [28] with summaries of 6–9
sentences each, but our summaries are considerably
more compact, showing the advantage of a form of
summary intended only for QE. While the memory
overheads are non-trivial—over 300 megabytes for
TREC 10—they are well within the memory
capacity of a desktop machine.

Results on TREC 7 for the summaries are equally
satisfactory, with good effectiveness and low over-
heads. Results on TREC 9 are, however, disap-
pointing. We had already discovered that expansion
on TREC 9 does not improve effectiveness [18]; our
results here are, in that light, unsurprising. The
principal observation is that QE based on summa-
ries is still of similar effectiveness to that based on
full documents.

We show results for several parameter settings.
These lead to similar effectiveness for similar
memory overhead. Summaries and choice of S, C,
and P are further examined in Figs. 1 and 2 for
newswire and web data, respectively. These show
that a wide range of S (top figure), C (centre figure),
and P values (bottom figure) lead to improved
effectiveness, in some cases exceeding that of
standard QE.

The middle graph in Fig. 1 shows a drop in
average precision if summaries consist only of terms
with extremely low tf :idf values, of below 0:25. This
would suggest that average precision could be
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Fig. 1. Varying average precision and associated memory cost

with the number, cutoff value of summary terms and percentage

of document used for summaries, respectively. Using the TREC 8

collection and queries.

Table 4

As in Table 3, but showing results for test collections TREC 7 and TREC 9

Data Expansion Query AvP P@10 R-P Mem

set method time (ms) (MB)

TREC 7 None 15 0.191 0.452 0.246 n/a

Standard 98 0:229z 0.450 0:282z n/a

S ¼ 76 24 0:219z 0.440 0:272z 146

C ¼ 1:25 23 0:216z 0.438 0:270z 82

P ¼ 15 22 0.210 0.432 0:268z 55

TREC 9 None 30 0.195 0.271 0.228 n/a

Standard 296 0.182 0.260 0:210y n/a

S ¼ 60 83 0.166 0.265 0:184y 336

C ¼ 1:05 81 0:166y 0.262 0:174z 200

P ¼ 17 76 0:168y 0.267 0.187 171
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Fig. 2. As in previous figure, except that the TREC 10 collection

and queries are used.
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optimised by using only terms that have a tf :idf

value which falls into the band between 0:25 and
1:25 for TREC 8 and between 0:25 and 1:05 for
TREC 10, where the drop in average precision at
the lower cutoff is even more pronounced. How-
ever, as shown in Tables 1 and 2, this is not the case,
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Fig. 3. The graphs show per-query-differences in average

precision between each of the methods and the respective

baselines.
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which leads to the conclusion that some low tf :idf

terms are chosen as expansion terms from a small
pool of candidate terms to the detriment of queries.
When the pool size is increased, other terms that are
just as important in documents get selected before
the first group of terms since they have a higher
tf :idf value in other top ranked documents (that is,
are not quite as important).

Fig. 3 compares the robustness of the different
expansion methods on the data shown in Table 4. It
can be seen that the effectiveness of our proposed
summaries is comparable to that of the standard QE
approach. However, improvements through sum-
mary-based QE are generally more moderate and a
minority of queries is degraded more severely. This
is most noticeable for the TREC 9 query set.

6. Conclusions

We have identified the main costs of QE and, for
each stage of the query evaluation process, con-
sidered options for reducing costs. Guided by
preliminary experiments, we explored two options
in detail: expansion via reduced-size collections and
expansion via document surrogates. Two forms of
surrogates were considered: query associations,
consisting of queries for which each document was
highly ranked, and tf :idf summaries.

The most successful method was the tf :idf

summaries. These are much smaller than the
original collections, yet are able to provide effec-
tiveness close to that of standard QE. The size
reduction and simple representation means that
they can be rapidly processed. Of the three methods
for building summaries, slightly better performance
was obtained with those consisting of a particular
number of terms. The key to the success of this
method is that it eliminates several costs: there is no
need to fetch documents after the initial phase of list
processing, and selection and extraction of candi-
date terms is trivial.

Many of the methods we explored were unsuc-
cessful. Associations can yield good effectiveness if
a log is available, but are expensive to process.
Reduced-size collections yielded no benefits; it is
possible that choosing documents on a more
principled basis would lead to different effectiveness
outcomes, but the costs are unlikely to be reduced.
Streamlining list processing by carrying accumula-
tor information from one stage to the next led to a
collapse in effectiveness. Our tf :idf summaries, in
contrast, maintain the effectiveness of QE while
reducing time by a factor of 5–10.
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