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Abstract. In designing data structures for text data-
bases, it is valuable to know how many different words
are likely to be encountered in a particular collection.
For example, vocabulary accumulation is central to index
construction for text database systems; it is useful to be
able to estimate the space requirements and performance
characteristics of the main-memory data structures used
for this task. However, it is not clear how many distinct
words will be found in a text collection or whether new
words will continue to appear after inspecting large vol-
umes of data. We propose practical definitions of a word
and investigate new word occurrences under these models
in a large text collection. We inspected around two billion
word occurrences in 45 GB of World Wide Web docu-
ments and found just over 9.74 million different words in
5.5 million documents; overall, 1 word in 200 was new.We
observe that new words continue to occur, even in very
large datasets, and that choosing stricter definitions of
what constitutes a word has only limited impact on the
number of new words found.
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1 Introduction

The World Wide Web is growing exponentially, with
at least two billion searchable pages in some single
repositories.1 We can only speculate as to whether the
new pages appearing every day cover new topic material,
but the scope of the current Web is far greater than that
of any traditional encyclopedia. The pages indexed by the
major search engines include not just material such as

1 For example, see Google at http://www.google.com/.

news articles, literature, technical material, legislation,
advertising, corporate data, and personal information
but are written in a multitude of languages – some of
them, such as Klingon and Furbish, imaginary.
Web search engines use the words occurring in Web

pages to locate particular pages in response to user
queries. The words are extracted from the pages dur-
ing construction of inverted indexes [13].Wide experience
with text querying has shown that effectiveness (the abil-
ity to find pages that satisfy users’ needs) is greatest when
all words are indexed, other than perhaps a limited num-
ber of function words such as “the” and “moreover” [13].
However, complete indexing presents significant practi-
cal problems, one of which is vocabulary size: the smaller
the vocabulary, the greater the likelihood it can be main-
tained in memory, and the simpler it is to support query
modes such as vocabulary browsing.
Perhaps surprisingly, the number of new words ob-

served in Web data does not appear to taper off as the
volume of data increases. That is, even after many gi-
gabytes of text have been processed, the vocabulary in
that text continues to grow [18]. There are several likely
causes for such ongoing growth: neologisms, first occur-
rences of rare personal names and place names, first
occurrences of complex chemical names andmaterial such
as DNA strings, words in documents written in unusual
languages, URLs, and typographical errors. The space of
all strings grows very rapidly with string length: there
are, for example, over eight million 7-character strings of
lower-case letters.
We have investigated the rate at which new words are

observed and whether new words that might reasonably
occur in a query are observed after the processing of large
volumes of text. To some extent these questions depend
on how the parser defines “word”; using different defi-
nitions of word – such as whether the document appears
to be in English, whether words are allowed to contain
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digits, whether the word appears to derive from a small
dictionary, and by inspection – we conclude that poten-
tially valuable new words do continue to occur.

2 Defining “word”

In English, a simple definition of what constitutes a
“word” is any sequence of alphanumeric characters
bounded by non-alphanumerics. If this is extended to
include single occurrences of the quote or hyphen char-
acters within a word (thus including “don’t” and “right-
handed” but not “students’ ”), but to exclude strings
with more than two digits, it covers almost every string
that in English might reasonably be regarded as a word
and can be used in practice for vocabulary accumulation
tasks [4, 11, 17]. We refer to this as the alnum class.
However, the alnum class clearly includes many

strings that would not be generally regarded as words;
the goal of an ideal – but implausible – parser would be
to eliminate all such non-words from alnum. We have
explored several different more restrictive classes.
One of these classes, alpha, is the words containing

only alphabetic characters; to further restrict this class
we converted upper-case characters to lower-case, so that
“the” and “The” were regarded as identical and “don’t”
was treated as two words, “don” and “t”. This approach
is probably overly restrictive for most tasks, eliminating
strings that would generally be regarded as words – and
certainly as useful search terms – such as “3M”, “MP3”,
“747”, “R2D2”, and “ISO9001”.
Another approach is to only consider the words oc-

curring in English-language documents, thus eliminat-
ing – hopefully – not just documents in other languages
but documents containing no text at all; this would also
permit categorisation of documents by language, pro-
viding additional filtering in searching tasks or vocabu-
lary browsing. However, there is no simple, reliable way
of identifying documents as being in English; we used
heuristics that, by inspection, appear to be reasonably
reliable. These heuristics were based on the words oc-
curring in a dictionary of 126001 words distributed with
a version of the publicly available ispell spell-checker
utility. First, we required that at least 60% of the words
parsed from the document occurred in the dictionary;
second, we required that the words constituted at least
40% of the page (other than material in HTML markup
tags). Testing these heuristics with a sample of English
pages and other pages, we found that these thresholds
were well below the percentages found in all the English
pages and well above those found in the others. Use of this
filter gave us two further classes, english-alnum and
english-alpha, the set of words occurring in “English”
pages.
The final approach we considered was the class dict

containing english-alpha words in the ispell dictio-
nary. This class is extremely restrictive: the dictionary

does not include personal names, chemical names, place
names, and so on and is even deficient in technical ter-
minology. This is an impractical definition of a word but
a useful comparison point for the experiments described
in the next section.
A slightly broader class is stem-dict containing

english-alpha words that stemmed to the same root as
a word in the ispell dictionary. Stemming is the process
of removing variant suffixes from words, such as “-tion”,
“-ed”, or “-s”; we used a publicly available version of the
Porter stemmer [9],2 which, while possibly being inferior
to other stemmers [14], is used widely in practice. The
utility of this class of words is also unclear, but it again
provides a useful comparison point that is less restrictive
than dict.
In all classes we truncated strings at 32 characters.

3 Data

To examine trends in occurrences of new words, we used
the data gathered for the Web track of TREC, an inter-
national collaborative evaluation of information retrieval
techniques [2]. We used approximately 45GB of the Web
data, which derives from a crawl of the Web undertaken
in 1997.
Before extracting words from the data, we prepro-

cessed them. We eliminated material in tags, excepting
comments, because such material includes long non-word
strings generated for purposes such as security.
We also eliminated material that appeared to be bi-

nary data, again through simple heuristics. These were
based on the assumptions that a word should be in the
neighbourhood of a white space character and that le-
gitimate text should include some white space. Long
strings without white space but including punctuation
were assumed not to be text, thereby eliminating, for ex-
ample, most http addresses and directory path names –
both of which are common sources of distinct strings
that might be treated as words. Additionally, we pro-
cessed only unencoded ASCII text and did not pro-
cess encoded data that might have been a source of
words. For example, MIME-encoded postscript using the
“application/postscript” content type was not decoded to
ASCII text.

4 Results

The number of pages, distinct words, and word occur-
rences for each class is shown in Table 1. The last line

2 Many public-domain implementations of the Porter stemmer
are available. Stuart J. Barr’s implementation in the C program-
ming language works well and is available from Mark Sanderson’s
IR resources at http://www.dcs.gla.ac.uk/idom/ir_resources/
linguistic_utils/
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Table 1. Occurrence statistics for different definitions of “word”

alnum alpha english english dict stem

-alnum -alpha -dict

Pages (×106) 5.5 5.5 4.1 4.1 4.1 4.1

Distinct words (×106) 9.74 6.36 4.79 2.96 0.10 0.20

Word occurrences (×106) 1915 1897 1586 1576 1576 1576
New per last 1000000 247 144 221 114 1 8

shows the number of new words found in the last mil-
lion word occurrences inspected. Using our English filter-
ing scheme, we found that around three-quarters of the
pages appear to be in English; therefore, while all ex-
periments process around 45GB of data, the experiments
with the alnum and alpha classes are on around 5.5 mil-
lion pages, while the other classes are tested on 4.1 million
pages.
Table 1 shows that, for the non-dictionary classes,

even after almost 2 billion words observed, new words
occur on average at a rate of more than 1 in 10000 (for the
most restrictive english-alpha class). The rate is more
than 1 in 4000 for the least restrictive alnum class. The
dictionary classes are impractically restricted but serve
a useful comparison: over the whole collection, new words
in these classes occur, in dict at a rate of over 1 in 16000
and in stem-dict at just over 1 in 8000. Indeed, a new
word was found in the last million word occurrences in
even the dict class (“glitteringly”).
Observing these words in more detail, from the begin-

ning to the end of our collection we found documents with
unique words, that is, words found in one document only.
As discussed below, many of these are errors, but some
are not. Thus the phenomenon is not a consequence of
document order.
Interestingly, for the dictionary-based schemes using

the dictionary of 126001 words, less than 80% of the
words are found in the English documents inspected.
(We wonder at the utility or correctness of the remain-
ing words.) Correctness in general of new words occurring
after inspecting large text collections is also of interest,
and we discuss a simple evaluation of the correctness of
new word appearances later in this section.
In developing the practical restrictions of the alnum

class, we found only a tiny fraction of word occurrences
contain more than two digits. The reduction in vocab-
ulary size from 9.74 in alnum to 6.36 million words in
alpha – around a third of the distinct words disappear –
is largely due to the standardised case in the alpha class;
the result is similar for the English-filtered english-
alnum and english-alpha.
For the non-dictionary classes, we have seen that, on

average, over one word occurrence in 10000 is new. How-
ever, Fig. 1 shows the decreasing trend in the number
of new words seen under each definition of a word with
the word occurrences inspected. We show a coarse value,
where each point represents the total new words seen in

the last 100 million word occurrences. While the trend
is toward fewer new words, the rate of arrival of new
words varies: for the alnum class, around 395000 new
words were seen in the 100 million word occurrences be-
fore the 900th million word, while over 470000 – around
19%more – were seen in the 100 million before the 1100th
million word occurrence. After inspecting another 800
million words and adding another 2.9 million new words
to the vocabulary, almost 440000 more new words were
seen in the 100 million words before the 1900th million
word occurrence. Not surprisingly, with stricter defini-
tions of “word” the variation is reduced.
The variation in frequency of new words is emphasised

further in Fig. 2. We show here the total new words seen
with each ten million word occurrences; we show only
three representative schemes for readability. We have ob-
served, in general, that peak regions of new word occur-
rence result from encountering usually only a few docu-
ments that cover new topics. For example, a page re-
porting research in chemistry or physics containing new
terminology – but meeting thresholds for the english-
alnum class – can be a source of many new words; en-
countering a site of such pages results in a peak. Another
common source of words are lists of rare place names or
other proper nouns. This occurrence of peak regions con-
tinues to occur despite English filtering, as can be seen in
the english-alnum class.
To investigate the utility of new words, we carried

out a simple experiment. We produced two largely dis-
tinct lists of new words occurring in the inspection of
the collection using the alpha class. The lists contained
100 new words from near each of the 1000th, 100 000th,
10 000000th, and 1000000000th word occurrence locali-
ties. We extracted every new word, every 5th new word,
every 25th new word, and every 125th new word until
a list of 100 words for each locality was produced. After
this, we sorted both lists of 400 words and independently
judged each word as either a reasonable new word or an
erroneous word choice.
Table 2 shows the results of our word-judgement ex-

periment. As expected, the average percentage of correct
new words falls as more words are inspected. However,
even after inspecting one billion words, more than a third
of the words are still correct, suggestingmore than 40 cor-
rect new words per million word occurrences are likely to
be encountered if new pages are added to our collection.
Twelve selected words from each locality, six of which we
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Fig. 1. New word occurrences vs. words inspected in a collection of 45GB of World Wide Web documents. The points shown are the
total new words seen at each 100 million word-occurrence interval. Six schemes derived from different definitions of a word are shown.
The alnum and alpha schemes show new words seen in processing 5.5 million unfiltered pages; the other schemes show new words in

4.1 million pages that were filtered as being written in English

judged to be acceptable and six that were unacceptable
words, are shown on the right of the table; the first line
for each locality are the first six words judged correct and
incorrect by the first author, while the second line shows
words judged by the second author.
Many of the words that first occur after a billion word

occurrences appear to be spelling or typographic errors.
These fall into several categories; for example, a consid-
erable proportion of them are concatenations, and others
are transpositions. It is attractive to consider automatic
correction of these words. However, automatic correction
has significant pitfalls. First, it is necessary to have a list
of words that are known to be correctly spelt. In the
context of the Web – which has many languages, unusual
place names, technical literature, and tens of millions of
personal home pages – no dictionary can possibly fulfil
this role. Second, it is not easy to identify misspelt words,

even given an “oracle” of correct spellings. As a sim-
ple experiment, for each word that occurs less than ten
times we tried to find a near neighbour (as measured
by an edit distance [5, 16]) amongst the more common
words. This was a complete failure: with a reasonable
definition of neighbourhood, most of the rare words did
not have a near neighbour, while the other rare words
typically had several. Many words that were obviously
misspellings did not, surprisingly, have a neighbour at
all. Third, rare words are often not misspellings. For ex-
ample, “villein” and “serf” are rare words but are cor-
rectly spelt. Emerging terms, such as the use of place
names in newswires and of chemical names in technical
literature, are rare but valid. A recent thesis has explored
these issues further [3].
The value of Internet search services is that they are

able to find matches to a wide range of queries. While
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many of the rare words are clearly errors, there is no ob-
vious method for distinguishing the mistakes from words
that are potential query terms. While most rare terms are
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Fig. 2. New word occurrences vs. words inspected in a collection of 45GB of World Wide Web documents. The points shown are the
total new words seen at each 10 million word-occurrence interval. Three schemes from Fig. 1 are shown for readability

Table 2. New words in the alpha class. The table shows four different localities of word occurrences from 1×103 to 1×109 and the
percentage of 200 words judged as correct new words. Examples of correct and incorrect words are shown on the right of the table:
the first line for each locality shows the first three words judged correct and incorrect by the first author; the second line shows
the first three words judged correct and incorrect by the second author. The first author judged all 100 words near the first

1000 occurrences as correct words

Word occurrence Correct Acceptable examples Unacceptable examples

≈ 1000 95% jul, gnu, make –
results, search, mailed dev, dec, internationaltesting

≈ 100000 84% protecting, denounced, clawback universitetsadjunkt, lindex, alot
caps, unreliable, dimple ctron, mis, cogentdata

≈ 10000000 68% stings, pender, honker vilain, intensit, essouffl
fastings, gunpowder, sobered lacomb, stensas, umhoefer

≈ 1000000000 39% alapatt, myeloschisis, rainsong neprhoma, theprairies, maalstom
rudsdale, khamar, berrybank oakv, sevron, mmys

unlikely to be used in queries, the options for a search en-
gine are to keep them all or discard them all; the latter
means that some queries cannot be correctly resolved. As
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a simple example, URLs are commonly posed as queries;
yet many of the words in URLs occur in one document
only.
We counted the occurrence of rare words in a large

query log [10]. Among 1.7 million queries, we found ap-
proximately 250000 distinct query words after casefold-
ing and removing non-alphabetic characters. In the class
of wordsalpha, there were 2 000000words first seen after
the billionth word occurrence. Of these, 8000 (1 in 250)
were in the query log. That is, 1 in 30 of the words in the
query log was extremely rare in the data.
Overall, the most significant result is that new, correct

words continue to occur under all practical definitions of
a word.

5 Models of word occurrences

When discussing the occurrence of words, reference is
often made to the so-called “Zipf’s law” (in fact, it is
a conjecture) of George Zipf. His observation was that
the frequency f of occurrence of an event, as a func-
tion of the rank r (when the rank r is determined by
the frequency f of occurrence), is an inverse power-law
function fr = 1/(r×α), where α is a constant. Zipf [15]
observed – most famously – this phenomenon in the fre-
quency of use of words in English text but also in the size
of cities (the largest city has twice the population of the
second-largest city, and so on), and concerning the prof-
itability of companies.3 Indeed, the phenomenon is one
of the most widely studied and has been explained ade-
quately by statistics while also faithfully viewed by others
as illustration of Zipf’s principle of least-human effort [7].
Consider the frequency of distinct words in English

text as an example. Using text from the Wall Street Jour-
nal (WSJ) distributed as part of the TREC project [2],
the constant α in fr = 1/(r×α) has been observed to
be 0.1 for the frequency of words. In WSJ, the most fre-
quently occurring word (“the”) occurs just over twice as
often as the second most frequent word (“of”), which
in turn occurs 1.1 times more frequently than the next
word (“to”), and so on. However, for the Web data, the
law does not hold; the relationship is approximately fr =
1/(r1.5×α), and the original formulation overestimates
the frequencies of the rare words by a factor of 50 or
so.
It has also been observed (and assumed) that the oc-

currence of new words in English text follows a Zipf-like
distribution [1, 12]. Other rank-frequency models have
also been proposed to predict the number of distinct
words in English text collections. For example, Baeza-
Yates and Ribeiro-Neto report that it has been shown on

3 This observation was in fact made much earlier by Pareto in his
economics and finance work “Cours d’économie politique” (Rouge,
Lausanne et Paris, 1897). Indeed, similar observations had been
made earlier in various areas including “Lotka’s (inverse-square)
Law” that the number of authors making n contributions is about
1/n2 of those making one contribution [6].

medium-size text collections that the occurrence of dis-
tinct words grows sublinearly with the collection size in
a proportion close to the square root [1]. More precisely,
they state Heaps’ Law that vocabulary size is O(nβ),
where n is the size of the text and β is a positive value
less than 1; they report a typical value of β of between 0.4
and 0.6.
Heap’s Law works reasonably well as a predictor of

overall collection size given a good estimate of the con-
stant β. The relatively small collection of around 500MB
of the WSJ with the alnum word model has a vocabu-
lary of around 1.4×106 words in 7.9×106 word occur-
rences. Therefore, for this collection β = 0.16. But dif-
ferent text sources display strikingly different properties:
for the much larger collection used in our experiments,
β = 0.59 for the alnum class.
The number of new words in newly inspected text can-

not be accurately predicted using models, and constants
cannot be used on text drawn from different sources. As
we showed in the last section, the frequency of arrival
of new words varies unpredictably. However, Heap’s Law
works well as a predictor of overall vocabulary size using
a sample of a fraction of the collection. For example, after
sampling the first 10 million word occurrences in our col-
lection, β can be accurately determined as 0.59 for the
alnum class.

6 Conclusion

New words continue to occur in large text collections as
more data are inspected. We have developed several defi-
nitions of words, the most practical being any sequence of
alphanumeric characters bounded by non-alphanumerics
but permitting a single quote or hyphen and not permit-
ting more than two digits. With this definition of a word,
we have found that over 1 in each 4000 occurrences is
a new word, even after inspecting 45GB of data. Restrict-
ing the definition of a word so that strings containing
numbers are not included or processing only pages that
are likely to be in English reduces the frequency of new
words somewhat, but even after almost 2 billion occur-
rences, new words still occur at a rate of more than 1 in
10000.
More restrictive definitions of a word have limited util-

ity, as they seem unlikely to result in significant overall
space or time savings in main-memory vocabulary ac-
cumulation or searching tasks on modern hardware. For
example, only 39MB of main memory might be saved
after processing 45GB of data if only alphabetic strings
are permitted (assuming an average of eight characters
per additional word and a low overhead of 4 bytes per
word). However, we offer a caution: while the mean num-
ber of new words falls as more data are inspected, the
arrival of new words does not occur at a constant or pre-
dictable rate. Indeed, models such as Heap’s law are only
useful for approximating the overall vocabulary size, not
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the rate of new word occurrence, and Zipf’s conjecture
does not hold for larger collections. Moreover, the more
flexible the definition of a word, the more apparent the
unpredictability.
Our results show that there is no simple bound to

the number of words likely to be found in a text col-
lection: as the Web grows, so does its vocabulary, ap-
parently without limit. This finding contradicts common
wisdom on this topic [1]. At a practical level, this has
implications for technologies such as Internet search en-
gines. For example, one of the preferred methods for
constructing an index for a search engine assumes that
the complete vocabulary of the text can be held in
memory [8]. Our results show that this assumption is
incorrect: the vocabulary will grow linearly with data
volume.
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