
Indexing and Retrieval for Genomic Databases

Hugh E. Williams Justin Zobel

Department of Computer Science, RMIT University
GPO Box 2476V, Melbourne 3001, Australia

{hugh,jz}@cs.rmit.edu.au

Abstract

Genomic sequence databases are widely used by molecular biologists for homology
searching. Amino-acid and nucleotide databases are increasing in size exponentially,
and mean sequence lengths are also increasing. In searching such databases, it is
desirable to use heuristics to perform computationally intensive local alignments on
selected sequences only and to reduce the costs of the alignments that are attempted.
We present an index-based approach for both selecting sequences that display broad
similarity to a query and for fast local alignment. We show experimentally that the
indexed approach results in significant savings in computationally intensive local
alignments, and that index-based searching is as accurate as existing exhaustive
search schemes.

Keywords Homology search, local alignment, indexing, genomic and scientific
databases.

1 Introduction

Genomic databases assist molecular biologists in understanding the biochemical
function, chemical structure, and evolutionary history of organisms. Popular sys-
tems for searching genomic databases match queries to answers by comparing a
query to each of the sequences in the database. Efficiency in such exhaustive sys-
tems is crucial, since some servers process over 40,000 queries per day [26] and
resolution of each query requires comparison to over one gigabyte of genomic se-
quence data. While exhaustive systems are practical at present, they are becoming
prohibitively expensive—genomic databases are now doubling in size every 15 or 16
months, and user numbers and query rates are growing.

In this paper we investigate and propose new techniques for efficient, fast search-
ing of genomic databases. In considering new approaches, we have applied several
criteria that a successful implementation must satisfy. First, a new system should
support the same query types as existing exhaustive systems and be able to search
the same databases. Second, the system must be fast and, importantly, scalable on
general-purpose hardware in the presence of increasing user numbers, query rates,
and database size. Third, the system should be comparable in accuracy to existing
popular systems in identifying answers. Last, the system should have reasonable
requirements for memory and disk space. We have previously described an initial
implementation that addresses the second and last requirements [50, 47]. We pro-
pose in this paper new indexing and search techniques that successfully address all
of the requirements.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 2

GGGAATTCATGAACTCCGACTCCGAATGTCCATTGTCCCACGACGGTTACTGTTTGCAC
GACGGTGTTTGTATGTACATCGAAGCTTTGGACAAGTACGCTTGTAACTGTGTTGTTGG
TTACATCGGTGAAAGATGTCAATACAGAGACTTGAAGTGGTGGGAATTGAGATGATAAG
AATTCC

Figure 1: Nucleotide structure of a synthesised human epidermal growth factor gene.

Our indexing and retrieval techniques for querying genomic databases are em-
bodied in a full-scale prototype retrieval system, cafe [47, 48, 50, 51]. The disad-
vantages of indexing genomic databases are the need for time to build an index and
for space to store the index on disk. The advantage of indexing is that searching
is more scalable and much faster than exhaustive approaches. Cafe is based on
techniques used in text retrieval and in approximate string matching for databases
of names. The principal features of cafe are the incorporation of new, efficient data
structures for query resolution and the demonstration that, despite earlier negative
results, indexing can be successfully applied to genomic databases.

We show experimentally that query evaluation using our new techniques has
the requisite properties of speed, scalability, accuracy, and efficiency. With careful
selection of parameters, cafe can be used for the same search tasks as the popular
fasta [25, 30, 33] and blast [2, 6] search systems; fasta has been shown to be
the most sensitive rapid exhaustive search system, while blast is faster and more
popular, but less accurate. In a direct comparison of cafe to fasta, we have found
that cafe is 50 to 100 times faster in searching the GenBank DNA database and
has comparable accuracy. Moreover, the sensitive cafe index is practical in size and
the system remains efficient with increasing database size. Blast is much faster
than fasta but is still eight times slower than cafe on the largest collection tested.

2 Background

Understanding the relationship of a query DNA or protein genomic sequence to well-
understood sequences in a genomic database allows molecular biologists to assign
function to poorly understood sequences. Indeed, one of the goals of sequence
analysis is to determine sequence function, structure, and role from inspection and
querying with a character string representation, or linear sequence, of a genomic
sequence. In this section, we present a background of molecular biology, genomic
databases, and techniques for practical linear sequence comparison.

2.1 Genomics

Genetic material, or DNA, stores complete instructions for all the cellular functions
of an organism. The primary structure of DNA is represented as strings, or linear
sequences, of a four-character alphabet, known as the nucleotide bases, represented
by A, C, G, and T; a typical example is shown in Figure 1 [44]. In addition to the
nucleotide bases, there are eleven standard wildcard characters used to represent
different possible substitutions in a nucleotide sequence [24]. For example, B is
used to represent the permitted substitution of either C, G, or T, but not A, into
a sequence. The most common wildcard is N, which represents any base; some
sequences contain thousands of consecutive occurrences of N that represent poorly
understood regions of arbitrary length.

Many nucleotide sequences are precursors to the synthesis of proteins. Such cod-
ing sequences are used to transcribe RNA molecules, which are structurally similar
to DNA molecules; the significant difference is that, in RNA, Uracil (U) replaces
the DNA base T. One of the RNA molecules created with a coding sequence, mes-

Williams and Zobel: Indexing and Retrieval for Genomic Databases 3

MMNFFNFRCIHCRGNLHIAKNGLCSGCQKQIKSFPYCGHCGSELQYYAQHCGNCLKQEP
SWDKMVIIGHYIEPLSILIQRFKFQNQFWIDRTLARLLYLAVRDAKRTHQLKLPEAIIP
VPLYHFRQWRRGYNQADLLSQQLSRWLDIPNLNNIVKRVKHTYTQRGLSAKDRRQNLKN
AFSLAVSKNEFPYRRVALVFFVITTGSTLNEISKLLRKLGVEEIQVWGLARA

Figure 2: Gene product from H. influenzae, a completely sequenced bacterial
genome.

senger RNA (mRNA), is based on the DNA template. Three-base combinations
of the nucleotide bases from the mRNA, known as codons , transcribe amino-acids.
Amino-acids in turn can be combined to create proteins. A gene is a region in a
nucleotide sequence that codes a protein that performs a cellular function. Inter-
estingly, in genomes such as the higher eukaryotes only a few percent of the DNA
is coding, while the remainder is so-called “junk DNA” that is often repetitive in
structure; other species, such as many bacteria, have much higher gene densities.
Because coding regions are generally of more interest to molecular biologists, most
genomic databases contain a disproportionately large volume of coding sequences.

Related nucleotide sequences from different species can have varied structure,
where the distance in structure is proportional to the evolutionary distance of the
two species. These regions are homologous, that is, derive from a common ancestor
sequence, and identification of the existence of homology through sequence compari-
son of these regions can shed light on the evolutionary history, biochemical function,
and chemical structure of these molecules.

There are twenty amino-acids, each of which is coded by between one and six
codons. Proteins are polypeptide chains that typically contain tens or hundreds
of amino-acids, while some consist of more than a thousand. A typical protein
sequence, in this case a gene product from part of the Haemophilus influenzae
bacteria [23], is shown in Figure 2.

Proteins have a complex structure dictated by the characteristics displayed by
individual amino-acids, and amino-acids can be grouped according to characteristics
including charge, hydrophobicity, and acidity. This classification of amino-acids
allows prediction of relationships between sequences that are not easily seen by
comparing nucleotide sequences. Moreover, because of the redundant mapping of
codons to amino-acids, amino-acid sequences are much richer in information content.
Because of this, in almost all cases, if an amino-acid sequence is available a molecular
biologist uses it as a query to a genomic database in preference to the corresponding
nucleotide sequence. However, occasionally nucleotide sequences are preferred as a
query [7] and, often, an amino-acid sequence is not available and querying with a
nucleotide sequence is the only possibility.

2.2 Genomic Databases

There are several public nucleotide sequence databases. Three of the larger reposi-
tories are GenBank [11], the DNA Databank of Japan, and the European Molecular
Biology Laboratory database [36]. We use GenBank as the source of nucleotide test
data for our experiments; the three databases are cross-updated daily and the three
database structures are similar.

GenBank stores sequence data generated through the US human genome initia-
tive, which not only focuses on the human genome, but also on model organisms such
as the bacteria E. coli , the fruit-fly D. melanogaster , the nematode C. elegans , and
yeast S. cerevisiae [14]. The aim of the human genome initiative is to determine the
complete human sequence by 2003, with an intermediate goal of a “working draft”
of the genome by 2001 [15]. The largest GenBank database (release 108.0, 15 Au-

Williams and Zobel: Indexing and Retrieval for Genomic Databases 4

gust 1998) used in our experiments contains around 1,776 million nucleotide bases.
Historically, the database has roughly doubled in size every 21 months since 1984,
however GenBank is now doubling in size every 15 or 16 months: in August 1997
GenBank Release 102.0 contained 1,053 million bases, while the latest release 110.0
from December 1998 has over 2,162 million bases. The average sequence length
is around 700 bases, with sequences ranging from a few bases to 300,000 bases in
length; several sequences are longer than 300,000 bases, but have been stored as sep-
arate records according to GenBank guidelines. Data within GenBank is, in some
cases, duplicated through the submission of identical and, rather more frequently,
overlapping sequences. Additionally, there is a small but significant error rate, both
as a result of sequence determination errors and of data entry errors [1].

GenBank contains amino-acid translations for many coding nucleotide sequences,
however several solely protein databases also exist. Protein databases are typically
well-managed and less redundant than nucleotide databases, commonly including
classification of sequences into related families and, in some cases, superfamilies of
families. Such databases include Swiss-PROT [8], which contains cross-references
and data from around twenty smaller databases that investigate specific organisms
and protein types. A typical specialist database is the Portable Mouse Genome
Database [53].

In our experiments, we evaluate the accuracy of homology search systems using
the Protein Identification Resource—International Protein Sequence Database, or
PIR [20], a database of well-classified amino-acid sequences. Sequences in PIR are
first classified by homeomorphic domains , that is, into families where the member
sequences exceed a high threshold of sequence similarity, thereby inferring homology.
Homologous families, with the same domains, in the same order, are then classified
further into superfamilies, where the similarity threshold for grouping families into
superfamilies is less stringent than that for originally grouping sequences [9]. Sim-
ilarity scores, thresholds, and algorithms for determining similarity are discussed
later.

2.3 Practical Sequence Comparison

With the widespread availability of practical sequence comparison techniques, molec-
ular biologists have changed their approach to characterising sequences. Funda-
mental to understanding the function of genomic sequences is finding homology
between two sequences. By comparing sequences and finding homology between
two sequences, one of which has known function, structure, origin, or product, the
biochemical role, evolutionary history, and chemical structure of the second un-
known sequence may be inferred. Homologous sequences always share common el-
ements of three-dimensional folding and secondary structure. Sometimes, however,
homologous sequences do not share common function.

The most common method for analysing an unknown sequence is large-scale
sequence comparison to characterised and annotated sequences in a large genomic
database. Sequence comparison techniques have aided in the discovery of many
useful homologous relationships between sequences. For example, recently, a gene
that suppresses tumour growth in humans was found to be related to enzymes in
the bacterium E. coli and in C. cerevisiae, a well-studied yeast genome.

To illustrate the use of sequence comparison, consider a simplistic example of
a mutation in the bacteria E. coli. This mutation, or change in the nucleotide
sequence, causes an individual to be unable to reproduce. The mutated sequence
can be compared to other sequences to try and identify homology. If homologous
sequences are found, and there has been additional work on a sequence from a
different species, the product, for example a hormone, may be identified. This
would allow the research on reproduction in E. coli to focus on that hormone.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 5

Sequence comparison techniques measure statistical similarity of regions com-
mon to two sequences and, where statistical similarity exceeds a confidence value,
homology is inferred. A common benchmark is that if more than 30% of two amino-
acid sequences are identical, then the sequences are most likely homologous [17].
Lack of statistical similarity does not infer non-homology; for example, two se-
quences that do not share significant statistical similarity are homologous if both
are related to a third sequence.

Generally, homology between sequences is measured locally, as similarity of re-
gions, rather than measured globally as overall similarity of complete sequences. For
example, by comparing two nucleotide sequences whose overall primary structure
is dissimilar, local similarity measures may find homology between exons (coding
regions) that are separated by differently composed and varying length introns (non-
coding regions). Typically, only closely related amino-acid sequences are of the same
length and overall composition. Nucleotide sequences, which are sections of a much
longer strand and, therefore, have no notion of “ends”, generally do not have overall
similarity.

Estimation of evolutionary distance requires a measurement of the number of
point mutations, or elementary changes, to transform one sequence into another.
Generally, evolutionary distance estimations use string comparison algorithms to
find the least number of mutations, that is, an optimal alignment , between two
sequences. There may be many such optimal alignments that are equally evolu-
tionally plausible and, indeed, equally interesting. This model of using specialised
string comparison algorithms for genomic sequences has been shown to be an effec-
tive model of the evolutionary process [34].

To find an optimal alignment at a given evolutionary distance, scoring func-
tions are used to measure and score each possible evolutionary pathway between
two sequences, with the goal of finding the alignment, or set of alignments, with
the highest similarity score. Similarity scores are calculated through pairwise align-
ment between two identical nucleotide bases or amino-acid residues in each of the
sequences, or by scoring a mutation event. The measurement of local similarity
using Smith-Waterman local alignment [42] is exhaustive and guarantees that the
optimal alignment will be found, requiring l × m calculations of similarity for two
sequences of lengths l and m. For a comparison of a sequence of length l to a
database of N nucleotides, a total of l×N comparisons are required.

There are three general classes of mutation: substitution, insertion, and deletion.
Substitution is the mutation, in the pairwise alignment of two sequences, of one
residue into another residue, which may or may not be similar. Deletion is the non-
alignment of a residue in the first sequence with any residue in a second sequence;
deletion signifies that a particular residue is to be removed in the scoring of a
particular evolutionary pathway between the two sequences. Insertion is the same
as deletion, but from the perspective of the second sequence; if a residue is deleted
from the first sequence, an alignment is achieved by inserting a null residue in the
second sequence. Insertion and deletion are generally referred to collectively as an
indel, where more than one consecutive indel is a gap.

An optimal local alignment of two globin sequences, human β-chain and α-chain
hemoglobin, is shown in Figure 3. This optimal local alignment extending over 145
amino-acids is shown in the format typically returned to the user. Parameterisation
of local alignment, that is, the choice of mutation data matrix for substitution and
identity scores, and gap model costs are discussed elsewhere [3, 4, 10, 16, 40, 45]. An
extract of the results of a database search of the PIR database with human α-chain
hemoglobin are shown in Figure 4. In this extract, we show 3 of 695 ranked answers
returned by our cafe system, in a typical format for answers from a homology search
system. The first answer shown is identical to human α-chain hemoglobin (and was
ranked as the first response) but is an α-chain hemoglobin from a chimpanzee, the

Williams and Zobel: Indexing and Retrieval for Genomic Databases 6

10 20 30 40 50
HAHU VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGS

| |- | -|-|-|||| -|-| |||-| - |-| - |--|-||| |
HBHU MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGN

10 20 30 40 50
60 70 80 90 100 110

HAHU AQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAH
- || |||||--| || | - || ||--|| |||-|| || -| - ||-|

HBHU PKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHH
60 70 80 90 100 110

120 130 140
HAHU LPAEFTPAVHASLDKFLASVSTVLTSKYR

--||||-| | - |- | | | -||
HBHU FGKEFTPPVQAAYQKVVAGVANALAHKYH

120 130 140

Figure 3: Local alignment of human β-chain hemoglobin (PIR code HBHU, 147
amino-acids) and α-chain hemoglobin (PIR code HAHU, 141 amino-acids). A
BLOSUM-50 mutation matrix is used, with gap opening penalty of −12 and ex-
tension penalty of −2. The local alignment score is 381, with 43.4% identity in
a 145 amino-acid overlap. A ‘ ’ (space) indicates a conservative substitution, a
‘-’ indicates both an indel and alignment of two dissimilar amino-acids, and a ‘|’
indicates an identity (match).

Ranking: 1 Scored : 558

Query 0 :LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKV 61
|||

Subj 0 :LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKV 61

Query 61 :ADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA 122
|||

Subj 61 :ADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA 122

Query 122 :SLDKFLASVSTVLTSK 138
||||||||||||||||

Subj 122 :SLDKFLASVSTVLTSK 138

Ranking: 282 Scored : 273

Query 4 :DKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DL---SH--GSAQVKGHGK 65
|||-|-| |||| |||| |||||-|||| || || |||-| || | ||||||||||

Subj 6 :EKATVSGLWGKV--NADNVGAEALGRLLVVYPWTQRYFSKFGDLSSASAIMGNPQVKAHGK 67

Query 65 :KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAV 126
|| |||-||| ||||| -||| ||||| ||||||| ||||||| |||-|| ||- |||| -

Subj 67 :KVINAFNDGLKHLDNLKGTFAHLSELHCDKLHVDPENFRLLGNMIVIVLGHHLGKEFTPCA 128

Query 126 :HASLDKFLASVSTVLTSK 144
|||||| ||||||-|| |

Subj 128 :QAAFQKVVAGVASALAHK 146

Ranking: 695 Scored : 53

Query 5 :KTNVKAAWGKVG-AHAGEYGAEALERMFLSFPTTKTYFPHFD-LSHGSAQVKGHGKKVADA 66
||| - --| - |-|-| ||- | | | ||| -|||- | |||-|- -| -- ||-||

Subj 156 :KTNKPVIFTKSNLAKSPELDAKMYDICY-STAAAPIYFPPHHFVTHTSNGAR-YEFNLVDG 217

Query 66 :LTNAVAHVDDMPNALSA-LSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAE 118
--|||| - || |||| ||| || -|-||||| | ||||||| -||

Subj 217 :AVATVGDPALLSLSVATRLAQEDPAFSSIKSLDYKQM---LLLSLGTGTNSE 269

Figure 4: Extract of the 695 ranked results of a cafe search with human α-chain
hemoglobin (PIR code HAHU) on the PIR database. The three results shown
are ranked 1, 282, and 695 are, respectively, an identical, homologous α-chain
hemoglobin from the chimpanzee, an homologous β-2-chain hemoglobin from the
common rat, and an unrelated protein from a potato.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 7

second answer shown is ranked 282 and is a β-2 chain hemoglobin from a rat, and
the third answer is ranked last and is a probably non-homologous precursor to a
potato storage protein.

Fast exhaustive search techniques retrieve and process each sequence in a ge-
nomic database in response to a query. However, such systems typically use heuris-
tics to reduce the number of sequences that require a local alignment to a small
fraction of the database size. Given a set of database sequences, the well-known
Wilbur-Lipman approach is to first pre-process, through hashing, each interval in
the query sequence [46]. An interval in this context is a fixed-length overlapping
subsequence from a sequence; there are l − n + 1 intervals for a sequence of length
l and interval length n. For example, if n = 3 then the overlapping intervals of ac-
ctgtc are acc, cct, ctg, tgt, and gtc. By first preprocessing the query into a
hash table structure, each database sequence can be processed by hashing, and a
single-step lookup used to locate each interval in the query hash table. If an interval
is present in the search structure, the one or more matching offsets in the query can
be retrieved, yielding considerable computational saving over scanning the query
sequence for each database interval. With the offsets, scores for promising align-
ments without gaps can be calculated by taking the difference between the offset
of the interval in the query and offset of the interval in the database sequence. An
accumulator can then be used for each alignment without gaps to record a score for
the matches.

There are three popular exhaustive search systems, all of which use variations
of the Wilbur-Lipman interval approach for practical exhaustive searching. All sys-
tems have the limitation that an alignment is only possible where a common interval
exists between a query and database sequence; in the case of blast, neighbourhood
intervals—those that differ by one or two characters—may also form the basis of
matches.

The fasta search system [25, 30, 33] uses a four-stage approach to alignment
where the first stage is an application of the Wilbur-Lipman technique. After scoring
matching intervals, the second stage re-scores the top ten accumulators for each
sequence allowing gaps and the third stage attempts to join high-scoring regions
represented by the accumulators. The final stage locally aligns the sequences using
a memory-efficient implementation of local alignment [13] based on the regions
joined in stage three. Three scores are reported for each sequence, along with a
graph of the distribution of mean similarity scores and standard deviation of the
scores for each sequence in the database. Our cafe system, which we describe in
detail in Section 3, uses similar heuristics to fasta in the final stage of alignment.

Altschul et al. [2] propose additional heuristics in blast 1 to improve the
database search times of the fasta tool, with the goal of maintaining a compa-
rable level of retrieval effectiveness. Blast 1 deals with the high computational
overhead associated with both an exhaustive database search and local alignment
by using heuristics that find “ungapped, locally optimised ranked sequence align-
ments” [2]. This approach limits blast 1 to not allow for the insertion or deletion
of residues, but only for the substitution of one residue for another. However, by
building on the well-understood theory of ungapped local alignment [5, 22], blast 1
is able to effectively filter irrelevant answers.

Blast 1 has an underlying assumption that indels are a less significant class
of evolutionary event. This assumption has some merit in nucleotide comparison,
since both single deletion and insertion events cause the meaning of codons to be
completely lost. As such, it may be a reasonable compromise to ignore gapped align-
ments in coding regions of nucleotide sequences. However, fasta has been shown
to be significantly more sensitive than blast 1 at detecting distant homologous
relationships, which typically contain more indel events [32, 41]. Shpaer et al. [41]
have shown that there is on average one indel per fourteen aligned amino-acid

Williams and Zobel: Indexing and Retrieval for Genomic Databases 8

residues, suggesting that while the well-developed ungapped alignment statistics
may favourably filter false matches, blast 1 may also fail to detect many homolo-
gous sequences.

A new version of blast, known as blast 2 [6], aims to improve both the accu-
racy and speed of blast 1. Blast 2 permits the limited use of indels in forming
alignments, thus requiring more computation to evaluate each local alignment. To
ensure that blast 2 is on average faster than blast 1 the criteria for attempting
a local alignment are more stringent, with local alignment only permitted when
two intervals (or neighbourhood intervals) match between a query and a database
sequence. Altschul et al. have stated that blast 2 has improved accuracy over
the previous versions [6]; however, the results presented later in this paper do not
support this conclusion.

A significant problem with all exhaustive systems is that they may become
prohibitively expensive because of the volume of data to be processed for each
query. Conventional databases use indexing to provide fast access to relevant data.
In particular, indexing has been shown to work well for information retrieval [39,
38], which has marked similarities to genomic retrieval: in both domains a typical
query returns a large set of responses, many entries in the database exhibit some
degree of similarity to the query, and matches are approximate rather than exact.
Previous genomic indexing efforts have, however, been largely unsuccessful and
indexed systems are not in widespread use. We discuss existing indexed approaches
in the next section.

2.3.1 Indexed Genomic Searching

A general method for reducing searching costs is to store an abstraction or index
that can be used to assess broad similarity to a query. The cost is the need to store
the index, the potential saving is that fetching a limited volume of information
should enable identification of a small number of sequences as likely answers, thus
reducing both disk traffic and the computation required to resolve a query.

Interval-based indexing of genomic databases was first proposed by Orcutt and
Barker [29]. Specifically, Orcutt and Barker proposed their algorithm as a method
of identifying amino-acid sequences in the PIR database. No detail is given of an
implementation of the approach, but Barton [10] notes that an implementation,
scan, was available with the PIR database for use in exact matching.

The scan approach was not highly successful and has not been developed for
several reasons. First, simple measurements of matching intervals are used as a
ranking technique, limiting the sensitivity and selectivity of the indexed approach;
we have found that, without use of novel ranking techniques, ranking can detect
similarity in composition but not necessarily homology. Second, non-overlapping in-
tervals are extracted from the database and query sequences; all current exhaustive
and indexed approaches, including blast and fasta, require overlapping intervals
to achieve acceptable retrieval effectiveness. Third, the algorithms of Orcutt and
Barker do not use current approaches to managing large document collections that
make indexing practical; for example, queries are limited to 25 residues in length
and search structures do not appear to have been compressed, resulting in a large
index and high disk transfer times.

Altschul et al. [2] have implemented a similar approach to scan that uses a table
of all database intervals. It was found, presumably because of limitations similar
to those in scan and because GenBank was around 45 times smaller in 1990 than
in 1998, that this approach was somewhat slower than exhaustively searching the
database.

The most recent indexed scheme is the Rapid Access Motif database (ramdb)
system for finding short patterns in genomic databases [19]; such patterns, or motifs,

Williams and Zobel: Indexing and Retrieval for Genomic Databases 9

are typically around ten bases in length. In the approach of Fondrat and Dessen,
each genomic sequence is indexed by its constituent overlapping intervals in a hash
table structure. For each interval in the collection, an associated list of sequence
numbers and offsets is stored, allowing rapid location of any motif matching a
query motif.

The primary application of ramdb is matching of short strings, specifically, the
location of motifs either equal or slightly longer in length than the indexed interval
length. The indexed approach of ramdb is shown to result in a 0 to 800-fold
speedup in search times over comparable exhaustive approximate pattern matching
approaches.

The flash search tool redundantly indexes genomic data based on a probabilis-
tic scheme [12]. For each interval of length n, the flash search structure stores,
in a hash-table, all possible similarly-ordered contiguous and non-contiguous sub-
sequences of length m that begin with the first base in the interval, where m < n.
As an example, for a nucleotide sequence acctgatt the index terms for the first
n = 5 bases, where m = 3, would be acc, act, acg, act, acg, and atg; each
of the permuted strings begins with the base a, the first base in the interval of
length n = 5. The hash-table then stores each permuted m-length subsequence,
the sequences that contain the permuted subsequences, and the offsets within each
sequence of the permuted subsequence. The permuted scheme gives an accurate
model that approximates a reasonable number of insertions, deletions, and substi-
tutions in genomic sequences.

Califano and Rigoutsos found that flash was of the order of ten times faster
for a small test collection than blast and was clearly superior in accurately and
sensitively determining homologies in database searching. In addition, given ade-
quate system resources, scaling-up of the system to larger databases suggested that
the computational time saving would remain at a similar order for the complete
GenBank collection.

However, the redundant index, which is stored in a hash-table and is uncom-
pressed, is impractically large. Rigoutsos and Califano report that, for a nucleotide
collection of around 100 Mb, the index requires 18 Gb on disk, around 180 times
the collection size. Barton [10] reports that the index for Swiss-PROT Release 25, a
collection of around 10 Mb, requires almost 2.8 Gb of disk space, around 280 times
the size of the Swiss-PROT collection.

3 Indexed Genomic Retrieval with Cafe

Inverted files have been shown to be a successful tool for large text database re-
trieval [27, 39, 54]. In such environments, indexes are used to selectively retrieve
relevant records without exhaustive scanning of the database. Indexing trades space
against time; for the cost of storing the index, retrieval is typically many orders of
magnitude faster than an exhaustive search.

To address the problems with indexing encountered in other attempts, we pro-
pose a two-component partitioned search process embodied in a research prototype
system, cafe. The first component of our approach, a coarse search, uses an in-
verted index to select a subset of sequences that display broad similarity to the
query sequence. The second component, a computationally more expensive fine
search mechanism, ranks the resultant sequences from the coarse search in order of
relevance to the query, presenting the ranked results to the user. The partitioning
of searching into coarse and fine mechanisms has, for example, been successfully
used for pattern matching in databases of names [57, 58]. To ensure efficient query
evaluation, we use a query evaluation technique adapted from such methods.

A significant feature of cafe is our method of addressing the problem of index

Williams and Zobel: Indexing and Retrieval for Genomic Databases 10

size, where we have adapted compression techniques developed for text indexing [27].
In text indexing, index size is reduced with careful compression by a factor of
three to six, while in genomic databases we have found that more than three-fold
reductions are possible. We have previously discussed the compression of cafe
indexes in a preliminary description of our approach [50]; in addition, we have
developed a method for compressing genomic nucleotide sequences that reduces the
query evaluation costs in our cafe system by over 20% [51].

In this section we explore coarse searching, that is, using an index to assess
broad sequence similarity prior to retrieving and fine searching the sequence data.
Our novel fine searching approach is not described in detail in this paper, but is a
gapped scheme that is similar in sensitivity and technique to the fasta approach.
We present details of our fine searching local alignment algorithm elsewhere [48].
To evaluate the cafe approach, we present in Section 4 a framework for comparison
of aspects of rapid homology search tools, such as retrieval effectiveness, speed, and
space. We use this evaluation framework to compare cafe to blast and fasta.

3.1 Indexing with Cafe

To achieve efficient and effective retrieval from genomic databases, we propose sev-
eral modifications to the methods used for general strings. Improvements are re-
quired for the following reasons. First, to reduce the computational overhead of fine
searching, it is preferable for the coarse search phase to provide a framework for
subsequent local alignment; fine searching using a preliminary version of cafe [50]
consumed between 40%–90% of the total query evaluation cost. Second, because
of the length of the stored sequences, simply identifying which sequences are likely
matches requires the often inefficient retrieval of complete genomic sequences. Typ-
ical nucleotide queries are hundreds of base-pairs in length, while some sequences
in GenBank are around 300,000 base-pairs. By incorporating extra information in
the index, it is possible to identify where in the sequence a similar region can be
found and allow partial sequence retrieval of only the matching region.

For indexing genomic data we suggest that an appropriate choice of index term
is the intervals occurring in each sequence, where the intervals are overlapping
substrings of some fixed-length n; choice of n is discussed later. Fixed-length over-
lapping intervals have been shown to be practical in other indexed [19] and exhaus-
tive search systems [2, 25, 30, 33]. In addition, fixed-length overlapping intervals
work well in other areas of genomics, including query filtering [49, 56], fragment
assembly [28], consensus alignment [55], sequence classification [37], and pattern
detection [35]. Indexing on fixed-length substrings has also been successfully used
in pattern-matching for large lexicons [57, 58], a domain that is however rather
different: strings in lexicons are typically around ten characters, not hundreds of
characters, and similarity is global rather than local.

An inverted index has two components: a search structure and postings lists.
The search structure consists of the set of unique searchable terms, in this case the
set of intervals, while associated with each term in the search structure is a postings
list. The postings list contains the ordinal numbers of the documents containing
the associated search term. The cafe inverted file indexing scheme is extended
so that within each postings list is stored not only the ordinal sequence number
that contains the interval, but also offset information. For example, consider the
following postings list

accc 12,(3:144,154,962),38,(2:47,1045)· · ·
in which the indexed sequences, the 12th and 38th, contain the interval accc. The
interval occurs 3 times in the 12th sequence, at offsets 144, 154, and 962, and twice
in the 38th sequence, at offsets 47 and 1,045.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 11

With postings lists typically on disk, an inverted index is intensive in disk
usage—frequently a large number of postings lists are retrieved and the average
length of postings lists is high. To reduce the overhead of using an index for re-
trieval, compression techniques used for text database indexes [27] and string index-
ing [57, 58] are used to reduce index size. The benefits of compression are two-fold:
there is a saving in space used by the index and often a saving in query evaluation
time, if retrieval of compressed lists and subsequent decompression is faster than
retrieving uncompressed lists [52, 54].

3.2 Coarse Searching with Cafe

To achieve efficient and effective retrieval from genomic databases, we propose sev-
eral ranking techniques that use our index structure. We introduce in this section
a novel ranking structure, frames, that addresses the deficiencies of simple rank-
ing schemes. In particular, frames reduces the number of sequences that need to
be fine searched, by supporting accurate, inexpensive metrics for coarse ranking
with a fine-grain index. Frame-based metrics incorporate the relative positioning of
matching intervals, as well as other calculated metrics, to give a model of likely ho-
mologous alignments. We have previously described a preliminary implementation
of frames for nucleotide searching [47].

By using the offsets stored in the fine-grain index, a ranking structure can be
constructed to selectively and accurately detect homologous sequences. We refer
to this structure as frames. A frame is a set of one or more matching intervals
between a database sequence and a query sequence that are at the same relative
offset. There can be many frames created and each frame is treated independently,
regardless of whether the frame represents intervals from different matching offsets
from the same database sequence, or is from a different database sequence.

To illustrate frames, consider Figure 5, which shows three matching frames
between two sequences. Each of Figures 5(A), 5(B), and 5(C) represents a single
frame. In this example, with an interval length of n = 3, we have identified four
distinct regions of at least the interval length that match between the sequences;
two regions are shown in Figure 5(A) and one each in Figures 5(B) and 5(C). (There
are other intervals and regions that match between the two sequences, omitted for
clarity in the figure.)

To show how the four regions form three frames, consider the first region shown
in Figure 5(A), which is a match between gttt at offset 9 in the first sequence and
offset 7 in the second. The relative offset of the match is 9−7 = 2, creating the frame
F2, which contains the offsets of each of the two interval matches {(9, 7), (10, 8)};
the offsets within a frame can be read as an interval-length match between two
sequences beginning at the respective offsets in each sequence. The second region
in Figure 5(A) contains six intervals matches and adds to frame F2, which then
contains eight tuples:

{(9, 7), (10, 8), (27, 25), (28, 26), (29, 27), (30, 28), (31, 29), (32, 30)}
Figure 5(B) shows a matching region containing two intervals tgg and ggg, be-

ginning at offsets 17 and 16 of the two sequences respectively. This creates a second
frame F1, since 17−16 = 1, containing the two interval matches {(17, 16), (18, 17)}.
Figure 5(C) shows two matching intervals that create a third new frame F26 con-
taining {(53, 27), (54, 28)}.

A simple ranking scheme would rank sequence similarity based on the interval
matches between the two sequences. For example, an obvious simple ranking scheme
would be to score matches based on the count of interval matches between the two
sequences over all regions. In our example, the total score would be twelve, as
there are twelve intervals in the four regions identified. This coarse-grain ranking

Williams and Zobel: Indexing and Retrieval for Genomic Databases 12

A 10 20 30 40 50
ACCCTGAGGTTTTTTTTGGGAGAGCTTTCTTCTTAGAGAGGAGGCTAGCTAGCTTCG

:::: ::::::::
GTGTGTGTTTGTGTGTGGGGTAAGTTCTTCTTCTT

10 20 30

B 10 20 30 40 50
ACCCTGAGGTTTTTTTTGGGAGAGCTTTCTTCTTAGAGAGGAGGCTAGCTAGCTTCG

::::
GTGTGTGTTTGTGTGTGGGGTAAGTTCTTCTTCTT

10 20 30

C 10 20 30 40 50
ACCCTGAGGTTTTTTTTGGGAGAGCTTTCTTCTTAGAGAGGAGGCTAGCTAGCTTCG

::::
GTGTGTGTTTGTGTGTGGGGTAAGTTCTTCTTCTT

10 20 30

Figure 5: Alignment of two sequences showing three frames, where each frame con-
sists of matching intervals of length n = 3 at the same relative offset. (A) The
first frame, frame F2, consists of two regions: the first begins at offset 9 in the
first sequence and offset 7 in the second sequence; the second begins at offsets 27
and 25. (B) The second frame, frame F1, contains one matching region, beginning
at offset 17 in the first sequence and offset 16 in the second. (C) The third frame,
frame F26, contains one region.

overestimates the similarity between the two sequences, since it is not possible to
present a local alignment based on all of the identified interval matches.

By using frames, coarse ranking can provide a notion of order and arrangement
of common regions. The frames F1 and F2 cannot be combined with F26 to form
a plausible alignment and should be treated independently in coarse ranking for
subsequent fine searching. This independence of regions is reflected by using the
frames structure, where a coarse search of the two sequences identifies three sep-
arate frames, of which only one is likely to result in an interesting alignment. The
two frames with shorter matching regions will be ranked equally with each other
and, assuming ranking uses a simple count of frame offset tuples, equal with any
other frames from other database sequences that contain only two interval tuples.

Often, however, related frames may be able to be combined to form a single
alignment with gaps. For example, frames F1 and F2 may be able to be combined
with a single indel to form a higher-scoring alignment than the individual ungapped
alignments. We discuss heuristics for forming frames into weighted coarse ranked
neighbourhoods later.

The frames approach is similar to the heuristic method for local alignment of
two sequences proposed by Wilbur and Lipman [46] and applied in the fasta ex-
haustive search system. However, the significant advantage of frames is that it can
be applied to inverted lists, making it possible to rapidly rank both regions within
sequences and amongst sequences. Moreover, accurate scoring metrics that measure
overall similarity of ungapped alignments [22] or gapped alignment statistics can be
calculated. There are several such possible scoring metrics.

A simple scoring metric that can be calculated using frames is to rank frames
based on the number of intervals in each frame for two sequences s and t, so that

framecount(s, t) = max (|F (I(s) ∩ I(t))|)

where I(s) is the set of intervals in sequence s, I(t) the intervals in sequence t, and
F () the frame function that returns one or more sets of intervals that are at the
same relative offset. For Figure 5, the framecount measure would identify frame F2

Williams and Zobel: Indexing and Retrieval for Genomic Databases 13

A 10 20 30 40 50
ACCCTGAGGATTTTTTTGGGAGAGCTTTCTTCTTCGAGAGGAGGCTAGCTAGCTTCG

:::::::::
ACGTGTGTGTTTGTGTGTGGGGTAAGTTCTTCTTCTTCTCTTTCTCTTTCTTTCCTC

10 20 30 40 50

B 10 20 30 40 50
ACCCTGAGGATTTTTTAAAGAGAGCTCCCTTAGGAGAGAGGAGGCTAGCTAGCTTCG
::: ::: ::: ::: ::: ::: :::
ACCTGTAGGTTTGTGCAAAAGGTAAGTTCTTCTTCTTCTCTAGGATAGTTCTCTTAT

10 20 30 40 50

Figure 6: An illustration of coverage in a single frame, with an interval length
of n = 3. Other frames exist between the sequences shown, but these are omitted
in this example. (A) Two sequences of the same length are shown, with a single
frame containing 7 overlapping interval matches. In this case, the coverage is 9,
since there are 9 base identities. (B) Two similar sequences of the same length are
shown, with a single frame containing 7 non-overlapping interval matches. In this
example, the coverage is 21, as there are 21 base identities in the frame.

as the best coarse match, since the cardinality of frame F2 is 8, and frames F1 and
F26 have a cardinality of 2.

This simple framecount measure can be refined to incorporate more infor-
mation than the cardinality of frames. For example, by considering the relative
positioning of intervals in a single frame, we can calculate two computationally
inexpensive metrics for ranking: coverage and length.

Frame coverage is a count of the actual number of residues or bases that match
between two sequences. Given that a frame may consist of multiple overlapping
intervals, a new interval of length n may contribute between 0 and n new base or
residue identities to the frame. We propose scoring a frame using the coverage,
where frames with higher numbers of distinct non-overlapping intervals are ranked
higher.

Figure 6 shows an example that contrasts the framecount scheme with cov-
erage. In the case of framecount, both Figures 6(A) and 6(B) score 7, since
in both cases there are 7 matching intervals of length n = 3 in the frames shown;
we omit other frames that exist between the sequences in this example. Although
framecount and coverage scores cannot be directly compared, in the case of
coverage, the frame shown in Figure 6(A) scores 9, since 9 base identities are
contributed by the alignment of the 7 matching intervals. In contrast, the cover-
age contribution of the 7 non-overlapping intervals in Figure 6(B) is 7 × 3 = 21.
Although coverage is reasonably cheap to evaluate, it is simplistic and relies on
the assumption that a frame with higher coverage is statistically more likely to
result in a high-scoring local alignment. However, we have found that coverage
works well in identifying homologous sequences [48].

The length of a frame match is the total number of bases that lie between
the two intervals that have the smallest and largest offsets. In Figure 7, extending
Figure 6, we again illustrate one frame for each of three sequence pairs containing
seven interval matches of length n = 3. The length is the difference between
the minimum and maximum offsets covered by the frame intervals, in the case of
Figure 7(A) a length of 21 and for Figure 7(B) a length of 55. This scheme
weights a frame highly if it covers a larger region of the query sequence.

As in coverage, the length scheme does not consider all aspects of the interval
matches in a particular frame. For example, Figure 7(C) shows a frame that has
the same length of 55 as the frame in Figure 7(B). Figure 7(C) has two interval
matches and no obvious homology between the matches, while in Figure 7(B) there

Williams and Zobel: Indexing and Retrieval for Genomic Databases 14

A 10 20 30 40 50
ACCATGATGATTTTGTACAGAAAGCTCCTTTAGGAGAGAGGCGGCTCGCTAGCATCG
::: ::: :::: ::: ::::
ACCCTGAGGATTGTGCCCAGAGTAAGTTCTTCTTCTTCTCTAGGATAGTTCTCTTAT

10 20 30 40 50

B 10 20 30 40 50
ACCCTGAGGATTTTTTAAAGAGAGCTCCCTTAGGATACACGAGGCTAGCTAGCTTCG
::: ::: ::: ::: ::: ::: :::
ACCTGTAGGTTTGTGCAAAAGGTAAGTTCTTCTTCTTCTCTAGGATAGTTCTCTTAT

10 20 30 40 50

C 10 20 30 40 50
ACCCTGCTTATTTTTTTTTGAGAGCTCCTCCAGGATACACGGAGCTACCTAGCTTCG
::: :::
ACCTGTAGGTTTGTGCAAAAGGTAAGTTCTTCTTCTTCTCTAGGATAGTTCTCTTAT

10 20 30 40 50

Figure 7: An illustration of length in a single frame, with an interval length of
n = 3. Other frames exist between the sequences shown, but these are omitted in
this example. (A) Two sequences of the same length are shown, with a single frame
containing 7 interval matches. In this case, the length is 21, since the total length
of the region in the frame is 21 bases. (B) Two similar sequences of the same length
are shown, with a single frame again containing 7 interval matches. In this example,
the length is 55, since the total region length for the frame is 55 bases. (C) Two
sequences are shown with a frame that has the same length of 55 as the sequences
shown in (B), but has no obvious homology between the matching intervals.

are seven interval matches and a much higher overall similarity between the two
sequences.

Without a combined consideration of coverage, the length scheme does not
factor in the probability of a homologous local alignment in the absence or presence
of matching intervals between the extremities. In particular, the probability of a
successful local alignment of distant intervals decreases with increasing distance.
Despite this, the length scheme is particularly attractive since it ranks highly
regions that are longer and, therefore, will rank long homologous alignments ahead
of shorter alignments. We have found that length is reasonable in identifying
homologous sequences, but not as accurate as the coverage approach [48].

We propose also a combined coverage and length scheme that addresses some
of the problems in coverage and length. This new approach, which we call
combined, factors in both coverage and length in a frame, so that

combined = coverage− k × (length− coverage)

The calculation of (length − coverage) is the count of residues in the initial
match region that are not part of interval matches identified in the coarse search
phase. Typically, we choose a constant k where k � 1, since interval matches
that contribute to the coverage score are indicators of possibly homology, while
regions containing substitutions or less than interval-length identities are not the
opposite, that is, regions not containing interval matches may still have high similar-
ity through conservative substitutions; we have tested values of k through empirical
observation of ranked results and we use a value of k optimised for amino-acid
searching in Section 4.

By using this approach, frames containing interval identities spanning a reason-
able portion of sequences being compared are ranked highly. If the result of the
calculation is negative, where the matches are sparse over a long region, then the
matching regions are recursively divided and treated independently until each por-

Williams and Zobel: Indexing and Retrieval for Genomic Databases 15

tion is positive. We show in Section 4 that the combined scheme is excellent for
coarse ranking with frames and we have found it has better accuracy than either
length or coverage.

3.3 Applications of Frames

In our discussion of frames so far, we have neglected variation in the scores of
each matching interval. In most nucleotide sequence searching, this assumption has
no impact; an identity between two nucleotide bases is usually scored as +5, so a
matching interval of length n will always score 5n. However, in matrix-based amino-
acid or more complex nucleotide comparison [43], this scoring scheme is only partly
valid, since each matching base or residue may contribute a different score depending
on frequency and the evolutionary likelihood of mutation. Fasta partially addresses
this problem by initially scoring interval matches using constant match weights and
then later re-scoring the matches using a matrix.

In amino-acid searching, it is likely that ranking using the coverage or length
metrics can be improved by considering the score of a partial alignment. In the case
of coverage, incorporating an accurate model of scoring is possible, since the count
of residues contributed by an interval can be replaced by the score contributed by
the alignment of the residues in the interval, where scores are usually calculated
using a mutation matrix. Moreover, we can ensure by using frames that each
residue identity is only incorporated in the overall score once in each frame. Further,
at an in-memory space cost of one byte per interval in the search structure, pre-
calculated scores can be stored in the search structure to reduce the computational
cost of scoring matching intervals. We incorporate this pre-calculation of scores
during initialisation of each cafe query and augment the coverage scheme to
use scores calculated from the appropriate matrix, rather than counts of matching
bases or residues.

For length, the relationship between the length of a matching region and the
potential score is neither linear nor, indeed, easily calculated. The composition
of a sequence between any two matching intervals affects the possible score. For
example, a query may contain a short region of amino-acids that can achieve a higher
identity score than a much longer region of lower-scoring identities. When using the
Dayhoff PAM-250 scoring matrix [16] an identity match between two tryptophan
(w) amino-acid residues scores 17, while an identity between two alanine residues (a)
scores 2, indicating that a single w identity alignment is roughly equivalent to eight
matching a residues as an indicator of likely homology. In contrast, an alignment
of tryptophan with any other amino-acid results in an average score of −4.1, while
an alignment of alanine with another amino-acid has an average score of −0.8.

Composition and alignment between matching intervals in the length metric
is difficult to model without fine-searching the region. We therefore elect not to
modify the length scheme for complex scoring models, rather we apply a statistical
normalisation to incorporate variations in composition in the resultant score.

Karlin and Altschul [22] propose addressing the problem of amino-acid sequence
composition through normalising similarity scores based on query composition, scor-
ing matrix used, and sequence length. However, Shpaer et al. [41] have shown in
large-scale empirical retrieval effectiveness tests—but not theoretically—that a mea-
sure that is as effective as the Karlin and Altschul scheme is

Snorm =
S × 21.21
ln l1 × ln l2

where Snorm is the resultant normalised score, S is the original score, and l1 and l2
are the lengths of the two aligned regions. In the case where both regions are 100
residues in length, the normalisation has no effect, since ln(100)× ln(100) ≈ 21.21.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 16

This approach to normalisation has significant benefit, as it does not require the
calculation of the query or comparison matrix composition parameters.

Given the improved retrieval effectiveness demonstrated by Shpaer et al. in nor-
malising similarity scores, and that the scheme proves more effective than that of
Karlin and Altschul, we employ the Shpaer normalisation scheme in the length
and combined schemes. In addition, we can also use the scheme to normalise
the coverage scores, since query composition is not factored into normalisation.
We describe experiments with the score-based and normalised combined metric in
Section 4.

3.4 Optimising Frames

As we show in Section 4, frames is a successful method of accurate coarse ranking
in the cafe system. However, since each interval in a query requires the retrieval
of an inverted list, and each entry in each inverted list either creates a new frame or
adds weight to an existing frame, during query evaluation the in-memory and CPU
overhead of frames is often significant, particularly for longer queries. The over-
heads and problems of using accumulators, that is, structures similar to frames
that are used for ranking in English text retrieval are well-known [27, 54]. Such
techniques, used to minimise problems in English text retrieval, have direct appli-
cability to genomic database searching.

A simple heuristic to reduce the overhead of frames is to apply a fixed ceiling on
the number of frames that can be created for any given query. Assuming that query
intervals are sorted, the threshold can be chosen so that intervals that discriminate
well between sequences will be processed prior to the threshold being reached; a
sorting order for query intervals requires careful consideration. Further, assuming
a reasonable threshold, it may be possible to process all intervals for short queries
or where some intervals are filtered prior to querying [49].

Once the threshold of frames is reached, there are two possible options. We can
cease processing query intervals and present coarse rankings immediately; this has
the benefit of reducing coarse search time. An alternative, the approach favoured
in English text retrieval and the one we have chosen, is to continue to adjust the
scores of existing frames by processing all query intervals and adding new offset
tuples for matching intervals to the existing frames. This second method has the
disadvantage of not reducing evaluation time significantly, however we have found
that the retrieval effectiveness is considerably better than with the first approach.
This effect is similar to that found in English text retrieval [27].

To detect likely indels and relationships between frames, we propose a neigh-
bourhood algorithm that passes through the frame table at the conclusion of coarse
searching adding to the frame score s1/d, where s is the score of a frame from the
same sequence and d is the difference in offset of the related frame; we have also
tried other neighbourhood weighting schemes but do not present detail here. By
using a sliding window of a maximum size, this scheme can be bounded and requires
only a single pass of the frame table. We refer to this scheme as neighbourhood
and present results in the next section.

Our fine search scheme, which is described in detail elsewhere [48], uses the
frames structure and the related neighbourhood frames as a basis for efficient,
optimised gapped local alignment. Frames are used in two ways in fine search-
ing: first, the regions identified as matches in coarse searching are used as the
basis of subsequent fine searching and not recomputed, saving alignment costs and
allowing fine searching to begin by evaluating alignments that are likely to be high-
scoring; second, frames permit partial sequence retrieval, where only the region of
a database sequence that can be aligned to give a positive score is retrieved from
the database. This is beneficial when, for example, a query of a few hundred bases

Williams and Zobel: Indexing and Retrieval for Genomic Databases 17

has a coarse search match with a database sequence of several hundred thousand
bases.

4 Results

Test Data

The derivation of suitable test collections, as has been noted by Barton [10], is
difficult. There are, however, several possible approaches to forming test databases.
In our experiments, because of limitations in forming suitable collections, we use
the PIR database to assess the accuracy of search systems and the much larger
GenBank database to assess speed and cafe index space requirements.

To explore comparative retrieval effectiveness between search systems in large-
scale searching, we use a subset of the PIR database similar to that first used by
Pearson [31] to evaluate the fasta tool. A more recent variation used by Shpaer
et al. [41] has been used to evaluate the effectiveness of a broad range of tools, in
particular an implementation of local alignment [42] in hardware.

The PIR database consists of four smaller databases, PIR1 through PIR4. Each
amino-acid sequence is stored in one of the smaller databases, depending on the state
of classification and annotation. Of interest in forming a characterised collection
for assessing retrieval effectiveness are sequences stored in PIR1 and PIR2.

Sequences from the PIR1 and PIR2 subcollections of the PIR database used in
our experiments1 have been fully classified and annotated and are generally assigned
a sequential super family (SF) number. Of the 85,618 sequences (13,583 sequences
in PIR1 and 72,035 sequences in PIR2), 38,224 have been assigned one of the 3,781
SF numbers; most sequences in PIR2 are not classified by SF number but by SF
name, by domain name, or are annotated but not classified. The classification
process is described in detail elsewhere [9].

Broadly using the guidelines of Shpaer et al. [41], we used PIR1 and PIR2 to
compile a PIR test collection. We extracted all sequences that had an assigned SF
number, that is, all of PIR1 and around one-third of PIR2, to form a database of
38,224 sequences. The total size of the database was 12.7 × 106 residues, with a
mean sequence length of 328. We refer to this collection as pirsf.

In compiling a query set for retrieval effectiveness assessments using pirsf, we
used the first-occurring member sequence in the database from each SF. However,
we did not use as queries the 1,175 SFs represented that have only one member;
searching for a query sequence in the database does not illustrate the detection of
homology. Feedback from users of homology search tools suggests that long amino-
acid queries are highly infrequently posed, and we have removed any query longer
than 500 residues. With the removal of single-member SF queries and long queries,
our query set was reduced to 1,834 sequences.

The resultant query set and test collection has several advantages and disad-
vantages. The primary advantage is that retrieval effectiveness for each query can
be measured by assessing the ranking of other sequences that are members of the
SF and the success of the technique in discriminating between SF and non-SF se-
quences. A disadvantage of using the PIR databases is the rigid classification of
sequences into SFs. Although a minor concern is the erroneous classification of a
few sequences into incorrect SFs, a more major consideration is that SFs are some-
times closely related. To illustrate, the complex protein domain “HisI bifunctional
enzyme” contains two simple protein domains, “HisI protein” and “Histidinol de-
hydrogenase”. This complex domain, along with a third simple domain, is present
in the sequence “HisI-hisD trifunctional enzyme”, which is a member of only SF

1Release 52.0, 31 March 1997.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 18

635.0. The same complex domain, without the third simple domain, is also present
in SF 636.0. Many sequences, classified in different SFs, may contain subsets of
the simple protein domains, combined with other simple protein domains typical of
other super families.

Detection of false positives through a homology search on the pirsf collection
for a given query may sometimes be an example of sensitive detection of weak
inter-family similarities. This may result in penalising one search technique that
is in fact more sensitive than another. While some inaccuracy in measurement is
likely, we believe that over the 1,834 queries, the pirsf search results give a good
approximation of the relative performance of different search methods.

To quantify the relative performance or retrieval effectiveness of search tech-
niques, we use the measures of recall and precision. Recall and precision are fre-
quently used to demonstrate the retrieval effectiveness of systems, particularly those
used for English text retrieval; the application of these measures to text retrieval is
described elsewhere [39].

Precision is a measure of the fraction of relevant answers retrieved at a particular
point, that is

P =
SF sequences retrieved

SF and non-SF answers retrieved
Recall, in contrast, measures the fraction of the relevant answers that have been
retrieved at a particular point, or

R =
SF sequences retrieved

Total size of SF

In most practical applications, the assessment of recall is impractical, since it is
not feasible to assess each record in the database for relevance to each query. How-
ever, by using our pirsf approach it is possible to approximate recall by considering
only family members as relevant answers and non-family members as irrelevant an-
swers. This somewhat restrictive assumption allows the practical calculation of
recall values.

We expect that an exhaustive approach would have comparable search times
to cafe for smaller databases such as pirsf. However, for larger collections, we
would expect that cafe would be relatively much faster. While both exhaustive
approaches and cafe should experience linear increases in search times with in-
creasing database size, cafe search time growth will have smaller constant factors
that will be less significant in the context of searching large databases.

To compare the speed of systems, we used nucleotide collections of different sizes
derived from the GenBank database.2 The GenBank 97.0 collection has 652 million
nucleotide bases, in 1,021,211 sequences, with an average length of around 638.
This complete past version of GenBank database is referred to as genbank97
throughout. The GenBank 108.0 collection has 1,797 million nucleotide bases, in
2,532,359 sequences, with an average length of around 707; we refer to this collection
throughout as genbank108.

The third collection used, referred to throughout as verte, was around one third
of the genbank97 database, and contained the mammalian, primate, rodent, and
miscellaneous vertebrate and invertebrate databases. It contained approximately
177 million nucleotide bases in 121,623 sequences, with an average sequence length
of 1,456 bases. We chose this collection as it contains known homologues to some
of the query sequences we used, as well as a range of organisms and sequence types;
we use this collection both for speed comparison and for simple comparison of the
results sets obtained with different search tools.

2Flat-file, releases 97.0 (15 October 1996) and 108.0 (15 August 1998). The most recent release
110.0 (15 December 1998) has 2,162 million bases.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 19

Collection Inverted Other
lists (Mb) structures (Mb)

gbmam 25.4 3.3
verte 427.7 3.3

genbank97 1420.4 3.3
genbank108 3682.6 3.3

pirsf 23.6 0.1

Table 1: Cafe index size for the nucleotide collections, genbank108, genbank97,
verte, and gbmam and the amino-acid collection pirsf. For nucleotide searching,
cafe has an interval length of n = 9 and, for amino-acid searching, an interval
length of n = 3.

A third small collection was used for comparison of system speed only and is
a subsection of the verte collection. The collection was derived from the “other
mammalian sequence entry” database and is referred to throughout as gbmam. The
database contains just over 10 million nucleotide bases in 9,938 sequences with an
average length of 1,016 bases. Again, we chose this database for known similarity to
our query set and for the wide variation of mammals represented, with the exception
of primates.

We do not use nucleotide databases extensively for the assessment of retrieval
effectiveness, rather, we use them for the comparison of retrieval speed. However,
we have collected a query set from a variety of sources to at least evaluate responses
from the cafe approach and from exhaustive search tools. Some were sequences ob-
tained from users who work regularly with GenBank. Other queries were sequences
in GenBank that are known to have both close and distant matching sequences. In
total, there were 41 queries. The average query length was around 488 bases, the
shortest was 134, and the longest was 1,382. All experiments are carried out on a
recent Intel Pentium II dual processor machine running the Linux operating system
under light load, where the machine is otherwise largely idle.

4.1 Space

We show in Table 1 the cafe index sizes for the nucleotide GenBank collections,
and for the amino-acid pirsf collection. An interval length of n = 9 is used in
all nucleotide collections and n = 3 used in pirsf. The indexes are compressed
using techniques similar to those employed for text databases [54]. The sequence
identifiers and interval offsets in the cafe inverted lists are compressed using pa-
rameterised Golomb codes [21], with a local Bernoulli model used for selecting the
parameter k [54]. Elias gamma codes [18] are used to store in inverted lists the
count of offsets in each sequence. The search structure files largely consist of the
distinct indexed intervals. We have tried other interval lengths but have found that
n = 9 in nucleotide collections and n = 3 in amino-acid collections are reasonable
in size, support fast searching, and suitable for accurately identifying answers [48].

Compared to the genbank108 and genbank97 collections, the cafe indexes
are 2.2 times the size of the collections, while the corresponding verte index is 2.5
times the size of verte, and the index for pirsf is 1.9 times the collection size.

Without incorporating our special-purpose cafe compression scheme, the un-
compressed fine-grain inverted list size of pirsf is 133.3 Mb, or around 5.6 times
the size of the compressed inverted lists and over 10 times the size of the collection.
Similarly, the uncompressed fine-grain inverted list size for genbank97 is 6105 Mb,
around 3.9 times the compressed size and 9.7 times the collection size. While we

Williams and Zobel: Indexing and Retrieval for Genomic Databases 20

0 20 40 60 80 100

Recall (%)

0

20

40

60

80

100

P
re

ci
si

on
 (

%
)

blast 1
fasta
cafe
blast 2

Figure 8: Mean recall-precision for both versions of blast, fasta, and cafe. The
pirsf collection is used, with 1,834 amino-acid queries. We parameterise cafe
to use a banded local alignment fine search (similar to that used in fasta) and
the neighbourhood frames ranking metric. All systems use a PAM-250 matrix
scoring matrix.

have not carried out speed evaluations of uncompressed indexes, it is likely that
cafe query evaluation costs would be significantly slower through the increase in
disk retrieval associated with retrieving large, uncompressed lists; we have shown
elsewhere that, for example, the retrieval of uncompressed nucleotide data reduces
the speed of our cafe system [51].

Note that the GenBank database contains a great deal of information, such
as biological data, bibliographic data, and other annotations, in addition to the
sequences themselves. The latest release of GenBank is almost exactly 10 Gb in
size, and would require a 4 Gb cafe index. The size of the cafe indexes should be
viewed in the context of the whole database, not just the indexed sequences.

4.2 Retrieval Effectiveness

Figure 8 shows a mean recall-precision graph for both versions of blast, fasta, and
cafe. Results are shown for searching the pirsf collection with our 1,834 sequence
query test set. For parameters, cafe uses a gapped local alignment scheme for fine
searching (which is similar to that used in fasta), an interval length of n = 3, a fixed
maximum number of frames of f = 110,000, a maximum number of fine searched
frames of m = 5,000, a query filtering technique where any interval occuring in
more than 10% of database sequences is ignored in coarse searching, and the score-
optimised combined ranking scheme with neighbourhood.

Our results show that cafe searching is only marginally less accurate than
blast 1 and fasta, and that blast 2 is 1%–2% lower in precision at low recall levels
and has up to 10% lower precision at higher recall levels. Importantly, cafe search-
ing has both similar underlying heuristics and performance to fasta, which others
have shown is the most accurate rapid homology search system [31, 41]. Indeed,
our analysis suggests that cafe and fasta both accurately identify close, mod-
erate, and distant evolutionary relationships, including distant superfamily (SF)
similarities in the pirsf test data. As discussed earlier, because of the limitations
of pirsf, we believe that more accurate retrieval effectiveness measurement is at
lower recall levels; while blast 1 appears to have better performance at higher

Williams and Zobel: Indexing and Retrieval for Genomic Databases 21

Average blast 1 blast 2 cafe fasta

11-Point 93% 88% 92% 92%
3-Point 95% 91% 94% 95%

Table 2: Mean three-point and eleven-point recall-precision comparison of both ver-
sions of blast, fasta, and cafe.

blast 1 blast 2 cafe fasta

gbmam 0.6 0.4 1.2 8.0
verte 6.8 7.4 3.2 108.4

genbank97 67.1 19.2 9.2 823.0
genbank108 192.5 182.5 20.2 —

Table 3: Mean elapsed time for 41 nucleotide queries (average seconds per query) on
the genbank108, genbank97, verte, and gbmam collections, using both versions
of blast, fasta, and cafe. It was not possible to experiment with fasta on
genbank108 as the genbank108 uncompressed file size exceeds operating system
file system limits.

recall levels, fasta performs as well at lower recall levels and it is likely that given
better sequence classification that fasta would be better at higher recall levels also.

These results suggest that cafe is almost as effective as fasta in finding ho-
mologous gapped alignments at lower recall levels, being particularly sensitive in
ranking highly both closely and moderately related sequences. In ranking distantly
related sequences, cafe may be slightly less effective, however it is unlikely that a
difference of 1%–2% would be significant to users.

Often, a three-point and eleven-point average precision are calculated as stan-
dardised measures of retrieval effectiveness. The three-point precision averages pre-
cision at recall levels of 20%, 50%, and 80%; this gives a useful insight in the case of
the pirsf collection, since most queries result in precision values of 100% at levels
of 10%–20% recall and often do not result in 100% recall. Mean three-point and
eleven-point precision results, as shown in Table 2, also show the closeness in perfor-
mance of cafe to fasta and blast 1: results are either identical or within 1%. In
contrast, the three-point and eleven-point of blast 2 are 4%–5% lower than other
systems, suggesting that the speed improvements in blast 2 compared to blast 1
(which we report in the next section) are at the detriment of search accuracy.

4.3 Speed

We show in Table 3 the relative speeds of both versions of blast, fasta, and cafe
in searching the genomic nucleotide collections with our small 41-query test set.
These results are plotted in Figure 9. The parameters used in all searches are the
same as in Section 4.2.

Searching with cafe can be over eighty times faster than with fasta and eight
times faster than with blast 2. Cafe has high constant costs, due to the necessity
to initialise and search the frames structures. These costs are reflected in times
for gbmam and, to a lesser extent, verte. As the data set size increases, cafe
times rise reasonably slowly, with a doubling in data size leading to around a 90%
increase in time.

In contrast, fasta and blast have small initial costs, but search times rise
rapidly. (For blast 2 the times reported in Table 3 are distorted by a single
difficult query that, while not especially long, contains large numbers of repetitive

Williams and Zobel: Indexing and Retrieval for Genomic Databases 22

0 500 1000 1500

Collection Size (Mb)

0

50

100

150

200

T
im

e
(S

ec
on

ds
)

fasta
blast 1
blast 2
cafe

Figure 9: Plot of the time for blast, cafe, and fasta to search the nucleotide col-
lections gbmam, verte, genbank97, and genbank108, averaged over 41 queries.

intervals that are in most database sequences. Without this query, for the smaller
collections the correlation between size and time is extremely close.)

However, these algorithms are highly reliant on having sufficient memory to
store the complete database. When database size exceeds available memory, times
increase steeply; indeed, the blast documentation states that blast should only
be run on machines with sufficient main memory to hold the complete stored data.
For blast 2, in which data is stored compressed, this transition occurs between
genbank97 and genbank108. For blast 1 this transition occurs between verte
and genbank97. For the most recent release of GenBank, blast 2 would require
over 600 Mb of main memory. In contrast, cafe would only require around 100 Mb,
while for the smaller genbank97 about 70 Mb is required. That is, while the
memory requirements of blast scale linearly with database size, those of cafe
grow very slowly.

In cafe evaluation times depend on query length and on the statistics of the in-
tervals in the query; intervals with longer inverted lists require more processing. On
genbank108 the shortest query (of 58 bases) requires only 7.4 seconds, compared
to the average of 20.2 seconds. The longest query requires twice the average time.
As for ramdb extremely short queries can be run very quickly indeed. For blast
query length is less important with the shortest query requiring 174.9 seconds, little
different from the average.

Although we do not present detailed results here for searching the small pirsf
collection, cafe times are similar to those of blast 2, but around 1.5 times faster
than blast 1, and over 2.2 times faster than fasta; as we have shown for nucleotide
searching, cafe is likely to become relatively much faster with increasing collection
size.

5 Conclusions

There is a growing need for fast, efficient searching of genomic databases. Cur-
rent databases contain billions of nucleotide bases and are queried tens of thou-
sands of times per day. These databases are growing rapidly, and—as they be-
come increasingly complete and cover increasing numbers of species and, potentially,
individuals—will reach trillions of nucleotide bases within the next few years.

In this paper, we have shown that genomic query evaluation using the cafe

Williams and Zobel: Indexing and Retrieval for Genomic Databases 23

indexed scheme and appropriate data structures affords much faster query evalua-
tion than exhaustive searching, with better accuracy than the most commonly used
search tool, blast 2. This successful application of indexing to genomic data shows
that, as for other search applications, indexing becomes preferable to exhaustive
search once data set size is sufficiently large. The innovations that allow cafe to
be faster than previous techniques are the incorporation of compression for data
and indexes; the use of frames, a novel data structure for identifying and man-
aging likely homologous sequences; partial sequence retrieval of longer sequences
to minimise local alignment costs; and new local alignment techniques based on
frames. In the process of developing cafe we found that each of these innovations
was essential to good performance.

In contrast to previous search techniques, cafe is fast and has low memory re-
quirements but depends on large indexes. We believe that this trade-off is necessary
for searching of large genomic databases. Moreover, these indexes are smaller than
the annotated source databases, and are much smaller than the indexes of previous
indexed systems such as flash. Overall, we are confident that indexed systems
such as cafe will be the only practical option for searching the vast quantities of
genomic data that will soon be available.

Acknowledgments

We thank Craig Primmer from the University of Helsinki, Finland for his ongo-
ing involvement in the cafe project. This work was supported by the Australian
Research Council and the Multimedia Database Systems group at RMIT University.

Availability

The index-based gapped search system (cafe) is available free of charge by request
to the authors.

References

[1] S. Altschul, M. Boguski, W. Gish, and J. Wootton. Issues in searching molecular
sequence databases. Nature Genetics, 6:119–129, 1994.

[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215:403–410, 1990.

[3] S.F. Altschul. Amino acid substitution matrices from an information theoretic per-
spective. Journal of Molecular Biology, 219:555–565, 1991.

[4] S.F. Altschul. A protein alignment scoring system sensitive at all evolutionary dis-
tances. Journal of Molecular Evolution, 36:290–300, 1993.

[5] S.F. Altschul and W. Gish. Local alignment statistics. Methods in Enzymology,
266:460–480, 1996.

[6] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J.
Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[7] I. Anderson and A. Brass. Searching DNA databases for similarities to DNA se-
quences: when is a match significant? Bioinformatics, 14(4):349–356, 1998.

[8] A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence data bank and its
new supplement TrEMBL. Nucleic Acids Research, 24:21–25, 1996.

[9] W.C. Barker, F. Pfeiffer, and D.C. George. Superfamily classification in PIR-
International protein sequence database. Methods in Enzymology, 266:59–71, 1996.

[10] G.J. Barton. Protein sequence alignment and database scanning. In M. J. E. Stern-
berg, editor, Protein Structure Prediction: A Practical Approach. IRL Press at Oxford
University Press, 1996.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 24

[11] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, and B.F. Ouellette. GenBank.
Nucleic Acids Research, 26(1):1–7, 1998.

[12] A. Califano and I. Rigoutsos. FLASH: A fast look-up algorithm for string homology.
In International Conference on Intelligent Systems for Molecular Biology, pages 56–
64, Bethesda, MD, 1993.

[13] K-M. Chao, W.R. Pearson, and W. Miller. Aligning two sequences within a specified
diagonal band. Computer Applications in the Biosciences, 8(5):481–487, 1992.

[14] F. Collins and D. Galas. A new five-year plan for the US human genome project.
Science, 262:43–46, 1993.

[15] F.S. Collins, A. Patrinos, E. Jordan, A. Chakravarti, R. Gesteland, and L. Walters.
New goals for the U.S. human genome project: 1998-2003. Science, 282(5389):682–
689, 1998.

[16] M.O. Dayhoff. Atlas of Protein Sequence and Structure. National Biomedical Research
Foundation, Washington, D.C., 1978.

[17] R.F. Doolittle. Of URFs and ORFs. University Science Books, Mill Valley, CA, 1986.

[18] P. Elias. Universal codeword sets and representations of the integers. IEEE Transac-
tions on Information Theory, IT-21(2):194–203, March 1975.

[19] C. Fondrat and P. Dessen. A rapid access motif database (RAMdb) with a search
algorithm for the retrieval patterns in nucleic acids or protein databanks. Computer
Applications in the Biosciences, 11(3):273–279, 1995.

[20] D. George, W. Barker, H. Mewes, F. Pfeiffer, and A. Tsugita. The PIR-international
protein sequence database. Nucleic Acids Research, 24:17–20, 1996.

[21] S.W. Golomb. Run-length encodings. IEEE Transactions on Information Theory,
IT–12(3):399–401, July 1966.

[22] S. Karlin and S.F. Altschul. Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proc. National Academy
of Sciences USA, 87:2264–2268, 1990.

[23] T.G. Larson and S.H. Goodgal. Sequence and transcriptional regulation of com101a,
a locus required for genetic transformation in haemophilus influenzae. Journal of
Bacteriology, 173:4683–4691, 1991.

[24] C. Liébecq, editor. Biochemical Nomenclature and Related Documents, pages 122–126.
Portland Press, London, 2nd edition, 1992.

[25] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches.
Science, 227:1435–1441, 1985.

[26] S. McGinnis. Personal communication. (GenBank user services, National Centre
for Biotechnology Information (NCBI), National Library of Medicine, US National
Institute of Health), January 1998.

[27] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM
Transactions on Information Systems, 14(4):349–379, October 1996.

[28] E.W. Myers. Advances in sequence assembly. In C. Venter, editor, Automated DNA
Sequencing and Analysis Techniques, pages 231–238. Academic Press, 1994.

[29] B.C. Orcutt and W.C. Barker. Searching the protein database. Bulletin of Mathe-
matical Biology, 46:545–552, 1984.

[30] W.R. Pearson. Rapid and sensitive sequence comparison with FASTP and FASTA.
Methods in Enzymology, 183:63–98, 1990.

[31] W.R. Pearson. Comparison of methods for searching protein-sequence databases.
Protein Science, pages 1145–1160, 1995.

[32] W.R. Pearson. Protein sequence comparison and protein evolution. In International
Conference on Intelligent Systems for Molecular Biology, Cambridge, UK, 1995. (tu-
torial).

[33] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.
Proc. National Academy of Sciences USA, 85:2444–2448, 1988.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 25

[34] W.R. Pearson and W. Miller. Dynamic programming algorithms for biological se-
quence comparison. Methods in Enzymology, 210:575–601, 1992.

[35] G. Pesole, N. Prunella, S. Liuni, M. Attimonelli, and C. Saccone. WORDUP: an
efficient algorithm for discovering statistically significant patterns in DNA sequences.
Nucleic Acids Research, 20(11):2871–2875, 1992.

[36] C.M. Rice, R. Fuchs, D.G. Higgins, P.J. Stoehr, and G.N. Cameron. The EMBL data
library. Nucleic Acids Research, 21:2967–2971, 1993.

[37] E. Rivals, O. Delgrange, J.-P. Delahaye, M. Dauchet, M.-O. Delorme, A. Hénaut,
and E. Ollivier. Detection of significant patterns by compression algorithms: the case
of approximate tandem repeats in DNA sequences. Computer Applications in the
Biosciences, 13(2):131–136, 1997.

[38] G. Salton. Automatic Text Processing. Addison Wesley, Massachusetts, 1989.

[39] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, New York, 1983.

[40] D. Sankoff and J.B. Kruskal, editors. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, Mas-
sachusetts, 1983.

[41] E.G. Shpaer, M. Robinson, D. Yee, J.D. Candlin, R. Mines, and T. Hunkapiller.
Sensitivity and selectivity in protein similarity searches: A comparison of Smith-
Waterman in hardware to BLAST and FASTA. Genomics, 38:179–191, 1996.

[42] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981.

[43] D.J. States, W. Gish, and S.F. Altschul. Improved sensitivity in nucleic acid database
searches using application-specific scoring matrices. Methods: A Companion to Meth-
ods in Enzymology, 3(1):66–70, 1991.

[44] M.S. Urdea, J.P. Merryweather, G.T. Mullenbach, D. Coit, U. Heberlein, P. Valen-
zuela, and P.J. Barr. Chemical synthesis of a gene for human epidermal growth
factor urogastrone and its expression in yeast. Proceedings of the National Academy
of Science, 80(24):7461–7465, 1983.

[45] M.S. Waterman. Introduction to Computational Biology: Maps, Sequences and
Genomes. Chapman and Hall, London, 1995.

[46] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid and protein
data banks. Proceedings of the National Academy of Science, 80:726–730, 1983.

[47] H.E. Williams. Compressed indexing for genomic retrieval. Journal of Mathematical
Modelling and Scientific Computing, 9(2):144–154, 1998.

[48] H.E. Williams. Indexing and Retrieval for Genomic Databases. PhD thesis, RMIT
University, 1998.

[49] H.E. Williams. Effective query filtering for fast homology searching. In Pacific Sym-
posium on Biocomputing, volume 4, pages 214–225, Hawaii, 1999.

[50] H.E. Williams and J. Zobel. Indexing nucleotide databases for fast query evalua-
tion. In Proc. International Conference on Advances in Database Technology (EDBT),
pages 275–288, Avignon, France, March 1996. Springer-Verlag. Lecture Notes in Com-
puter Science 1057.

[51] H.E. Williams and J. Zobel. Compression of nucleotide databases for fast searching.
Computer Applications in the Biosciences, 13(5):549–554, 1997.

[52] H.E. Williams and J. Zobel. Compressing integers for fast file access. Computer
Journal, 42(3):193–201, 1999.

[53] R.W. Williams. The portable dictionary of the mouse genome: a personal database
for gene mapping and molecular biology. Mammalian Genome, 5:372–375, 1994.

[54] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and Index-
ing Documents and Images. Van Nostrand Reinhold, New York, 1994.

Williams and Zobel: Indexing and Retrieval for Genomic Databases 26

[55] F. Wolfertstetter, K. Frech, G. Herrmann, and T. Werner. Identification of func-
tional elements in unaligned nucleic acid sequences by a novel tuple search algorithm.
Computer Applications in the Biosciences, 12(1):71–80, 1996.

[56] J.C. Wootton and S. Federhen. Statistics of local complexity in amino acid sequences
and sequence databases. Computers in Chemistry, 17:149–163, 1993.

[57] J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software
Practice and Experience, 25(3):331–345, March 1995.

[58] J. Zobel, A. Moffat, and R. Sacks-Davis. Searching large lexicons for partially specified
terms using compressed inverted files. In Proc. International Conference on Very
Large Databases, pages 290–301, Dublin, Ireland, 1993.

