
Compressing Integers for Fast File
Access

Hugh E. Williams and Justin Zobel

Department of Computer Science, RMIT University
GPO Box 2476V, Melbourne 3001, Australia

Email: {hugh,jz}@cs.rmit.edu.au

Fast access to files of integers is crucial for the efficient resolution of queries to
databases. Integers are the basis of indexes used to resolve queries, for exam-
ple, in large internet search systems and numeric data forms a large part of most
databases. Disk access costs can be reduced by compression, if the cost of retriev-
ing a compressed representation from disk and the CPU cost of decoding such a
representation is less than that of retrieving uncompressed data. In this paper we
show experimentally that, for large or small collections, storing integers in a com-
pressed format reduces the time required for either sequential stream access or
random access. We compare different approaches to compressing integers, includ-
ing the Elias gamma and delta codes, Golomb coding, and a variable-byte integer
scheme. As a conclusion, we recommend that, for fast access to integers, files be

stored compressed.

Keywords: Integer compression, variable-bit coding, variable-byte coding, fast file access,
scientific and numeric databases.

1. INTRODUCTION

Many data processing applications depend on efficient
access to files of integers. For example, integer data is
prevalent in scientific and financial databases, and the
indexes to databases can consist of large sequences of
integer record identifiers. Fast access to numeric data,
whether in an index or as part of the data, is essential
to the efficient resolution of queries.

For document databases, compression schemes can
allow retrieval of stored text to be faster than when
uncompressed, since the computational cost of decom-
pression can be offset by reductions in disk seeking and
transfer costs [1]. In this paper we explore whether
similar gains are available for numeric data. We have
implemented several integer coding schemes and eval-
uated them on collections derived from large indexes
and scientific data sets. For comparison, we contrast
our results with the theoretical space requirement, the
entropy, and with retrieval of uncompressed data.

We describe several different methods of storing inte-
gers for fast file access on disk. We select and evaluate
schemes that, when carefully coded, yield reasonable
compression and fast retrieval of numeric data. In se-
lecting schemes, we have chosen practical approaches
that maximise speed, have static coding models, min-
imise disk space requirements, minimise main-memory
use, and—because the model is not adaptive—allow
order-independent record-based decompression. Our
selection of techniques results in two possible classes:
first, we consider the bit-wise Elias gamma and delta

codes [2], and parameterised Golomb codes [3]; second,
we evaluate byte-wise storage using standard four-byte
integers and a variable-byte scheme.

We have found in our experiments that coding us-
ing a tailored integer compression scheme can allow
retrieval to be up to twice as fast than with integers
stored uncompressed. Indeed, for files of more than a
few megabytes in size, simple variable-byte represen-
tations improve data throughput compared to storing
data using standard four-byte integers. Our conclusion
is that, for fast access to files containing integers, they
should be stored in a compressed format.

2. BACKGROUND

Compression consists of two activities, modelling and
coding [4]. A model for data to be compressed is a
representation of the distinct symbols in the data and
includes information such as frequency about each sym-
bol. Coding is the process of producing a compressed
representation of data, using the model to determine a
code for each symbol. An efficient coding scheme as-
signs short codes to common symbols and long codes to
rare symbols, optimising code length overall.

Adaptive schemes (where the model evolves as the
data is processed) are currently favoured for general-
purpose compression [5, 6], and are the basis of utilities
such as compress . However, because databases are di-
vided into small records that must be independently de-
compressible [1], adaptive techniques are generally not
effective. Moreover, the requirement of atomic decom-



2 Williams and Zobel

pression precludes the application of vertical compres-
sion techniques—such as the READ compression com-
monly used in images [7]—that take advantage of differ-
ences between adjacent records. For text, for example,
Huffman coding with a semi-static model is the method
of choice because it is fast and allows order-independent
decompression [7]. Similarly, arithmetic coding is in
general a preferred coding technique; but it is slow for
decompression and unsuitable as a candidate for fast
file access [8].

In this paper, we investigate semi-static and static
modelling schemes that are specific to and effective for
integer data. Static modelling approaches have a model
implicit in the compression algorithm and, therefore, do
not require a model to be independently stored. We in-
vestigate using such integer coding approaches to pro-
vide faster file access than is available when integers are
stored in an uncompressed 32-bit format.

The speed of file access is determined by two fac-
tors: first, the CPU requirements of decoding the com-
pressed representation of the data and, second, the time
required to seek for and retrieve the compressed data
from disk. Without compression, the file access cost
is only the time required to retrieve the uncompressed
representation from disk. For a compression scheme to
allow faster file access, the total retrieval time and CPU
processing costs must be less than the retrieval time of
the uncompressed representation. It is therefore im-
portant that a compression scheme be efficient in both
decompression CPU costs and space requirements.

Space efficiency for a given data set can be measured
by comparison to the information content of data, as
represented by the entropy determined by Shannon’s
coding theorem [9]. Entropy is the ideal compression
that is achievable for a given model. For a set S of
symbols in which each symbol t has probability of oc-
currence pt, the entropy is

E(S) =
∑

t∈S

(−pt · log2 pt)

bits per symbol. Implicit in this definition is the
representation of the data as a set of symbol occur-
rences, that is, modeling of the data using simple to-
kens. In some domains, different choices of tokens give
vastly varying entropy. There are several possible to-
ken choices for integer data, the most obvious of which
is modeling each integer as a token. We report entropy
in Section 4 using this integer token model.

In the remainder of this section, we describe variable-
byte and variable-bit integer coding schemes that use
static and semi-static models.

2.1. Variable-Byte Coding

With integers of varying magnitudes, a simple variable-
byte integer scheme provides some compression.
Variable-byte schemes are particularly suitable for stor-
ing short arrays of integers that may be interspersed

with other data and, because of the byte-alignment,
are fast to decode or retrieve from disk. In addition,
variable-byte integers allow the storage of arbitrarily
large integers.

We use a variable-byte representation in which seven
bits in each byte is used to code an integer, with the
least significant bit set to 0 in the last byte, or to 1
if further bytes follow. In this way, small integers are
represented efficiently; for example, 135 is represented
in two bytes, since it lies in the range [27 · · · 214), as
00000011 00001110; this is read as 00000010000111 by
removing the least significant bit from each byte and
concatenating the remaining 14 bits. Variable-byte
codes for selected integers in the range 1–30 are shown
in Table 1. A typical application is the coding of index
term and inverted list file offset pairs for an inverted
index [10].

When storing large arrays of integers, variable-byte
integers are generally not as space efficient as variable-
bit schemes. However, when storing only a few inte-
gers, byte-aligned variable-byte schemes have almost
the same space requirements as variable-bit schemes
padded for byte-aligned storage. Variable-byte integers
also work well with data sets where the structure of
the data is unknown and different variable-bit schemes
cannot be selectively applied. Moreover, variable-byte
integers require few CPU operations to decode.

A pseudo-code description of the variable-byte decod-
ing algorithm is shown in Figure 1. In this algorithm,
integers are coded in an array of bytes A on disk and
decoded into an integer v. We use the symbols / and .
throughout to denote left and right bit-wise shifts. The
operation head(A) returns one byte from the head of
the array A and then consumes the byte. The coded
integer v is retrieved by processing bytes of the array
A, where each byte is stored in a single-byte integer i,
while the least-significant bit is one. The operation

v ←− (v / 7) + ((i . 1) bit-and 0x7F)

concatenates the seven most-significant bits of i, which
code the integer, to v; the bitwise and of 0x7F hex-
adecimal with i right-shifted by one ensures bit that
the most-significant bit of i is zero.

Note the return of v + 1 in the last step, so that this
scheme can only be used for positive integers (as for all
the coding schemes in this paper). There are obvious
modifications to this scheme and the other schemes to
allow representation of zero or negative integers.

2.2. Non-Parameterised Variable-Bit Coding

More efficient coding of larger arrays of integers is pos-
sible by using variable-bit schemes. Ideally, however,
the structure of data sets to be coded is known and
variable-bit schemes appropriate to the magnitude and
clustering of the data can be applied selectively. There
are two possible approaches to variable-bit coding: non-
parameterised coding represents integers using a fixed



Compressing Integers for Fast File Access 3

1 10 100 1000 10000 100000 1000000

Integer coded

0

10

20

30

40

C
od

e 
le

ng
th

 (
bi

ts
)

Gamma coding
Delta coding
Golomb coding (k = 10)
Variable-byte integer coding

FIGURE 2. Code lengths in bits of Elias gamma and delta codes, a Golomb code with k = 10, and variable-byte integer
codes for integers in the range 1 to around 1 million.

VariableByteRead(A)
int i = 0x1
int v = 0

1. while ((i bit-and 0x1) = 0x1)
2. i←− head(A)
3. v ←− (v / 7) + ((i . 1) bit-and 0x7F)
4. return v + 1

FIGURE 1. Pseudo-code for decompression of variable-
byte integers. Each byte stores an integer as the seven most
significant bits in each byte, with the least-significant bit in-
dicating whether another byte follows. In this example, a 0
indicates that this is the last byte, while a 1 (0x1) indicates
that another byte follows. Integers are coded in an array of
bytes A on disk and decoded into an integer v. The coded
integer is retrieved by removing the least significant bit from
each byte and concatenating the remaining bits.

coding scheme; while parameterised coding represents
integers relative to a constant that is calculated or
stored for decompression. We discuss in this section
static non-parameterised schemes and in the next sec-
tion semi-static parameterised methods.

Elias coding [2] is a non-parameterised method of
coding integers that is, for example, used in large text
database indexes [8] and specialist applications [10, 11].
Elias coding, like the other schemes described in this
paper, allows unambiguous coding of integers and does
not require separators between each integer of a stored
array. There are two distinct Elias coding methods,
gamma and delta coding.

In the Elias gamma code, a positive integer x is repre-
sented by 1 + blog2 xc in unary (that is, blog2 xc 0-bits
followed by a 1-bit), followed by the binary represen-
tation of x without its most significant bit. Thus 9 is
represented by 0001001, since 1 + blog2 9c = 4, or 0001
in unary, and 9 is 001 in binary with the most signif-
icant bit removed. In this way, 1 is represented by 1,

that is, is represented in one bit. Gamma coding is
efficient for small integers but is not suited to large in-
tegers, for which parameterised codes (described in the
next section) or the other Elias code, the delta code,
are more suitable.

Elias delta codes are somewhat longer than gamma
codes for small integers, but for larger integers, such
as document numbers in a large index, the situation
is reversed. For an integer x, a delta code stores the
gamma code representation of 1+log2 x, followed by the
binary representation of x less the most significant bit.

Selected Elias codes for integers in the range 1–30
are shown in Table 1. A comparison of code lengths in
bits for integers in the range 1 to around 1 million coded
with gamma, delta, variable-byte coding, and a Golomb
code (described below) is in Figure 2. Observe that for
most numbers variable-byte codes are actually shorter
than than the other codes, but nonetheless in practice
they would be expected to be less efficient: in many ap-
plications the distribution of numbers is strongly skewed
towards small values, the region where variable-byte
codes are least efficient.

Pseudo-code for Elias gamma coding decompression
is shown in Figure 3. Integers are shown coded in an
array of bits B on disk and are decoded into an integer
v. The function head(B) returns one bit from the head
of the bit array B and then consumes the bit. The bit-
wise coded integer v is decoded by processing bits from
the array B: first, v is set to 1 to prepend a 1 to the
returned value; second, a magnitude m is read in unary,
being 1 + log2 v; last, m bits are read, appended to v,
and returned. For efficiency, an array of variable-bit
codes is usually padded for byte-alignment for storage
on disk and the array of variable-bit integers read into
main-memory before decoding each integer.

Elias delta coding pseudo-code is shown in Figure 4.
Integers are again shown coded in an array of bits B
on disk and are decoded into an integer v. The integer
v is decoded by first retrieving the gamma-coded value



4 Williams and Zobel

TABLE 1. Representations of selected integers in the range 1–30 as uncompressed eight-bit integers, Elias gamma codes,
Elias delta codes, Golomb codes with k = 3 and k = 10, and variable-byte integers. Spacing in the Elias, Golomb, and
variable-byte codes separates the prefix of the code from the suffix.

Decimal Uncompressed Elias Gamma Elias Delta Golomb (k = 3) Golomb (k = 10) Variable-byte
1 00000001 1 1 1 10 1 001 0000001 0
2 00000010 0 10 0 100 1 11 1 010 0000010 0
3 00000011 0 11 0 101 01 0 1 011 0000011 0
4 00000100 00 100 0 1100 01 10 1 100 0000100 0
5 00000101 00 101 0 1101 01 11 1 101 0000101 0
6 00000110 00 110 0 1110 001 0 1 1100 0000110 0
7 00000111 00 111 0 1111 001 10 1 1101 0000111 0
8 00001000 000 1000 00 100000 001 11 1 1110 0001000 0
9 00001001 000 1001 00 100001 0001 0 1 1111 0001001 0
10 00001010 000 1010 00 100010 0001 10 01 000 0001010 0
11 00001011 000 1011 00 100011 0001 11 01 001 0001011 0
12 00001100 000 1100 00 100100 00001 0 01 010 0001100 0
13 00001101 000 1101 00 100101 00001 10 01 011 0001101 0
14 00001110 000 1110 00 100110 00001 11 01 100 0001110 0
15 00001111 000 1111 00 100111 000001 0 01 101 0001111 0
16 00010000 0000 10000 00 1010000 000001 10 01 1100 0010000 0
20 00010100 0000 10100 00 1010100 0000001 11 001 000 0010100 0
25 00011010 0000 11001 00 1011001 000000001 10 001 101 0011010 0
30 00011110 0000 11110 00 1011110 00000000001 0 0001 000 0011110 0

GammaRead(B)
int m = 0
int i,j
int v = 0x1

1. i←− head(B)
2. while (i = 0x0)
3. m←− m + 1
4. i←− head(B)
5. for j = 1 to m
6. i←− head(B)
7. v ←− (v / 1) bit-or i
8. return v

FIGURE 3. Pseudo-code for the decompression of
variable-bit Elias gamma codes. Elias gamma codes store
an integer v as 1 + blog2 vc in unary followed by the binary
representation of v without its most significant bit. In this
pseudo-code, integers are coded in an array of bits B on disk
and decoded into an integer v; for efficiency in all variable-
bit coding, the array is typically padded for byte-alignment.

of 1 + logs v as the magnitude m and then retrieving
the binary representation of v less the most significant
bit. As in gamma coding, a 1 is prepended to v by
initialising v as 1, and v returned.

We have described above unary coding as part of the
implementation of Elias gamma coding. Unary coding
is, however, a scheme that can be used independently
as a bit-wise coding scheme for very small integers. Ap-

plications of unary coding are, however, limited, as the
length of the code for an integer v is v and only small
integers can be coded efficiently. Because of this limi-
tation of unary coding, we do not experiment with it as
an independent scheme in our experiments.

For applications where integers are sorted, non-
parameterised coding can be used to code the differ-
ences between the second and successive integers, rather
than the integers. For example, consider an array of in-
tegers

725, 788, 1045, 6418, . . .

that can, after taking differences between integers, be
coded as

725, 63, 257, 5373, . . .

While the savings are not immediately obvious, if this
short array were delta coded without taking differences,
68 bits would be required to store the integers, but by
taking differences only 60 bits are required.

2.3. Parameterised Variable-Bit Coding

As we show later, Elias codes yield acceptable compres-
sion and fast decoding, however better performance in
both respects is possible with parameterised techniques,
such as Golomb codes [3, 7]. The restriction, however,
is that a parameter k must be calculated (and, in many
cases, stored) with each array of coded integers. Indeed,
the choice of k has significant impact on the compres-
sion using a parameterised model. We discuss Golomb
coding below and briefly discuss choice of k later.



Compressing Integers for Fast File Access 5

DeltaRead(B)
int i,j
int m
int v =0x1

1. m←− GammaRead(B)
2. for j = 1 to m
3. i←− head(B)
4. v ←− (v / 1) bit-or i
5. return v

FIGURE 4. Pseudo-code for the decompression of
variable-bit Elias delta codes. Elias delta codes store an in-
teger v as the Elias gamma code of 1 + log2 v, followed by
the binary representation of v without its most significant
bit. Integers are coded in an array of bits B on disk and
decoded into an integer v.

Using Golomb coding, a positive integer v is repre-
sented in two parts: the first is a unary representation
of the quotient q = b(v−1)/kc+1; the second is a binary
representation of the remainder r = v − q × k − 1. Us-
ing this approach, d different remainders can be stored
using i = blog kc bits, where d = 2i+1− k, and all other
remainders require i + 1 bits. That is, the binary rep-
resentation of the remainder r may require blog kc or
dlog ke bits.

A pseudo-code description of the Golomb decoding
algorithm is shown in Figure 5. In this description, an
integer v is retrieved from a bit array B using a con-
stant parameter k. As previously, head(B) returns and
consumes one bit from the head of B. Steps 1 and 2
initialise constants; we discuss these later. Steps 3–6
retrieve from the bit array B the unary coded quotient
q, where q = b(v − 1)/kc + 1. Steps 7–9 retrieve the
shortest possible bit-string representing the remainder
r, that is, the first i bits calculated in step 1 where
i = blog2 kc. The constant d from step 2 is used to
determine the “toggle point” where an extra bit is re-
quired to code the remainder r. Step 10 tests whether
the remainder r retrieved so far is greater than the “tog-
gle point” d and, if so, an additional bit is retrieved in
steps 11 and 12. The value of v is calculated by multi-
plying the quotient q by the constant k and adding the
remainder r + 1 in step 13. Step 14 returns v.

Several optimisations in this Golomb decoding al-
gorithm are possible. First, calculating the values of
i = log2 k and d = (1 / (i+1))−k for each integer in an
array of coded integers is unnecessary, since each integer
uses the same k value; accordingly, an array of k, i, and
d values can be stored and each constant calculated once
only. Second, bits can be retrieved in blocks: log2 k + 1
bits may be retrieved for the remainder (which, in many
cases, is one bit more than needed, requiring that the
“extra bit” be stored in memory and passed as a param-
eter to decode the next Golomb-coded integer). Last,
larger blocks of bits may also be retrieved from an in-

GolombRead(B, k)
int q = 0
int r = 0x0
int v, d, i, j, l

1. i←− log2 k
2. d←− (1 / (i + 1))− k
3. l ←− head(B)
4. while (l = 0x0)
5. q ←− q + 1
6. l ←− head(B)
7. for j = 1 to i
8. l ←− head(B)
9. r ←− (r / 1) bit-or l
10. if (r > d)
11. l←− head(B)
12. r ←− ((r / 1) bit-or l)− d
13. v ←− q × k + r + 1
14. return v

FIGURE 5. Pseudo-code for the decompression of param-
eterised variable-bit Golomb codes. Integers are coded in an
array of bits B using a constant k and are decoded in to an
integer v. Golomb codes store the integer v as a quotient q
and a remainder r. The quotient q is stored in unary, while
the remainder is stored in binary requiring blog kc or dlog ke
bits (either i or i + 1 bits). Steps 7–9 retrieve the first i bits
of the remainder, while the pre-calculated value of d and the
if test (steps 10–12) are used to assess whether a further bit
is required and to retrieve that bit.

memory bit array encompassing both the quotient and
the remainder, where bits that are not processed in de-
coding an integer may be subsequently restored to the
bit array. Such efficiencies are important in decoding
arrays of Golomb coded integers to ensure that, while
they are generally more space efficient that Elias codes,
that they are also faster to decode.

Selection of the parameter k is also important for
both the space and time efficiency of Golomb coding.
Witten et al. [7] report that, for cases where the proba-
bility of any particular value occurring is small, an ap-
proximate calculation of k can be used. Where there is
a wide range of values to be coded and each occurs with
reasonable frequency, a practical global approximation
of the Golomb parameter k is

k ≈ 0.69×mean(v)

This model for selection of k is referred to as a Bernoulli
model, since each coded integer is assumed to have an
independent probability of occurrence and the occur-
rences of different values have a geometric distribution.

Skewed Bernoulli models, where a simple mean dif-
ference is not used, typically result in better compres-
sion than simple global models [12]. We have exper-
imented with global Bernoulli models, but not with
skewed models because of the increased complexity in



6 Williams and Zobel

calculating and storing appropriate k values. However,
we would expect further small space savings through
using a skewed model. Golomb codes for integers in the
range 1–30, with two parameters of k = 3 and k = 10,
are shown in Table 1. Further compression is also pos-
sible in specific applications by using semi-static mod-
els for different probability distributions, such as in in-
verted index posting lists where integers are sorted in
increasing order and integers are often clustered [13].

3. TEST DATA

To evaluate the performance of integer coding tech-
niques for fast file access, we use collections derived
from scientific data and inverted indexes. In this selec-
tion we have focused on collecting large and small data
sets that consist primarily of numeric data. We have
removed from each data set any textual record markers
and stored the numeric data as uncompressed 32-bit
integers. These uncompressed integer collections are
used as the baseline for comparison to the compressed
variable-bit and variable-byte coded collections.

The scientific data sets used are derived from weather
station measurements, temperatures, map contours,
satellite greyscale image data, and prime numbers. The
weather data (weather) contains 20,175 records col-
lected from each of 5 weather stations, where each sta-
tion record contains 4 sets of 22 measurements (such as
temperatures, elevations, rainfall, and humidity); in to-
tal weather is 38.2 Mb. A much smaller temperature
data set (temps) was collected at ten minute intervals
over a period of around 40 days from the Australian
Bureau of Meteorology. The temps data set contains
measurements of temperatures in Melbourne, Australia
and surrounding districts, where each temperature mea-
surement is prefixed by a system clock value, giving a
total of 2.8 Mb. A complex land contour map (map)
was exported from a proprietary mapping application
and stored as a file of integer elevations for all map
points, giving 754.5 Mb. Our land satellite data (land-
sat) contains layered satellite images of the Gippsland
lakes (Victoria, Australia) used in water quality exper-
iments, where each layer is collected at a different fre-
quency spectrum, giving a total of 156.4 Mb. A prime
number collection of the first one million prime numbers
(prime) is 3.8 Mb.

Integer compression has been shown previously to of-
fer space efficient representation of indexes [8, 13, 14].
Inverted file indexes contain large sorted arrays of inte-
gers or postings representing occurrences of terms in a
collection. Each postings array contains a sorted list
of document identifiers and, in many indexes, inter-
spersed between each document identifier is a sorted
array of one or more word positions of that term in the
document. We experiment with an uncompressed in-
dex postings list of 630.5 Mb (vector) extracted from
a much larger carefully compressed 3,596 Mb postings
file used in the cafe [10] indexed genomic retrieval sys-

tem.1 This postings list contains both document iden-
tifiers and interleaved word positions.

In several experiments we compress integers with-
out considering structure inherent in the data. That
is, we apply the same compression scheme to each col-
lection, treating the collection as a stream of integers;
in the case of Golomb coding, we use one calculated
global coding constant k for each file. This is a worst-
case for compression schemes, since structure can be
used to achieve better compression by choosing cod-
ing methods appropriate to the magnitude, ordering,
and clustering of integers. For example, consider an
index postings list: document identifiers may be rep-
resented by taking differences between adjacent iden-
tifiers and coded with a local parameterised Golomb
code; counts of word positions for each document may
be stored using a gamma code; and word positions may
be coded as differences using a separate local parame-
ter to a Golomb code. To illustrate the fast file access
possible by using known structure of a file type, we
also show experiments with temps, prime, and vec-
tor where such selected variable-bit coding has been
applied.

4. RESULTS

We investigate both sequential stream access and ran-
dom access to our test collections. Random access to
compressed data is a requirement in indexing and a
likely method of access to many scientific data sets. For
example, individual layered images may be retrieved
from a set of satellite images, only selected weather sta-
tion data may be required from a large database, or
individual spatial map components may be rendered
in a mapping system. Zobel and Moffat [1] explored
access speeds to uncompressed and compressed text,
and showed that compressed text gives the relative best
performance during random-access, when reductions in
seek times are significant; in contrast, with sequential
access only transfer rates and CPU time are involved.
Compared to sequential access, therefore, we would ex-
pect random access to compressed data to be relatively
faster than random access to uncompressed data.

To allow random access, we store a separate file of
offsets for each collection, where each offset represents
a file position in the collection that is the beginning
of a block of 1,000 integers; for vector, we do not
block the data in this way, but instead—in the same
way as the cafe genomic retrieval system [10]—we treat
each postings list as a record, where the average record
length is 23,866 integers. We chose 1,000 integers per
block to simulate record structure, as this was around
the size of a typical record in weather and an image

1We were unable to experiment with the full uncompressed in-
dex, as the integer representation was impractical to store as a
single file (because of operating system file size limits). An un-
compressed integer representation of the full postings array would
require almost 13 Gb.



Compressing Integers for Fast File Access 7

TABLE 2. Compression performance of integer coding schemes, in bits per integer. The first line shows the size of each
data set. For temps, prime, and vector the selected compression scheme is an approach that uses a combination of different
coding schemes that rely on known structure in the data; for other collections, the selected compression is the best-performing
approach of

Scheme temps prime weather landsat map vector

Integers (×106) 0.72 1.00 10.00 41.01 197.80 165.29
Entropy 12.57 19.93 2.91 6.02 6.50 17.40
Elias gamma coding 33.50 44.65 16.57 8.42 11.02 11.42
Elias delta coding 23.80 30.84 12.82 8.09 10.19 9.78
Golomb coding 26.54 24.36 13.64 6.60 7.50 13.47
Variable-byte coding 22.11 30.74 12.59 8.00 8.63 11.97
gzip 10.21 10.91 3.00 4.53 0.24 11.82
Selected compression 7.14 5.52 12.59 6.60 7.50 7.87

TABLE 3. Sequential stream retrieval performance of integer coding schemes, in megabytes per second. In each case data is
retrieved from disk and, in all but the first case, decompressed.

Scheme temps prime weather landsat map vector

Uncompressed 32-bit integers 2.34 2.31 2.19 2.39 2.48 1.98
Elias gamma coding 1.05 1.03 1.96 3.08 2.49 2.24
Elias delta coding 1.40 1.42 2.29 2.86 2.46 2.47
Golomb coding 1.77 1.85 2.31 3.25 3.13 2.30
Variable-byte coding 2.12 1.42 3.67 4.45 5.41 2.69
gzip 3.83 4.14 12.72 9.25 25.68 4.50
Selected compression 2.42 2.72 3.67 3.25 3.13 2.78

line in landsat. For our random access experiments,
we report the speed of randomly seeking to 10% of the
offsets in each collection and retrieving blocks of 1,000
integers at each offset; in the case of vector, each seek
retrieves a mean of 23,866 integers.

For random-access experiments with variable-bit cod-
ing, each block of 1,000 integers is byte-aligned on disk,
wasting on average 4 bits per 1,000 integers stored.
Each random seek in the collection is then to a byte-
aligned offset. As an example, the vector file requires
an additional 0.2 Mb for byte-aligned storage, an in-
crease of around 0.1% over an approach that only sup-
ports stream access.

All experiments are carried out on an Intel Pentium
II dual processor machine running the Linux operating
system under light load. Before each experiment the
system cache and main memory were flushed to ensure
that retrieval is directly from disk.

We show the results for compression and sequential
retrieval of data from the six integer collections in Ta-
bles 2 and 3. The first block of Table 2 shows pa-
rameters of the collections: file sizes are shown in mil-
lions of integers and the entropy or theoretical minimum
space requirement is shown as a baseline comparison
for compression performance. The entropy is based on
the integer-token model described earlier. Entropies are
much less than 32 bits per integer for weather, land-
sat, and map, as these three collections contain rela-

tively few distinct integers: weather stations only take
22 measurements that often do not vary significantly
and are often substituted with 9999 to represent “no
data collected”, the landsat data contains only 7-bit
integers, and map contains contour data that is clus-
tered about the mean. In contrast, the entropies of the
other collections are more than 10 bits per integer: the
prime collection contains no duplicates, half of the in-
tegers in temps are distinct clock values, and vector
stores over 16 million different document identifiers and
offsets.

Table 2 shows the compression achievable with the
different coding schemes. The variable-byte scheme was
more effective than we had expected, always outper-
forming gamma, and in some cases delta and Golomb
coding (although these schemes can be used to achieve
better overall compression by mixing codes for spe-
cial cases, as we discuss below). This good result for
variable-byte coding is why it allows fast retrieval: it
yields similar disk traffic to the other schemes but has
lower CPU costs. For comparison we include results for
the popular utility gzip, to illustrate the space savings
possible by applying an efficient adaptive compression
scheme. In all cases, gzip compression is excellent and,
except for vector, better than with the generic static
and semi-static compression schemes. With regard to
speed, gzip provides a further illustration that the cost
of decompression can be more than offset by savings in



8 Williams and Zobel

TABLE 4. Random-access retrieval performance of integer coding schemes, in megabytes per second. In each case data is
retrieved from disk and, in all but the first case, decompressed.

Scheme temps prime weather landsat map vector

Uncompressed 32-bit integers 0.31 0.49 0.39 0.33 0.34 0.70
Elias gamma coding 0.23 0.33 0.33 0.61 0.58 0.67
Elias delta coding 0.32 0.45 0.33 0.50 0.48 1.00
Golomb coding 0.34 0.49 0.46 0.68 0.54 0.83
Variable-byte coding 0.35 0.58 0.58 0.51 0.49 0.75
Selected compression 0.92 0.83 0.58 0.68 0.54 1.29

disk transfer costs. However, because gzip is adaptive
it cannot be used for random access to data and, there-
fore, is not a candidate for fast file access to databases
of integers.

The final block of Table 2 shows how more effi-
cient representation is possible by selectively applying
variable-bit codes to the vector, temps, and prime
collections. In the case of vector we use separate local
Golomb parameters for each list of document identifiers
and word positions, and gamma codes for storing counts
of identifiers in each list. For temps we use two differ-
ent Golomb parameters: the first for storing differences
between the large system clock values and the second
for storing the smaller temperatures. The values shown
in the final block of Table 2 for the weather, landsat,
and map collections are the values of the most space-
efficient scheme from those listed in the rows above.2

Table 3 shows sequential stream retrieval speed
for the uncompressed 32-bit data and the remaining
blocks show the performance of the variable-bit and
variable-byte schemes. All timing measurements are in
megabytes per second, and include the time taken to
retrieve data from disk and decompress it. In the case
of parameterised Golomb coding, the parameter k is
fixed for each collection and uses the global approxima-
tion described earlier. Note that the timings for vec-
tor are not directly comparable to the other results,
as they were determined under cafe; the other tim-
ings are based on a suite of special-purpose code. Also,
note that the timings with gzip are not directly com-
parable to other figures and are included for illustra-
tion only: gzip performs well because of the small com-
pressed sizes and because, in contrast to our schemes,
output is buffered into large blocks.

In our sequential retrieval experiments, one or more
compression schemes for integers improves both the
space requirements and the retrieval speed for each col-
lection compared to storing uncompressed integers. By
selecting an appropriate compression scheme for a file—

2By modifying the data in weather to use a different value
as a “no data collected” marker, compression of 11.10 bits per
integer can be achieved. By extending this approach further and
coding “no data collected” markers as a single bit followed by a
count of the number of markers and storing each collected value
as a single bit, a counter, and a Golomb-coded value, compression
of 2.85 bits per integer is possible.

as shown in the “selected compression” experiments in
Tables 2 and 3—speed is 4%–68% better than with un-
compressed integers. Importantly, for the landsat,
map, and vector experiments, where there is sub-
stantially more data to be processed than in the other
smaller collections, speed with the selected compres-
sion technique is 26%–40% better than with uncom-
pressed integers, while the space requirement averages
21%–25% of the cost of storing uncompressed integers.

As expected, non-parameterised Elias coding is gen-
erally not as space-efficient or as fast as parameterised
Golomb coding for sequential retrieval. Gamma cod-
ing does not work well as a fast retrieval technique on
most of our test collections, since the average magnitude
of the integers is higher than that for which gamma
coding is suitable; the exception is for the 7-bit inte-
gers stored in the landsat file. Delta coding works
well for two larger collections, affording a 20% improve-
ment in speed for landsat and a 25% improvement for
vector, but is marginally slower for the map collec-
tion. In general, when a parameterised scheme cannot
be easily used, delta coding saves space compared to
uncompressed storage and can often improve retrieval
performance.

Golomb coding with a single parameter k works well
as a fast retrieval technique in all cases other than the
small temps file. Moreover, the selected compression
techniques for prime and vector illustrate that ex-
cellent performance is possible by careful selection of
parameters to Golomb coding and by taking differ-
ences between sorted integers to reduce the range values
stored. Additionally, Golomb coding works reasonably
well for temps when two parameters are used as in the
selected compression scheme.

Variable-byte integers work well as a fast retrieval
technique for all collections where large integers are
stored. For the weather, map, and vector collec-
tion, variable-byte integers consume 27%–39% of the
space required by uncompressed integers and retrieval
is 1.35 to 2.18 times as fast. Variable-byte integers are
often faster than variable-bit integers, despite having
higher storage costs, because fewer CPU operations are
required to decode variable-byte integers and they are
byte-aligned on disk. As an example, for the vector
collection the CPU cost of decoding variable-byte inte-



Compressing Integers for Fast File Access 9

gers is around 20% less than decoding either delta codes
or the selected compression scheme. However, because
carefully selected variable-bit codes require less space
than variable-byte codes, such reductions in CPU costs
are generally insignificant compared to the increased
disk retrieval costs.

Table 4 shows the speed of integer compression
schemes for random access to our test collections.
As described earlier, decompression speeds are the
throughput in Mb per second of randomly seeking to
10% of the byte-aligned offsets in each collection and
retrieving 1,000 integers at each offset; for vector,
we randomly seek to 10% of postings list offsets, but
retrieve on average 23,866 integers per list (hence the
greater throughput).

The performance of integer compression schemes for
random retrieval is even better. As expected, because
of the smaller compressed file sizes, in addition to im-
proved sequential stream retrieval of each compressed
record, disk seek costs are also substantially reduced.
This improvement in performance is marked for the
larger landsat, map, and vector collections where
the selected compression scheme is between 1.58 to 2.06
times as fast as retrieval of uncompressed integers. In-
deed, in all cases except the inefficient gamma coding of
prime, random retrieval speed is improved by storing
integers in a compressed format.

5. CONCLUSIONS

We have shown that storing integers in compressed form
improves the speed of disk retrieval for both sequen-
tial stream access and random access to files. Disk re-
trieval performance can be improved by applying ei-
ther a variable-bit or variable-byte integer compression
scheme. Selection of a scheme that is specific to the
magnitude, ordering, and clustering of integers, as well
as the file size, offers the best performance. For se-
quential stream retrieval, applying a selected variable-
bit compression scheme to files larger than 100 Mb im-
proves access speed by more than 25% over storage
as standard uncompressed 32-bit integers. For smaller
files, variable-byte schemes offer similar performance in-
creases. For random retrieval, speed improvements are
more marked, since average disk seek costs are reduced
because of the reduced file sizes: for larger data sets,
a carefully selected variable-bit compression scheme is
at least 55% faster than an uncompressed scheme; and
both variable-bit and variable-byte schemes work well
for random-access to small collections.

Although the compression schemes described here are
extremely simple, disk retrieval costs are reduced by
compression since the cost of retrieving a compressed
representation from disk and the CPU cost of decod-
ing such a representation is usually less than that of
retrieving an uncompressed representation. Improving
retrieval performance in this way can yield significant
performance gains for data processing applications such

as databases: indexes contain long sequences of inte-
gers, most databases contain integer components, and
many scientific repositories, such as weather, satellite,
and financial databases, contain integers only. For fast
access to files of integers, given that addition of com-
pression to read or write utilities requires only a few
lines of code, we recommend that they should always
be stored compressed.

ACKNOWLEDGEMENTS

We thank Agnes Apostolou, Neil Christie, Neil Shar-
man, and Lachlan Wainwright for making available
their satellite, contour, and temperature data. We also
thank the referees for their comments. This work was
supported by the Australian Research Council and the
Multimedia Database Systems group at RMIT.

REFERENCES

[1] J. Zobel and A. Moffat. Adding compression to a full-
text retrieval system. Software—Practice and Experi-
ence, 25(8):891–903, 1995.

[2] P. Elias. Universal codeword sets and representations
of the integers. IEEE Transactions on Information
Theory, IT-21(2):194–203, March 1975.

[3] S.W. Golomb. Run-length encodings. IEEE Transac-
tions on Information Theory, IT–12(3):399–401, July
1966.

[4] J. Rissanen and G.G. Langdon. Universal modeling
and coding. IEEE Transactions on Information The-
ory, IT-27(1):12–23, January 1981.

[5] T.C. Bell, J.G. Cleary, and I.H. Witten. Text Com-
pression. Prentice-Hall, Englewood Cliffs, New Jersey,
1990.

[6] A. Moffat, R. Neal, and I. Witten. Arithmetic coding
revisited. ACM Transactions on Information Systems,
1998. (To appear).

[7] I.H. Witten, A. Moffat, and T.C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Im-
ages. Van Nostrand Reinhold, New York, 1994.

[8] T.C. Bell, A. Moffat, C.G. Nevill-Manning, I.H. Wit-
ten, and J. Zobel. Data compression in full-text re-
trieval systems. Journal of the American Society for
Information Science, 44(9):508–531, October 1993.

[9] C.E. Shannon. Prediction and entropy of printed En-
glish. Bell Systems Technical Journal, 30:55, 1951.

[10] H. Williams and J. Zobel. Indexing nucleotide
databases for fast query evaluation. In Proc. Interna-
tional Conference on Advances in Database Technology
(EDBT), pages 275–288, Avignon, France, March 1996.
Springer-Verlag. Lecture Notes in Computer Science
1057.

[11] H. Williams and J. Zobel. Compression of nucleotide
databases for fast searching. Computer Applications in
the Biosciences, 13(5):549–554, 1997.

[12] A. Moffat, J. Zobel, and S. T. Klein. Improved in-
verted file processing for large text databases. In Proc.
Australasian Database Conference, pages 162–171, Ade-
laide, Australia, January 1995.



10 Williams and Zobel

[13] A. Moffat and L. Stuiver. Exploiting clustering in in-
verted file compression. In Proc. IEEE Data Compres-
sion Conference, pages 82–91, Snowbird, Utah, 1996.

[14] A. Bookstein, S.T. Klein, and D.A. Ziff. A systematic
approach to compressing a full-text retrieval system.
Information Processing & Management, 28(6):795–806,
1992.


