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ABSTRACT
Inverted index structures are the mainstay of modern text retrieval
systems. They can be constructed quickly using off-line merge-
based methods, and provide efficient support for a variety of query-
ing modes. In this paper we examine the task of on-line index con-
struction – that is, how to build an inverted index when the underly-
ing data must be continuously queryable, and the documents must
be indexed and available for search as soon they are inserted. When
straightforward approaches are used, document insertions become
increasingly expensive as the size of the database grows. This paper
describes a mechanism based on controlled partitioning that can be
adapted to suit different balances of insertion and querying opera-
tions, and is faster and scales better than previous methods. Using
experiments on 100 GB of web data we demonstrate the efficiency
of our methods in practice, showing that they dramatically reduce
the cost of on-line index construction.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing – Indexing methods; H.3.2 [Information Storage and Re-
trieval]: Information Storage – File organization; H.3.3 [Infor-
mation Storage and Retrieval]: Information Search and Retrieval
– Search process; E.5 [Files]: Organization/structure

Keywords
Inverted file, inverted index, search engine.

1. INTRODUCTION
Inverted index structures are the mainstay of modern text re-

trieval systems. For example, an inverted index that stores docu-
ment pointers only can be used for Boolean querying; an index that
is augmented with fd,t within-document term frequencies can be
used for ranked queries; and an index that additionally includes the
locations within each document at which each term occurrence ap-
pears can be used for phrase querying. Witten et al. (1999) provide
an introduction to these querying modes, and to inverted indexes.
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Inverted indexes can be constructed quickly using off-line ap-
proaches, in which one or more passes are made over a static set
of input data, and, at the completion of the process, an index is
available for querying. Witten et al. (1999) summarize several such
off-line mechanisms; and in Heinz and Zobel (2003) describe a
mechanism with improved performance. Off-line index construc-
tion algorithms are an efficient way of proceeding if a lag can be
tolerated between when a document arrives in the system, and when
it must be available to queries. For example, in systems indexing
hundreds of megabytes of data, an hourly index build taking just a
few minutes on a low-end computer is sufficient to ensure that all
documents more than an hour old are accessible via the index. Sys-
tems in the gigabyte range might be similarly indexed daily, and in
the terabyte range, weekly or monthly. A typical mode of operation
in this case is for the new index to be constructed while queries are
still being directed at the old; then for file pointers to be swapped,
to route queries to the new index; and, finally, for the old index to
be retired and its disk space reclaimed.

On the other hand, there are search environments in which even
a small delay cannot be tolerated, and the index must always be
queryable and up to date. In this paper we examine the correspond-
ing task of on-line index construction – how to build an inverted
index when the underlying data must be continuously queryable,
and documents must be indexed for search as soon they arrive.

Making documents immediately accessible adds considerably to
the complexity of index construction, and a range of tensions are
introduced, with several quantities – including querying through-
put, document insertion rate, and disk space – tradeable against
each other. Here we describe a geometric partitioning mechanism
that offers a range of tradeoffs between costs, and can be adapted
to different balances of insertion and querying operations.

The principle of our new method is that the index is divided into
a controlled number of partitions, where the capacities of the par-
titions form a geometric sequence. The presence of multiple par-
titions means that querying is slower than under a single-partition
model, but as we demonstrate empirically, the overhead is not ex-
cessive. More significantly, the use of geometric partitions means
that on-line index construction is faster and scales better than meth-
ods based on a single partitioning, while querying is faster than un-
der other multiple-partition approaches. The new method leads to
substantial practical gains; experiments with 100 GB of web data
show that, compared to the alternative single-partition implementa-
tion, total construction throughput is more than three times greater.

2. INVERTED INDEX STRUCTURES
An inverted file index contains two main parts: a vocabulary,

listing all the terms that appear in the document collection; and a



set of inverted lists, one per term. Each inverted list contains a se-
quence of pointers (also sometimes known as postings), together
with a range of ancillary information, which can include within-
document frequencies and a subsidiary list of positions within each
document at which that term appears. A range of compression tech-
niques have been developed for inverted lists (Witten et al., 1999;
Scholer et al., 2002; Anh and Moffat, 2005), and, even if an in-
dex contains word positional information, it can typically be stored
in around 25% of the space occupied by the original text. Index
compression also reduces the time required for query evaluation.

The standard form of inverted index stores the pointers in each
inverted list in document order, and is referred to as being document
sorted. It is this index organization that we consider in this pa-
per. Other index orderings are frequency sorted and impact sorted.
None of the on-line mechanisms we describe in this paper apply to
these other forms of index organization.

A retrieval system processes queries by examining the pointers
for the query terms, and using them to calculate a similarity score
that estimates the likelihood that the document matches the query.
This process requires that all terms in the collection be indexed,
with the exception of a small number of common terms, such as
“the”, and “of”, that carry little information. Phrase queries can
also be resolved via the index if it contains word positions. In
this case the retrieval system treats each phrase in the query as a
term, and infers an inverted list for it by combining the inverted
lists for the component terms. Stop-words also need to be indexed
for phrase queries to be efficiently resolved.

Inverted lists are typically stored on disk in a single contiguous
extent or partition, meaning that once the vocabulary has been con-
sulted, one disk seek and one disk read is required per query term.

The addition of a further document to an existing inverted index
adds a new document pointer to a large number – potentially thou-
sands – of inverted lists. Seeking on disk for each list update would
be catastrophic, and in practical systems the disk costs are amor-
tized across a series of updates. To this end, the inverted index in a
dynamic retrieval system is stored in two parts: an in-memory com-
ponent that provides an index for recently included documents; and
an on-disk component, which is periodically combined with the in-
memory part of the index in a merging event, and then written back
to disk. This approach is effective because a typical series of doc-
uments has many common terms; the disk-based merging process
can be sequential rather than random-access; all of the random-
access operations can take place in main memory; and documents
are searchable as soon as they are inserted. However, querying is
now more complex, since the in-memory part of each terms’ in-
verted list must be logically combined with the on-disk part.

The next section considers ways in which the merging process
can be streamlined, and examines the cost of building a large index.

3. MERGE-BASED INDEX UPDATE
Three index maintenance algorithms have been explored in pre-

vious literature (Lester et al., 2004). They differ only in the manner
in which the merge process is applied, but have significantly dif-
ferent costs. To analyse these costs, we assume that an index of n
pointers is being constructed; that the in-memory index can hold
b pointers, and hence that there are bn/bc merging events; that it
costs n1 + n2 steps to merge two indexes containing n1 and n2

pointers; and that the cost of preparing a buffer of b pointers for its
first merge is b log v steps of computation, where v is the size of the
vocabulary. The log v cost per pointer is for a search operation in a
dictionary data structure; once the appropriate in-memory list has

been identified, appending a new pointer to it takes constant time.
To quantify some of the calculations, typical values for the two

key values are n ≈ 1010, and b ≈ 108. An index of ten billion
pointers might arise, for example, in a collection of 100 GB; and
one hundred million pointers stored in the in-memory part of the
index would require approximately 500 MB of main memory, and
giving rise to about 200 MB of compressed postings on disk. Sim-
ilarly, we would expect v to be of the order of 3×107 for the entire
collection, corresponding to seeing one new word approximately
every 300 term appearances.

Rebuilding
The simplest strategy is to entirely rebuild the on-disk index from
the stored collection whenever the in-memory part of the index ex-
ceeds b pointers. Despite the obvious disadvantages of this rebuild
strategy, it is not unreasonable for small collections with low up-
date frequency. For example, Lester et al. (2004) give experimental
results showing that this technique does work moderately well in
some situations.

At each index rebuild all previous information is discarded, and
the data to date completely reprocessed. The total cost is thus

cost rebuild(n, b, v) =

n/b
X

i=1

(ib + ib log v)

≤ b(1 + log v)

n/b
X

i=1

i

≈ n2 log v

2b
.

That is, for any fixed value of b, rebuild requires time that grows
(at least) quadratically. For the values of n, b, and v hypothesized
above, the cost amounts to some 17.1 trillion operations.

Remerge update
The second merging strategy avoids re-processing pointer lists that
are already ordered, and adds bufferloads to the on-disk index, ap-
pending to each inverted list. At each merge event, the entire on-
disk index is read sequentially and written in extended form to a
new location, with the pointers from the in-memory part of the in-
dex inserted as appropriate. When the output is completed, the
original index files are freed, and querying transferred over to the
new index. This remerge approach has the disadvantage that the en-
tire index must be processed every time the in-memory and on-disk
components are combined. Unless care is taken, it also means that
the peak disk usage is twice the cost of storing the index (Clarke
and Cormack, 1995; Moffat and Bell, 1995). On the other hand, the
remerge strategy is significantly faster than the rebuild approach.

The merge between the in-memory postings and the on-disk post-
ings, both of which are sorted, incurs a cost proportional to the total
number of postings in the resulting index. In addition, each buffer-
load of pointers must be sorted. Over the n/b merging events the
cost is thus

cost remerge(n, b, v) =

n/b
X

i=1

(b log v + ib)

=
n

b
(b log v) + b

n/b
X

i=1

i

≈ n log v +
n2

2b
.



For the presumed values of n, b, and v, this indicates a cost of ap-
proximately 0.8 trillion operations to build an index, significantly
better than the number of steps required by the rebuild approach.

In-place update
The third strategy, referred to as inplace, involves minimizing the
change to the index at each stage by, whenever possible, writing
new postings at the end of the existing lists. Each list must be peri-
odically moved to unused space so that there is enough room for the
new postings; to avoid excessive numbers of moves, it is necessary
to over-allocate by a constant factor the space used for the on-disk
inverted lists. That is, during each merging event, pointers from the
in-memory index are transferred into the free space at the end of the
term’s on-disk inverted list. If insufficient free space is available at
the end of the on-disk list, the combined list is copied to a new lo-
cation, and again over-allocated. Variations include keeping short
postings lists within the vocabulary structure (Cutting and Peder-
sen, 1990); keeping short lists within fixed-size “bucket” structures
(Shoens et al., 1994); and predictive over-allocation for long post-
ings lists to reduce relocations and discontinuity (Tomasic et al.,
1994; Shieh and Chung, 2003).

The staggered growth of inverted lists introduces a free-space
management problem. Space management of large binary objects,
such as image data, is examined by a number of authors (Biliris,
1992a,b; Carey et al., 1986, 1989; Lehman and Lindsay, 1989),
although it should also be noted that text databases present different
problems than other types of binary data.

To analyze the execution cost of building the index, suppose that
each list is over-allocated by a fixed factor of r > 1. When the list
for some term t contains ft pointers and is at its current capacity,
and a ft + 1st posting is to be added to it during the merge event,
the list is first extended to be dftre postings, and only then is the
new one added. Consider the set of pointers in the just-extended
list. One of them – just appended – has never taken part in a list ex-
tension operation. A further ft − ft/r items have just been copied
for the first time; ft/r − ft/r2 items have just been moved for the
second time; and so on. The average number of times each of those
ft + 1 pointers have been moved is given by

1

ft + 1

„

1 − 1

r

« „

ft

1
+

2ft

r
+

3ft

r2
+ · · ·

«

≈
„

1 − 1

r

« ∞
X

i=0

i + 1

ri

=
r

r − 1
.

For example, when r = 1.25, just after a list is resized, the pointers
in it have been moved five times on average. This amortized limit
is independent of the size ft of the list, and applies to all lists just
after they have been extended, which is when the average number
of moves is at its highest. The expression above is thus an upper
bound on the per-pointer cost of constructing the whole inverted
index.

The cost of adding every item to the list the first time must
be added to the copying cost, and also the b log v cost of prepar-
ing each of the n/b the bufferloads before each merge event takes
place. Hence the total number of operations required to process n
pointers in bufferloads of size b is given by

cost inplace(n, b, v) = n

„

log v +
2r − 1

r − 1

«

.

When n, b, and v are as suggested at the beginning of this section,

and r = 1.25 is used, the total number of operations is a little over
0.3 trillion.

The inplace method does, however, have two distinct disadvan-
tages that partly or completely negate this smaller number of op-
erations. First is the memory overhead. Around 60% of the over-
allocated space is always vacant. That is, when r = 1.25, around
15% of the disk space allocated to the lists in index is unused.
There will also be external fragmentation not taken into account in
this computation, caused by the chaotic overall sequence of list re-
sizings. This could easily add a further 5%–25% space overhead,
depending on the exact disk storage management strategy used.

The second problem is that processing speed is not as fast as the
analysis above would suggest – it counted only data movements,
and in the inplace mechanism a non-trivial amount of random-
access processing of the index file is required during each merge
event. In contrast, the operations performed in the remerge method
are strictly sequential.

As a minimum, all of the terms that have occurred in each buffer-
load generate a disk operation. With perhaps 106 distinct terms ex-
pected in each bufferload (that is, one per one hundred pointers, and
higher than the steady-state rate of one per three hundred pointers
because of start-up considerations), a minimum of perhaps 108 disk
accesses is required over all bufferloads. Using a very crude rela-
tivity of one disk seek corresponding to 106 sequential data move-
ments, handling each term in each bufferload thus adds a further
1012 = 1 trillion operations to the execution cost.

Lester et al. (2004) evaluated the three mechanisms described
in this and the previous two section. Their experiments confirmed
that the remerge scheme is better than the inplace scheme in almost
all practical scenarios, despite remerge processing the entire index
during every merging event.

Multiple partitions
One of the primary reasons that maintenance algorithms are ineffi-
cient is that they keep a single, contiguous, inverted list per term.
On the other hand, sort-based bulk-construction algorithms are not
constrained in this regard, and make use of multi-way merging
strategies to reduce the number of times each pointer is handled.
For example, Heinz and Zobel (2003) describe a bulk-construction
algorithm in which the dominant operation is to write a bufferload
of pointers to a separate file. The cost of each such operation is
independent of the total amount of data being indexed, unlike the
methods analyzed above.

Tomasic et al. (1994) describe an index maintenance strategy
that avoids re-processing data by creating new discontiguous list
fragments as inverted lists grow. Their scheme is like the inplace
scheme, except that when a list outgrows its allocation, the old list
is left unchanged and a new fragment is allocated in order to hold
additional postings. They do not use over-allocation for any but the
first fragment, so their algorithm creates approximately one frag-
ment per combination event.

It is straightforward to alter the Tomasic et al. algorithm to in-
clude predictive over-allocation, but the approach still results in
each inverted list being spread across a number of fragments that
grow linearly in the size of the collection, and query processing
times suffer accordingly.

Assuming that the index for each bufferload is written to memory
and then linked from the previous partition of the index lists, the
processing time for the Tomasic et al. approach is

costTomasic(n, b, v) ≈ n (1 + log v)
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Figure 1: Geometrically partitioned index structure, with three lev-
els. The oldest index pointers are in the lowest, largest partition,
which in this example is at level 3. The vocabulary, not shown in
the figure, includes three pointers with each term’s entry. Some
terms are absent from some partitions.

plus the time needed to create the chains of pointers that thread the
structure together.

Query costs scale badly in this approach, or with lists represented
as linked chains of fixed-size objects (Brown et al., 1994). For the
values of n and b supposed in the example, querying would entail
as many as 100 disk seeks per query term, an unpalatable cost.

4. GEOMETRIC PARTITIONING
We propose a scheme that blends the remerge method described

in Section 3, and the too-many-fragments approach of Tomasic
et al. The key idea is to break the index into a tightly controlled
number of partitions. Limiting the number of partitions means that
as the collection grows there must continue to be merging events,
but they can be handled rather more strategically than before, and
the result is a net saving in processing costs. (Because each index
list is in multiple parts, querying is slower than with single-partition
lists. In Section 5 we quantify the amount of that degradation.)

At any given point, the index is the concatenation of the set of
partitions, each of which is a partial index for a contiguous subset
of the documents in the collection. We also impose an ordering
on partition sizes, requiring that the partition containing the most
recently added documents be the smallest. Similarly, the first doc-
uments in the collection are indexed via the largest partition. Fig-
ure 1 shows an example arrangement in which the on-disk part of
the index is split into three partitions.

The vocabulary entry for each term records multiple disk ad-
dresses, one for each partition. The locations of all the index parti-
tions for a term are then available at the cost of a single disk read,
although the vocabulary will typically be slightly larger as a result.
When queries are being processed, each of those partitions on disk
is retrieved and processed, as in the approach of Tomasic et al. The
difference in our approach is that we ensure, via periodic mergings,
that the number of partitions does not grow excessively.

Consider what happens when an in-memory bufferload of post-
ings is to be transferred to disk. That bufferload can be merged with
any one of the partitions, or indeed, with any combination of them.
The key issue to be addressed is how best to manage the sequence
of mergings so as to minimize the total merging cost, without al-
lowing the number of partitions to grow excessively.

The linear cost of each merging step means that, for it to be rel-
atively efficient, the two lists should not differ significantly in size.
To this end, we introduce a key parameter r, and use it to define
the capacity of the partitions: the limit to the number of pointers
in one partition is r times the limit for the next. In particular, if a
bufferload contains b pointers, we require that the first partial index
not exceed (r − 1)b pointers; the second partial index not contain
more than (r − 1)rb pointers; and, in general, the kth partial index
not more than (r − 1)rk−1b pointers. In addition, r also specifies
a lower bound on the size of each partition – at level k the partition
is either empty, or contains at least rk−1b pointers.

In combination, these two constraints ensure that, when a merge
of two partitions at adjacent levels takes place, the combined output
is not more than r times bigger than the smaller of the two input
partitions, and is at least r/(r − 1) times bigger than the larger. As
is demonstrated shortly, this relationship allows useful bounds to
be established on the total cost of all mergings.

Hierarchical merging
The limits on the capacity of each partition give rise to a natural
sequence of hierarchical merges that follows the radix-r represen-
tation of the number of bufferloads that have been merged to date.
Suppose, for example, that r = 3, and, as before, the stream of ar-
riving documents is processed in fixed bufferloads of b documents.

The first bufferload of pointers is placed, without change, into
partition 1. The second bufferload of pointers can be merged with
the first, still in partition 1, to make a partition of 2b pointers. But
the third bufferload of pointers cannot be merged into partition 1,
because doing so would violate the (r − 1)b = 2b limit on parti-
tion 1. Instead, the result of the merge is placed in partition 2, and
partition 1 is cleared.

The fourth bufferload of pointers must be placed in partition 1,
because it cannot be merged into partition 2. The fifth joins it,
and then the sixth bufferload triggers a three-way merge, to make
a partition containing 6b pointers in the second partition. Figure 2
continues this example, and shows how the concatenation of three
more bufferloads of pointers from the in-memory part of the index
leads to a single index of 9b pointers in the third partition.

Analysis
Within each partition the index sizes follow a cyclic pattern that is
determined by the radix r. For example, in Figure 2, the “Par-
tition 2” column cycles through sizes 0, 3, 6, and then repeats.
In general, the kth partition of an index built with radix r cycles
through the sequence 0, rk−1, 2rk−1, . . . , (r − 1)rk−1. Over one
full cycle this sequence sums to

(r − 1)r

2
rk−1 =

(r − 1)rk

2
.

We will make use of this quantity shortly.
Each of the numbers in the cycle is exactly the cost of forming

the corresponding partition, since it is the sum of the sizes of the
segments that were joined together to make that partition. For ex-
ample, to build an index of size 9b pointers with r = 3, the total
merging cost is the sum of all of the partition sizes in Figure 2,
which amounts to three cycles through partition 1 (total cost: 9b),
one cycle through partition 2 (total cost: 9b), and a single merge of
cost 9b in partition 3, for a total of 27b units.

For index of n pointers in total, the merging pattern has bn/bc
rows. Hence, in the ith column there will be at most bn/bc/ri

full cycles of the merging pattern; furthermore, the average merg-
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Figure 2: The merging pattern established when r = 3. After
nine bufferloads have been generated by the in-memory part of the
indexing process, the first index is placed into partition 3. All num-
bers listed represent multiples of b, the size of each bufferload.

ing cost in any partial cycles that have taken place is less than the
average cost over the completed cycles.

For fixed values of n, b, and r, the number of partitions (columns)
p required is

p = 1 + blogr(n/b)c ≈ 0.5 +
log(n/b)

log r
.

Summing over all columns and all cycles of the merging pattern
(rows), the total cost of the merging stages is thus the constant mul-
tiplier b times

p
X

i=1

bn/bc
ri

(r − 1)ri

2
≈ (r − 1)n

2b

„

0.5 +
log(n/b)

log r

«

.

Multiplying by the scale factor b, and adding in the n(1 + log v)
total cost of the in-memory stages, gives

costgeom(n, b, v, r)

= n

„

1 + log v +
r − 1

2

„

0.5 +
log(n/b)

log r

««

.

The same total number of pointers are in the index at any given
moment, regardless of the partition arrangement. But breaking each
inverted list into partitions does introduce additional disk seek oper-
ations, and slows overall query throughput rates, since all non-zero
partitions need to be fetched. Over the r partition sizes in each cy-
cle, there is a 1/r chance of that partition being empty at any given
time. Multiplying by the number of partitions p means that, per

r Build cost Access cost
2 0.29 3.6
3 0.31 3.1
4 0.32 2.9
6 0.34 2.6
8 0.35 2.4

12 0.39 2.2
16 0.42 2.0

Table 1: Index construction cost (trillions of operations, calcu-
lated) and the expected number of disk accesses per query term
(calculated), for n = 1010, b = 108, v = 3 × 107, and different
values of r.

query term, the disk access cost is approximately

r − 1

r

„

0.5 +
log(n/b)

log r

«

.

Table 1 quantifies, for several values of r, the total index build cost
(in trillions of operations, calculated according to cost geom(n, b, v, r))
and the expected number of disk accesses per term (using the for-
mula above), for the values n = 1010, b = 108, and v = 3 × 107.

The multiple-partitions method of Tomasic et al. (1994) can be
seen as an extreme form of this method. Pointers are never moved,
so index creation cost is linear, but querying costs are high.

There are two issues in the analysis that require elaboration.
The first is the cost attributed to a multi-way merge. In Figure 2,

for example, it was assumed that the three-way merge to create
the partitions of size six and nine cost six and nine units of work,
respectively. More generally, the analysis assumes that a k-way
merge between objects of size n1, n2, . . ., nk takes time

Pk
i=1

nk.
When merging lists by a sort key an additional factor of log2 k

is required, to account for the cost of computing, at each step in
the merge, the next smallest key among the k candidates. In the
merging operation being performed here, data movements dom-
inate comparisons, because the inverted lists get proportionately
longer at each merge. Put another way, the comparison cost of each
merge is (n′

1 + · · · + n′

k) log k, where n′

i (the number of distinct
terms in the ith input to the merge) is a steadily declining fraction
of ni (the total number of pointers in the ith input to the merge).
On this basis, we believe the analysis to be fair.

Another issue that has been simplified in this analysis is that of
processing the vocabulary. The vocabulary grows in size as buffer-
loads are incorporated into the index, and is processed sequentially
in its entirety at every merge, even when the merge is in partition 1
to carry out b + b → 2b. Indeed, the vocabulary is approximately
proportional in size to the number of pointers in the index, reflect-
ing the observation that new words appear at a steady rate no matter
how large the collection has already grown (Williams and Zobel,
2005). In our experiments, detailed below, new words were en-
countered at a rate of one per three hundred pointers, leading to the
final value v = 3 × 107 used in the previous calculations.

At the time of the kth merge the vocabulary can be assumed to
contain bk/300 entries. Supposing also that each vocabulary entry
occupies ten times the storage of a single pointer (the vocabulary
entry stores a string, disk pointers into the partitions, and the size
in each partition of the corresponding list of pointers, whereas as
a pointer is typically 3–5 bytes long), the cost of sequentially pro-



cessing the vocabulary is thus

n/b
X

k=1

10kb

300
≈ n2

60b
.

For n and b as discussed, this amounts to less that 0.02 trillion
operations, and does not greatly affect the costs shown in Table 1.

On the other hand, when n (and thus v) are large, the quadratic
nature of this component of the running time means that it will
eventually dominate. If there is a risk of that happening, the vocab-
ulary data structure should be modified to one that supports merg-
ing of specific pages rather than simple sequential merging of the
whole structure.

Varying the radix
The best choice of r depends on the balance of operations. Table 1
suggests that use of an overly small value of r is likely to harm
query costs, and should be avoided when the operation mix is dom-
inated by queries; similarly, if the operation mix is dominated by
insertions, smaller values of r are to be preferred.

It is also possible to consider the number of partitions p to be the
fixed quantity, and determine r accordingly, so as to never require
more than p partitions. Doing so makes the seeks-per-term part of
the querying cost largely independent of n, at the expense of slowly
increasing per-insertion times.

When p is fixed, and the index restricted to not more than p lev-
els, the ratio r must be such that

n

b
≤ 1 + r + r2 + · · · + rp =

rp+1 − 1

r − 1
.

Setting

r =

‰

“n

b

”1/p
ı

=

‰

p

r

n

b

ı

is sufficient to meet the requirement, and suggests an approach in
which p is fixed, and r is varied as necessary as the index grows.

Figure 3 shows the merging sequence for p = 2. As the tenth
bufferload of text is processed, r is incremented to

˚√
10

ˇ

= 4.
The next few sizes of the second partition are 15, 20 (because r
is increased to 5), 25, 31, and then 38. The remerge strategy of
Section 3 is thus simply a special case of this strategy, that of p = 1,
with every bufferload of pointers merged into a single partition.

The execution cost of this variant scheme is bounded above by

costgeom(n, b, v, r)

= costgeom

“

n, b, v, (n/b)1/p
”

= n(1 + log v) + n · (n/b)1/p − 1

2
· (0.5 + p)

≈ n(1 + log v) +
pn1+1/p

2b1/p
,

which is asymptotically dominated by the O(n1+1/p) term. How-
ever, for typical values of n and b the first term is larger numeri-
cally, and the most important component of the running time. Ta-
ble 2 shows the actual number of operations required to build an
index for the hypothesized values of n and b, for various values of
the bound p, calculated by simulating the “fixed p, varying r” merg-
ing process through a total of n/b = 100 bufferloads and summing
the costs of the merges performed.
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Figure 3: The merging pattern established when p = 2 and r is
varied. All numbers listed represent multiples of b, the size of each
bufferload.

5. EXPERIMENTS
To validate the analyses, we experimented with the wt100g web-

based document collection (Hawking et al., 1999), and measured
index construction time and querying time for a range of on-line
and off-line indexing techniques. All experiments were performed
on a dual-processor Intel Pentium 4 2.8 GHz machine with hyper-
threading turned on, but employing only a single processor. The
experimental machine had 2 GB of RAM and was under light load,
with no significant other processes running at the time of exper-
iment. Times presented are elapsed times, including all parsing,
indexing, and list merging phases. In each experiment the con-
struction process accumulated 80 × 106 pointers in memory, cor-
responding to approximately 200 MB of compressed index, prior
to each merge event. On the wt100g collection this gave rise to 99
bufferloads of postings needing processing.

Index construction times for two different variants of the on-line
partitioned approach are shown in Figure 4, and compared to those
of the off-line construction method of Heinz and Zobel (2003), and
the remerge on-line method. Only the on-line methods can sup-
port querying at intermediate stages of construction, and the line
labelled “bulk construction” reflects the cost of constructing an in-
dex of that size off-line, rather than the cost of incrementally build-



p Final r Build cost
2 10 0.34
3 5 0.30
4 4 0.29
5 3 0.29

Table 2: Index construction cost (trillions of operations) for n =
1010 and b = 108, and different fixed values of p. The final value
of r in each case is also shown.

ing the index. Times for the rebuild and inplace methods are not
shown, but are considerably slower than remerge for this combina-
tion of data and buffer size.

The relationships between the methods plotted in Figure 4 are as
expected, with the r = 3 version leading to a slightly shorter exe-
cution time than the p = 2 variant. The super-linear growth rate is
also as expected. The bulk construction mechanism generates n/b
bufferloads of pointers at total cost O(n log v), and then merges
them all together in a single dn/be-way merge, in (by the merging
cost model assumed in this paper) O(n) time. On the other hand,
for fixed values b, the cost of the partitioned method is O(n logr n);
and when p = 2 forces r =

√
n, this equates to O(n1.5) time.

Figure 5 shows the effect of the partitioned index construction
scheme on querying efficiency when r = 3, and when p = 2.
The upper graph shows the number of non-zero partitions at each
stage in the construction process, essentially counting the number
of non-zero digits in the base-r representation of k, the number
of bufferloads processed to date. The lower graph shows the time
taken to resolve 10,000 queries against the index at that stage of its
construction. The 10,000 queries were taken from the start of the
standard Excite query log (Spink et al., 2001). Preliminary exper-
iments not described here demonstrated that 10,000 queries were
enough to get reasonably stable measurements of execution time.

The query times in Figure 5 show that the overhead arising from
the use of multiple partitions is definite, but not excessive. The
greatest overhead, when there are four partitions, is approximately
40%; but on the p = 2 line the overhead is not more than 20%.
It probably represents the better compromise between index con-
struction time and querying times, for this data at least.

There is a strong correlation in Figure 5 between the query over-
head (in the lower graph) and the number of index partitions (in
the upper graph), suggesting that the overhead is primarily a re-
sult of the partitioning of index lists rather than any other factors,
and that our models are capable of predicting the level of query
overhead relatively accurately. Similar behavior is also present in a
less pronounced manner in Figure 4, where the slight upward steps
represent significant whole-of-index merging events.

6. CONCLUSIONS
We propose a mechanism for on-line index construction for text

databases that is based on the principle of dividing the index into a
small number of partitions of geometrically increasing size. In con-
trast to update mechanisms for standard contiguous representation
of inverted indexes, construction costs are significantly reduced,
and more scalable.

Our experiments have quantified the effect in practice of repre-
senting an index as geometrically sized partitions. As predicted by
our analysis, index construction is much more efficient; the time
required to build an index for a 100 GB collection is reduced by
a factor of around four compared to a comparable implementation
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Figure 4: Time required to build an index for the wt100g collec-
tion using 99 bufferloads each containing approximately 200 MB
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parable cost of an off-line index construction algorithm for that
amount of data.
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Figure 5: Query times on partially built indexes for the wt100g

using 54 bufferloads each containing approximately 355 MB of
pointers, using r = 3 and p = 2 constraints. The upper graph
shows the number of non-zero partitions after each bufferload is
incorporated, the lower graph shows the measured per-query cost
of evaluating 10,000 Excite queries. Values for querying time and
number of partitions in use are plotted after each bufferload of
pointers is incorporated into the on-disk part of the index.



of the remerge approach. The results also show that the relative
gains increase with collection size: the time to add the last giga-
byte is around an hour for remerge, but just nine minutes for the
geometric approach. On the other hand, construction times are still
considerably higher than for off-line index construction.

The main disadvantage of multiple partitions is that querying is
slower. But by limiting the number of partitions, the degradation
in query time is modest; our experiments show that with p = 2,
queries on average take around 20% longer. As the number of parti-
tions can be controlled either indirectly through the choice of radix
r, or explicitly via a fixed limit p, a retrieval system can be tuned
to the mix of querying and update operations that is anticipated.

Thus, by restricting the way in which the index partitions grow
in size, we have been able to bound the total cost of the index con-
struction process, and have also bounded the extra cost that arises
in query processing. Our work shows that on-line methods offer an
attractive compromise between construction costs, querying costs,
and access immediacy.

We note that Büttcher and Clarke (2005) have independently de-
scribed a method similar to the work presented here.
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