
Compression of Nucleotide Databases for Fast Searching

Hugh Williams∗ Justin Zobel

Department of Computer Science, RMIT
GPO Box 2476V, Melbourne 3001, Australia

{hugh,jz}@cs.rmit.edu.au

Abstract

Motivation: International sequencing efforts are
creating huge nucleotide databases, which are used
in searching applications to locate sequences homol-
ogous to a query sequence. In such applications, it is
desirable that databases are stored compactly; that
sequences can be accessed independently of the or-
der in which they were stored; and that data can be
rapidly retrieved from secondary storage, since disk
costs are often the bottleneck in searching.
Results: We present a purpose-built direct coding
scheme for fast retrieval and compression of genomic
nucleotide data. The scheme is lossless, readily in-
tegrated with sequence search tools, and does not
require a model. Direct coding gives good compres-
sion and allows faster retrieval than with either un-
compressed data or data compressed by other meth-
ods, thus yielding significant improvements in search
times for high-speed homology search tools.
Availability: The direct coding scheme (cino)
is available free of charge by anonymous ftp
from goanna.cs.rmit.edu.au in the directory
pub/rmit/cino.
Contact: hugh@cs.rmit.edu.au.

Keywords Compression, nucleotide data, Huffman
coding, integer coding, nucleotide search tools.

1 Introduction

Sequencing initiatives are contributing exponentially
increasing quantities of nucleotide data to databases
such as GenBank (Benson et al., 1993). We propose
a new direct coding compression scheme for use in ho-
mology search applications such as FASTA (Pearson
and Lipman, 1988), BLAST (Altschul et al., 1990),
and CAFE (Williams and Zobel, 1996a). This scheme

∗To whom correspondence should be addressed. A prelimi-
nary version of this work was presented in “Practical Compres-
sion of Nucleotide Databases”, Proc. Australian Computer
Science Conf., Melbourne, Australia, 1996, pp. 184–192.

yields compact storage, is lossless—nucleotide bases
and wildcards are represented—and has extremely
fast decompression.

Prior to proposing our scheme we investigate
benchmarks for practical compression and high-speed
decompression of nucleotide data. We compare our
scheme with the entropy, with Huffmann coding, with
the utilities gzip and compress , and with uncom-
pressed data retrieval. All the compression methods
closely approach the entropy but direct coding is over
9 times faster than Huffmann coding and requires
much less memory; direct coding is also several times
faster than the standard compression utilities. Direct
coding requires around 25% of the space required to
store uncompressed data and, due to savings in disk
costs, has significantly lower retrieval times.

2 Database compression

Compression consists of two activities, modelling and
coding (Rissanen and Langdon, 1981). A model for
data to be compressed is a representation of the dis-
tinct symbols in the data and includes information
such as frequency about each symbol. Coding is
the process of producing a compressed representa-
tion of data, using the model to determine a code
for each symbol. An efficient coding scheme assigns
short codes to common symbols and long codes to
rare symbols, optimising code length overall.

Adaptive models (which evolve during coding)
are currently favoured for general-purpose compres-
sion (Bell et al., 1990; Lelewer and Hirschberg, 1987),
and are the basis of utilities such as compress . How-
ever, because databases are divided into records that
must be independently decompressible (Zobel and
Moffat, 1995), adaptive techniques are generally not
effective. Similarly, arithmetic coding is in general
the preferred coding technique; but it is slow for
database applications (Bell et al., 1993).

For text, Huffman coding with a semi-static
model (where modelling and coding are in separate
phases) is preferable because it is faster and allows
order-independent decompression. Such compression



Williams and Zobel: Compression of Nucleotide Databases for Fast Searching 2

Base a b c d g h k m
Probability 27.483 ≈ 0 22.270 ≈ 0 22.985 ≈ 0 0.002 0.003
Base n r s t v w y
Probability 0.737 0.002 0.003 26.508 ≈ 0 0.001 0.004

Table 1: Probabilities of each base in genbank (percent).

schemes can allow retrieval of data to be faster than
with uncompressed data since the computational cost
of decompressing data can be offset by reductions in
transfer costs from disk.

The compression efficiency of a technique can, for
a given data set, be measured by comparison to
the information content of data, as represented by
the entropy determined by Shannon’s coding theo-
rem (Shannon, 1951). Entropy is the compression
that would be achievable with an ideal coding method
using a simple semi-static model. For a set S of sym-
bols in which each symbol t has probability of occur-
rence pt, the entropy is

E(S) =
∑

t∈S

(−pt · log2 pt)

bits per symbol.
Implicit in this definition is the representation of

the data as a set of symbol occurrences, that is, mod-
elling of the data using simple tokens. In some do-
mains, different choices of tokens give vastly vary-
ing entropy; for example, in English text compres-
sion, choosing characters as tokens gives an entropy of
around 5 bits per character, whereas choosing words
as tokens gives an entropy of around 2 bits per char-
acter (Bell et al., 1990). The cost of having words
as tokens is that more distinct tokens must be stored
in the model, but for sufficiently large data sets the
net size is still much less than with a model based on
characters.

3 Entropy of nucleotide data

We now consider the entropy of nucleotide data. We
first describe our test data.

In this paper we measure the volume of DNA
in megabases, that is, units of 220 bases. In
our nucleotide compression experiments we have ex-
tracted sequences from GenBank1 to give two test
collections: verte, a collection of 121,624 rodent,
mammal, primate, vertebrate and invertebrate se-
quences containing 168.88 megabases; and genbank,
the full database of 1,021,211 sequences containing
621.77 megabases. All the experiments in this pa-
per were carried out on a Sun SPARC 20, with the
machine otherwise largely idle.

1Flat-file Release 97.0, October 1996

A possible choice of symbol for nucleotide data is
the distinct non-overlapping intervals in the data,
where an interval is a string of bases for a fixed
length n. While this token model may only capture
simple patterns and not any semantics of genomic
nucleotide data, this simple model is practical for
comparison to high-speed compression schemes where
complex structure determination is prohibitively
computationally expensive.

For sequences divided into intervals, the entropy is

Eint
n (S) =

1
n

∑

t∈S

(−pt · log2 pt)

bits per base, where pt is the probability of the oc-
currence of interval t. Note that one would expect a
low entropy for short samples and long intervals—it
is not a sign of pattern. Long intervals also imply a
large model, since the number of distinct symbols to
be stored will approach 4n (or exceed it if there are
occurrences of wildcards).

Now we consider the entropy of our test collec-
tions. Results are shown in Table 2, giving the en-
tropy Eint

n and the number of distinct intervals for
each collection and interval length. The entropy is
almost exactly as expected for random data. (We
further discuss estimation of entropy for this data
elsewhere (Williams and Zobel, 1996b).) As another
estimate of compressibility, we tested PPM predictive
compression (Bell et al., 1990), currently the most
effective general-purpose lossless compression tech-
nique, and found that even with a large model PPM
was only able to compress to 2.06 bits per base on the
genbank collection. (Note that PPM is adaptive—
and rather slow—and hence unsuited to nucleotide
data.) We therefore conclude that, as is commonly
believed for genomic nucleotide sequences, there is lit-
tle discernible pattern when compressing using simple
token-based models and that compression to approx-
imately 2 bits per base is a good result.

Other approaches to modelling can, however, yield
better compression. Techniques that use more com-
plex secondary structure to achieve additional com-
pression, such as the palindromic repeats in DNA,
are discussed in Section 6.



Williams and Zobel: Compression of Nucleotide Databases for Fast Searching 3

Int. verte genbank
length Eint

n Intervals Eint
n Intervals

1 1.98 15 2.04 15
5 1.97 7,487 2.02 25,981
8 1.96 123,036 2.00 462,422

10 1.94 1,117,579 1.98 2,928,638

Table 2: Properties of GenBank, with sequences di-
vided into intervals (entropy in bits per base, distinct
intervals in model).

Property n verte genbank

Compression 1 0.08 0.08
rate (Mb/sec) 5 0.11 0.11

8 0.07 0.04
Decompression 1 0.53 0.52
rate (Mb/sec) 5 1.05 1.03

8 1.00 0.99
Compression 1 2.22 2.24
(bits/base) 5 1.99 2.04

8 1.97 2.03

Table 3: Performance of Huffman coding.

4 Huffman coding

Huffman coding is a well-known technique for mak-
ing an optimal assignment of variable-length codes
to a set of symbols of known probabilities (Witten
et al., 1994). Although not the best general-purpose
coding method, Huffman coding is preferred for text
databases in which records need not necessarily be de-
compressed in the order they were stored (Zobel and
Moffat, 1995). We have experimentally applied an
array-based efficient implementation of Huffman cod-
ing, known as canonical Huffmann coding, to our test
collections.2 As symbols we used non-overlapping in-
tervals of fixed-length n for several choices of n. As
sequence length is not always an exact multiple of n
bases, the model includes, not just strings of length
n, but also shorter strings from the ends of sequences.

Results of the Huffmann coding scheme for a range
of interval lengths are shown in Table 3, with the
compression rates including model size. A length of 1
was included to show that direct coding of individual
bases is not very efficient; predictably, the scheme
of allocating a fixed code to each base and wildcard
did not work well. We have also experimented with
larger values such as n = 10, but performance was
poor, presumably due to constraints of hardware and
the large model size.

2The implementation of canonical Huffman coding used is
incorporated into the MG text database system and is due to
Moffat (Bell et al., 1995; Witten et al., 1994).

Overall, n = 5 has worked best: the model is fairly
small and, on our hardware, tends to remain resident
in the CPU cache, so that accesses to intervals to be
decoded is as fast as possible. The actual decoding
process is slightly more efficient for n = 8, but decom-
pression is slower overall again because of hardware
cache constraints and a large model size.

5 Direct coding

We have seen that the frequency of wildcards in our
test collections is extremely low; over 99% of all char-
acters are one of the four nucleotides and over 97.8%
of the wildcard occurrences are n. Because the data
is highly skewed, we investigate a lossless compres-
sion scheme where the four nucleotide bases are en-
coded using two-bit representations and wildcards are
stored compactly in a separate structure.

In the encoded sequence, we eliminate each wild-
card occurrence by replacing it with a random nu-
cleotide chosen from those represented by the wild-
card. First, during decoding it is less computa-
tionally efficient to insert the wildcards into the se-
quence than to recreate the original string by re-
placing the randomly-chosen nucleotides by the orig-
inal wildcards. Second, as wildcards are often not
needed or used in searching of genomic databases,
the random substitution of a base is more appropri-
ate than deleting the wildcard to make a compression
saving, as a deletion completely removes any seman-
tic meaning from a sequence. This is an acceptable
solution for some practical applications—and indeed
it is an option in GenBank search software such as
BLAST (Altschul et al., 1990). Having replaced all
occurrences of wildcards, we code the sequence using
two bits for each nucleotide base.

Sequence length varies from around 10 bases to
over 400,000, with an average of around 650 bases.
Therefore, use of a fixed-length integer representation
of sequence length will be space-inefficient. We chose
to use a variable-byte representation in which seven
bits in each byte is used to code an integer, with the
least significant bit set to 0 if this is the last byte, or
to 1 if further bytes follow. In this way, we represent
small integers compactly; for example, we represent
135 in two bytes, since it lies in the range [27 · · · 214),
as 00000011 00001110; this is read as 00000010000111
by removing the least significant bit from each byte
and concatenating the remaining 14 bits.

We then store wildcard data independently, in a
separate structure. First, we store in unary the count
of different wildcards that occur in the sequence,
where a unary integer n is a string of (n−1) 0-bits ter-
minated with a single 1-bit—in most sequences with
wildcards, this is a single bit representing the occur-



Williams and Zobel: Compression of Nucleotide Databases for Fast Searching 4

rence of n. Second, for each different wildcard we
store a Huffmann-coded representation of the wild-
card (ranging from a single bit for n to 6 bits for the
most uncommon wildcards), followed by a count of
the number of occurrences, then a series of integer
positions or offsets within the sequence.

Using this encoding scheme, there are at most
eleven tuples of the form

(w, countw : [pos1, . . . , posp]) ,

where w is the Huffmann-coded representation of a
wildcard, countw is the number of occurrences and
pos1, . . . , posp are the offsets at which w occurs.

As offsets may be of the order of 106 and counts
of occurrences typically small, we must be careful
to ensure that storing wildcard information does not
waste space; variable-byte codes, for example, would
be highly inefficient. The solution is to use variable-
bit integer codings such as the Elias codes (Elias,
1975) and the Golomb codes (Golomb, 1966). We
have used the Elias gamma codes to encode each
countw and Golomb codes to represent each sequence
of offsets. These techniques are a variation on tech-
niques used for inverted file compression, which has
been successfully applied to large text databases (Bell
et al., 1993) and to genomic databases (Williams and
Zobel, 1996a; Williams and Zobel, 1996b).

Compression with Golomb codes, given the appro-
priate choice of a pre-calculated parameter, is better
than with Elias coding. In particular, using Golomb
codes the maximum space required to store a list of
positions for a given wildcard arises when that wild-
card occupies every position; in this worst case the
storage requirement is 1 bit per position.

Instead of storing absolute offsets we store the
differences between the offsets, which with Golomb
codes can be represented in fewer bits. Thus each
tuple is stored in the form

(w ,numberw + 1 :
[pos1,
(pos2 − pos1), . . . , (posp − posp−1)]) .

To illustrate wildcard storage, consider an example
where the wildcard n occurs three times in a se-
quence, at offsets 253, 496 and 497, and the wildcard
b occurs once, at offset 931. The other nine wildcards
do not occur. Illustrating our example with the data
as integers, the wildcard structure would be

[2 : (n, 3 : [253, 496, 497]), (b, 1 : [931])] .

After taking differences, we have

[2 : (n, 3 : [253, 243, 1]), (b, 1 : [931])] .

To simplify sequence processing when wildcard infor-
mation is not to be decoded, we store the length of the

Property verte genbank

With wildcards
Compression (Mb/sec) 0.36 0.51
Decompression (Mb/sec) 13.67 10.81
Compression (bits/base) 2.02 2.09
Without decoding of wildcards
Decompression (Mb/sec) 14.07 13.44
Without wildcards
Compression (Mb/sec) 0.36 0.54
Decompression (Mb/sec) 14.75 14.27
Compression (bits/base) 2.01 2.03
Retrieval of direct-coded data
Sequential (Mb/sec) 13.67 10.81
Random 10% (Mb/sec) 1.43 2.96
Retrieval of uncompressed data
Sequential (Mb/sec) 4.12 2.97
Random 10% (Mb/sec) 0.38 0.59

Table 4: Performance of direct coding.

compressed wildcard data, again using the variable-
byte coding scheme. A benefit of this scheme is that,
for sequences with no wildcards, a length of zero is
stored without any accompanying data structure—an
overhead of a single byte.

With this representation of sequences, decoding
has two phases. In the first phase the bytes represent-
ing the sequence, each byte of four 2-bit values, are
mapped to four nucleotides through an array. This
process is extremely fast; it is an insignificant fraction
of disk fetch costs, for example. In the second phase
the tuples of wildcard information are decoded, and
wildcard characters are overwritten on nucleotides at
the indicated offsets.

The first block of Table 4 shows results for this
direct coding scheme. For verte, compression is
around 0.05 bits per base higher than the entropy
and slightly higher in the genbank collection, be-
cause the proportion of sequences containing wild-
cards increases from around 16% in the verte collec-
tion to 58% in genbank; this also results in a reduc-
tion in decompression speed from around 14 Mb/sec
for verte to around 11 Mb/sec for genbank.

Overall, decompression speed is excellent, between
10 and 14 times faster than that given by Huffman
coding. We have also shown, in the second block
of Table 4, decompression rates without decoding of
wildcards—as discussed above, some search tools are
used without them—and as can be seen the impact
of wildcards on time is small.

The third block of Table 4 shows compression per-
formance with wildcards replaced by random match-
ing nucleotides. This achieves compression of around
2.02 bits per base, as shown. The compressed data



Williams and Zobel: Compression of Nucleotide Databases for Fast Searching 5

occupies slightly more than 2 bits per base because
for each sequence we must store the sequence length
and, since we store sequences byte-aligned, the last
byte in the compressed sequence is on average only
half full. Note that in genbank the wildcards con-
tribute disproportionately to decompression costs:
they are 0.6% of the compressed data but account
for around 25% of the decompression time.

The last two blocks of table 4 compare retrieval
times for uncompressed data to those for direct-coded
data. The first line in each block is the speed of se-
quential retrieval of all sequences: by using direct
coding, the reduction in disk costs results in a four-
fold improvement in overall retrieval time. The sec-
ond line in each block illustrates the further available
improvement when retrieving only a fraction of the
sequences: in this case, we retrieved a random 10% of
the sequences and averaged the results over 10 such
runs. In the case of random access, retrieval of direct-
coded data is again over four times faster than with
uncompressed data. We therefore expect that use of
direct coding in a retrieval system would significantly
reduce retrieval times overall.

To further test this hypothesis we incorporated the
scheme into cafe, our genomic database retrieval en-
gine (Williams and Zobel, 1996a), and found that re-
trieval times fell by over 20%.

In BLAST (Altschul et al., 1990) a simple approach
is taken to nucleotide compression. All occurrences of
wildcards are replaced by a random choice of any of
the four nucleotides. In addition to a count indicat-
ing sequence length, there is an indication of whether
the sequence originally contained wildcards. BLAST
achieves compression of 2.03 bits per base on the gen-
bank collection using this scheme; this is a saving of
0.06 bits per base over our direct-coding scheme, but
is lossy because wildcard data is discarded. To allow
processing of sequences with wildcards, each sequence
is also stored uncompressed, giving a total storage re-
quirement of 10.03 bits per base.

With BLAST, a user preference during retrieval is
optional wildcard matching by retrieving the original
uncompressed data file for sequences with wildcards.
As our results show, fetching this data will have a
serious impact on query evaluation time because re-
trieval of uncompressed data is extremely slow.

Tools like BLAST inspect all the sequences in a
database in response to a query, either decompress-
ing them or processing them directly in compressed
form. We have investigated alternatives based on in-
dexing (Williams and Zobel, 1996a), but even with
indexing a significant fraction of the database must
be inspected during query evaluation. Fast decom-
pression, or a format that can be processed directly,
is thus crucial to efficient query processing.

Table 5 shows the results of using the compression

Scheme verte genbank

gzip
Compression (Mb/sec) 0.23 0.41
Decompression (Mb/sec) 4.12 3.84
Compression (bits/base) 2.07 2.14
compress
Compression (Mb/sec) 0.97 1.17
Decompression (Mb/sec) 2.30 2.11
Compression (bits/base) 2.13 2.19

Table 5: Performance of standard compression utili-
ties.

tools gzip and compress on the verte and genbank
collections. Both are relatively slow in compression
and decompression and require more bits per charac-
ter than the direct coding scheme. Note that both
methods are unsuitable for database compression, as
both allow only sequential access to sequences.

6 Structure-based coding

A special-purpose compression algorithm for nu-
cleotide data could take advantage of any secondary
structure known to be present (Griffiths et al., 1993).
For example, Grumbach and Tahi have used the
palindromes that are known to commonly occur in
DNA strings (without wildcards) to compress to less
than 2 bits per base, typically saving 0.2 bits per
base and in some cases rather more (Grumbach and
Tahi, 1993). The difficulty with such approaches is
the cost of recognising the structure: identification of
palindromes is an expensive operation, and is compli-
cated by the presence of wildcards. However, palin-
drome compression would be easy to integrate with
our direct coding scheme, as the structure of wildcard
information would not be affected.

Another possibility is vertical compression (Grum-
bach and Tahi, 1993): since sequences in GenBank
are grouped, to some extent, by similarity, adjacent
sequences may differ in only a few bases; and more
frequently may share long common substrings. This
similarity could be exploited by a compression tech-
nique, and again could easily be integrated with the
direct coding, but would violate our principle that
records be independently decodable.

7 Conclusions

We have considered the problem of practical compres-
sion of databases of nucleotide sequences with wild-
cards, and have identified two lossless compression
schemes that work well in practice. Our experimental
evaluation of canonical Huffmann coding with a semi-



Williams and Zobel: Compression of Nucleotide Databases for Fast Searching 6

static model of fixed-length intervals showed that it
gives excellent compression, but with the overhead of
a large in-memory model and, at decompression rates
of around 1 Mb per second, is somewhat slow.

Our compression method, a direct coding designed
specifically for nucleotide sequences with wildcard
characters, performs rather better. While the com-
pression performance is slightly worse—by around
0.03 bits per base—than for Huffman coding, mem-
ory requirements are slight and sequences can be de-
compressed at up to 14 Mb per second. Such speed
is vital to good searching performance, since current
searching tools for nucleotide databases inspect a sub-
stantial fraction of the database in response to every
query. We have shown that compression not only
reduces space requirements, but that direct coding
results in a fourfold improvement in retrieval time
compared with fetching of uncompressed data.

Acknowledgements

We are grateful to Alistair Moffat for his implemen-
tation of canonical Huffman coding. This work was
supported by the Australian Research Council, the
Centre for Intelligent Decision Systems, and the Mul-
timedia Database Systems group at RMIT.

References

Altschul, S., Gish, W., Miller, W., Myers, E., and
Lipman, D. (1990). Basic local alignment search
tool. Journal of Molecular Biology, 215:403–410.

Bell, T., Cleary, J., and Witten, I. (1990). Text Com-
pression. Prentice-Hall, Englewood Cliffs, New
Jersey.

Bell, T., Moffat, A., Nevill-Manning, C., Witten, I.,
and Zobel, J. (1993). Data compression in full-
text retrieval systems. Journal of the American
Society for Information Science, 44(9):508–531.

Bell, T., Moffat, A., Witten, I., and Zobel, J.
(1995). The MG retrieval system: Compress-
ing for space and speed. Communications of the
ACM, 38(4):41–42.

Benson, D., Lipman, D., and Ostell, J. (1993). Gen-
Bank. Nucleic Acids Research, 21(13):2963–
2965.

Elias, P. (1975). Universal codeword sets and repre-
sentations of the integers. IEEE Transactions on
Information Theory, IT-21(2):194–203.

Golomb, S. (1966). Run-length encodings. IEEE
Transactions on Information Theory, IT–
12(3):399–401.

Griffiths, A., Miller, J., Suzuki, D., Lewontin, R., and
Gelbart, W. (1993). An Introduction to Genetic
Analysis. Freeman, New York, fifth edition.

Grumbach, S. and Tahi, F. (1993). Compression of
dna sequences. In Storer, J. and Cohn, M., edi-
tors, Proc. IEEE Data Compression Conference,
pages 340–350, Snowbird, Utah.

Lelewer, D. and Hirschberg, D. (1987). Data com-
pression. Computing Surveys, 19(3):261–296.

Pearson, W. and Lipman, D. (1988). Improved tools
for biological sequence comparison. Proc. Na-
tional Academy of Science, 85:2444–2448.

Rissanen, J. and Langdon, G. (1981). Universal mod-
eling and coding. IEEE Transactions on Infor-
mation Theory, IT-27(1):12–23.

Shannon, C. (1951). Prediction and entropy of
printed English. Bell Systems Technical Jour-
nal, 30:55.

Williams, H. and Zobel, J. (1996a). Indexing nu-
cleotide databases for fast query evaluation. In
Proc. International Conference on Advances in
Database Technology (EDBT), pages 275–288,
Avignon, France. Springer-Verlag. Lecture Notes
in Computer Science 1057.

Williams, H. and Zobel, J. (1996b). Practical com-
pression of nucleotide databases. In Proc. Aus-
tralasian Computer Science Conference, pages
184–193, Melbourne, Australia.

Witten, I., Moffat, A., and Bell, T. (1994). Manag-
ing Gigabytes: Compressing and Indexing Docu-
ments and Images. Van Nostrand Reinhold, New
York.

Zobel, J. and Moffat, A. (1995). Adding compres-
sion to a full-text retrieval system. Software—
Practice and Experience, 25(8):891–903.


