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Abstract. Evaluating a query can involve manipulation of large vol-
umes of temporary data. When the volume of data becomes too great,
activities such as joins and sorting must use disk, and cost minimisation
involves complex trade-offs. In this paper, we explore the effect of com-
pression on the cost of external sorting. Reduction in the volume of data
potentially allows costs to be reduced — through reductions in disk traffic
and numbers of temporary files — but on-the-fly compression can be slow
and many compression methods do not allow random access to individual
records. We investigate a range of compression techniques for this prob-
lem, and develop successful methods based on common letter sequences.
Our experiments show that, for a given memory limit, the overheads of
compression outweigh the benefits for smaller data volumes, but for large
files compression can yield substantial gains, of one-third of costs in the
best case tested. Even when the data is stored uncompressed, our results
show that incorporation of compression can significantly accelerate query
processing.

1 Introduction

Relational database systems, and more recent developments such as document
management systems and object-oriented database systems, are used to manage
the data held by virtually every organisation. Typical relational database systems
contain vast quantities of data, and each table in a database may be queried
by thousands of users simultaneously. However, the increasing capacity of disks
means that more data can be stored, escalating query evaluation costs. With the
amount of data being so large, each stage of the entire storage hierarchy of disk,
controller caches, main-memory, and processor caches becomes a bottleneck.
Processors are not keeping pace with growth in data volumes [I], particularly
for tasks such as joins and sorts where the costs are superlinear in the volume
of data to be processed.

In this paper we focus on reducing the costs of external sorting through
making better use of the storage hierarchy. A current problem is that tens to
hundreds of processor cycles are required for a memory access, and tens of mil-
lions for a disk access, a trend that is continuing: processor speeds are increasing
at a much faster rate than that of memory and disk technology [2]. Thus, during
an external sort, total processing time is only a tiny fraction of elapsed time.
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Most of the time is spent writing temporary files containing sorted runs to disk,
then reading and merging the runs to produce the final sort; each run is the re-
sult of sorting one buffer of data. This imbalance, where disk activity dominates,
can be partly redressed through use of compression.

For external sorting, it should in principle be possible to use spare cycles
to compress the data on the fly, thus reducing the number of runs. However, a
compression technique for this application must meet strong constraints. First,
in contrast to adaptive compression techniques, which treat the data as a con-
tinuous stream and change the codes as the data is processed, it must allow the
records to be accessed individually and reordered. Second, in contrast to stan-
dard semi-static techniques, the data cannot be fully pre-inspected to determine
a model. Third, the coding and decoding stages must be of similar speed to the
transfer rate for uncompressed data. Last, the compression model must be small,
so that it does not consume too much of the buffer space needed for sorting. No
standard technique meets these constraints.

We propose that compression proceed by allowing pre-inspection of the first
buffer-load of data, and building a model based on this data alone. This partial
(and probably non-optimal) model can then be used to guide compression and
decompression of each subsequent run. In this framework we test several com-
pression techniques: canonical Huffman coding and two new methods that we
have developed, both of which are based on identifying the commonest letter
sequences and representing them in computationally efficient bytewise codes.
Our experiments show that these methods reduce sorting costs for large files.
Data compression is therefore an effective means of increasing bandwidth — not
by increasing physical transfer rates, but by increasing the information density
of transferred data — and can relieve the I/O bottlenecks found in many high
performance database management systems [3].

Previous research [4BJG[7I89] has shown the benefits of decompressing data
on the fly where the data is stored compressed. However, it was found [9] that
compression on the fly had significantly higher processor costs, indicating that
compression is only beneficial to read-only queries. Our results show, in con-
trast to previous work, that compression is useful even when the data is stored
uncompressed.

2 Compression in Retrieval Systems

The value of compression in communications is well-known: it reduces the cost of
transmitting a stream of data through limited-bandwidth channels. Much of the
research into compression has focused on this environment, in which the order of
the data does not change and pre-inspection of the data is not necessarily avail-
able, leading to the development of high-performance adaptive techniques. Com-
pression depends on the presence of a model that describes the data and guides
the coding process. A model is in principle a set of symbols and probabilities;
in adaptive compression, the model is changed with each symbol encountered.
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Compression is achieved by using short codes for highly probable symbols, and
longer codes for rarer symbols.

Adaptive techniques are largely inapplicable to the database environment,
in which the stored data is typically a bag of independent records that can be
retrieved or manipulated in any order. In such applications, the only option is
to use semi-static compression, in which the model is fixed after some training
on the data to be compressed, so that the code allocated to a symbol does not
change during the compression process. (Adaptation can be used while a record
is being compressed [10], but at the start of the next record it is necessary to
revert to the original model.) Further difficulties are that the data changes as
records are added, modified, or deleted; that the volume of memory available
to store a compression model is very much smaller than the volume of data to
be compressed, a situation that is likely to lead to poor compression; that the
presence of a compression model reduces the buffer space available to evaluate
the query; and that coding and decoding must have low processor overhead so
as not to eliminate the benefits of reduced data transfer times.

The best-known semi-static compression technique is zero-order frequency
modeling coupled with canonical Huffman coding, in which the frequency of each
symbol (which might be a byte, Unicode character, character-pair, English word,
and so on) is counted, then a Huffman code is allocated based on the frequency.
In canonical Huffman coding, the tree is not stored and decompression is much
faster than traditional implementations [TTIT2].

Semi-static compression has been successfully integrated into text informa-
tion retrieval systems, resulting in savings in both space requirements and query
evaluation costs [T2T3IT4/THIT6]. The compression techniques used are relatively
simple — Huffman coding for text, and integer coding techniques [I5] for indexes
— but the savings are dramatic. Index compression in particular is widely used
in commercial systems, from search engines such as Google to content managers
such as TeraText. Moreover, integer coding is extremely fast. We have shown [14]
that even the cost of transferring data from main-memory to the on-processor
cache can be reduced through appropriate use of compression based on elemen-
tary byte-wise codes.

However, compression has not traditionally been used in commercial database
systems [4)J7], and has been undervalued in query processing research [3]. Earlier
papers investigated the benefits of compression in database query evaluation
theoretically [6I718], and only in the last few years have researchers reported
compression being incorporated into database systems [4J5/9].

Most of the research in this area has focused on reducing storage and query
processing costs when data is held compressed. Graefe et al. [6] recommend com-
pressing attributes individually, employing the same compression scheme for all
attributes of a domain. Ng et al. [7] describe a page-level compression scheme
based on a lossless vector quantisation technique. However, this scheme is only
applicable to discrete finite domains where the attribute values are known in ad-
vance. Ray et al. [8] compared several coding techniques (Huffman, arithmetic,
LZW, and run-length) at varying granularity (file, page, record, and attribute).
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They confirm the intuition that attribute-level compression gives poorer com-
pression, but allows random access.

Goldstein et al. [5] described a page-level compression algorithm that allows
decompression at the field level. However, like the scheme described by Ng et
al. [7], this technique is only useful for records with low cardinality fields. West-
mann et al. [9] used compression at the attribute level. For numeric fields they
used null suppression and encoding of the resulting length of the compressed
integer [17]. For strings they used a simple variant of dictionary-based com-
pression. This is particularly effective if a field can only take a limited number
of values. For example, a field that can only take the values “male” and “fe-
male” could be represented by a single bit which could then be used to look up
the decompressed value of the field in the dictionary. They saw a reduction in
query times for read-only queries, but significant performance penalties for in-
sert and modify operations. Chen et al. [4] used the same scheme as Westmann
et al. for numerical attributes, and developed a new hierarchical semi-static
dictionary-based encoding scheme for strings. They also developed a number of
compression-aware query optimization algorithms. Their results for read-only
queries showed a substantial improvement in query performance over existing
techniques. A consensus from this work is that, for efficient query processing,
the compression granularity should be small, allowing random access to the re-
quired data and thereby minimising unnecessary decompression of data; and the
compression scheme should be lightweight, that is, have low processor costs, so
as not to eliminate the benefits of reduced data transfer times

When examining the benefits of compression, Westmann et al. [9] saw that
compression of a tuple had significantly higher processor costs than decompres-
sion, and so did not believe that compression could improve the performance of
online transaction processing (OLTP) applications. All the other papers presup-
posed a compressed database, so the only compression-related cost involved in
query resolution was the decompression of data.

For query processing, compression has value in addition to improved 1/0
performance, because decompression can often be delayed until a relatively small
data set is determined. Exact-match comparisons can be on compressed data.
During sorting, the number of records in memory and thus per run is larger,
leading to fewer runs and possibly fewer merge levels [3].

3 External Sorting

External sorting is used when the data does not fit into available memory. It is
of general value for sorting large files, but is of particular value in the context
of databases, where a machine may be shared amongst a large number of users
and queries, and per-query buffer space is limited. External sorting has two
phases [I8/19], as below. The process assumes that a fixed-size buffer is available,
which is used for sorting in the first phase and for merging in the second. The
process is illustrated in Figure[l], and is described in detail by Knuth [20].
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Phase 1: Process buffer-sized amounts of data in turn. The following is repeated
as many times as necessary:
1. Fill the buffer with records from the relation to be sorted.
2. Sort the records in memory.
3. Write records in sorted order into new blocks, forming one sorted run.

Phase 2: Merge all the sorted runs into a single sorted list, repeating until all
runs have been processed:

1. Divide input buffer space amongst the runs, giving per-run buffers, and
fill these with blocks from runs.

2. Using a heap, find the smallest key among the first remaining record in
each buffer, then move the corresponding record to the first available
position of the output buffer.

3. If the output buffer is full, write it to disk and empty the output buffer.

4. If the input buffer from which the smallest key was just taken is now
exhausted, fill the input buffer from the same run. If no blocks remain
in the run, then leave the buffer empty and do not consider keys from
that run in any further sorting

e — R —
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Input utput |:|
S Main Memory Buffers .
S —
Disk Disk
(a) Generate sorted runs, write them to disk.
—— [
D/’Jr/» LT
LT
] ]

D\‘\, Sort Outbut
——
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S Main Memory Buffers <

Disk Disk
(b) Merge sorted runs

Fig. 1. A simple external sort, with sorted blocks of records written to intermediate
runs that are then merged to give the final result.
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There are many variants on these algorithms. One is that, with a large num-
ber of runs, there can be housekeeping problems for the operating system, and
the per-run buffers may become too small. A solution is then to merge the runs
hierarchically, which however incurs significant penalties in data transfer, and
should be avoided if at all possible. The Unix command-line sort utility takes
this approach. (We do not test hierarchical merging in our experiments.) An-
other variant is that, if the merged results are to be written to disk, they can
be written in-place; in the context of database query processing, however, it is
often the case that the results are immediately used and discarded.

4 External Sorting with Compression

By incorporating compression into the sort algorithm, we aim to reduce the time
taken to sort due to better use of memory, reduced transfer costs, and generation
of fewer runs. The two key questions to answer when integrating compression
into external sorting are, first, at what stage should the data be compressed,
and, second, what compression technique to use.

Considering the first of the key questions, compression could be used simply
to speed memory-to-disk transfers, by compressing runs after they have been
sorted and decompressing them as they are retrieved. This approach has the ad-
vantage that high-performance adaptive compression techniques could be used,
but also has disadvantages. In particular, it does not allow reduction in the num-
ber of runs generated, and at merge time a separate compression model must be
used for each run.

The alternative is to compress the data as it is loaded into the buffer, prior to
sorting. This allows better use to be made of the buffer; reduces the number of
runs; and, since semi-static compression must be used, the same model applies
to all runs. However, the compression is unlikely to be as effective. Nonetheless,
given the cost of adaptive compression and the advantages of reducing the num-
ber of runs — such as increasing the buffer space available per run and reducing
disk thrashing — it is this alternative that we have explored in our experiments.

In this approach, external sorting with compression proceeds as follows. Re-
ferring to Figure[2] assume that we have an input buffer of size A and an output
buffer of size B, and that compression model size is M.

Phase 1: Build the compression model.
The arrangement of buffers in shown in Figure 2(a). The input buffer has
capacity A — M for records.
1. Fill input buffer with records.
2. Build a model based on the symbol frequencies in these records.
Phase 2A: Generate the first compressed run.
1. Sort the keys of the records in the input buffer.
2. In sorted order, compress the records then write them to disk as a sorted
run.
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Fig. 2. External sorting with compression. The first stage is using the initial data to
determine a model. Then runs are generated and merged as before, but compression is
used to increase the number of records per run.

Phase 2B: Generate the remaining compressed runs.
The arrangement of buffers is shown in Figure B(b); note that the data
can no longer be read directly into a buffer for sorting, as it must first be
compressed. The input and output buffers are of size B/2 each, and the sort
buffer is of size A — M.
Repeat the following until all data has been processed:
1. Fill the input buffer with data.
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2. Compress each record in the input buffer, then write it to the sort buffer.
Continue until the sort buffer is full, reloading the input buffer as nec-
essary.

3. Sort the records in the sort buffer.

4. In sorted order, write the compressed records to disk, forming one run.

Phase 3: Merge all the runs into a single sorted list.
The arrangement of buffers in shown in Figure Blc). The input buffer is of
size A — M, the output buffer is of size B. Note that the model required for
decoding may be smaller than that required for encoding.

1. Divide the input buffer space amongst the runs and fill with data from
the compressed runs.

2. Find the smallest key among the first remaining record in each buffer,
and move the corresponding record to the first available position of the
output block and decompress.

3. If the output buffer is full, write it to disk and reinitialise.

4. If the input buffer from which the smallest key was taken is exhausted,
read from the same run and fill the same input buffer. If no blocks remain
in the run, then leave the buffer empty and do not consider keys from
that run in any further sorting.

In this algorithm, the sort key must be left uncompressed, and to simplify
data management each compressed record should be prefixed with a bytelength.
In comparing sorting techniques, each should use the same fixed amount of buffer
space. If compression is not used, all the buffer space is available for sorting. For
the compression-based sort algorithms, the buffer space available for sorting will
be reduced by the memory required by the compression model.

5 Compression Techniques for External Sorting

The second key question of this research program is choice of compression tech-
nique. As outlined earlier, “off the shelf” compression systems (with one ex-
ception, XRAY, discussed below) do not satisfy the specific constraints of this
application.

Several observations can be made. We need to investigate semi-static coding
techniques that can be used in conjunction with a model based on inspection of
only part of the data; if some symbol does not occur in this part of the data,
it is nonetheless necessary that it have a code. Bitwise or bytewise codes are
much faster than arithmetic coding [12], which is too slow for this application.
Bytewise codes are much faster than bitwise codes [14], but may lead to poor
compression efficiency. Both coding and decoding must be highly efficient: for
example, given a symbol it is necessary to find its code extremely fast. Zero-order
models are an obvious choice, because higher-order models lead to high symbol
probabilities — and thus poor compression efficiency — with bitwise or bytewise
codes (for a given model size). And model size must be kept small.
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In view of these observations, Huffman coding is one choice of coding tech-
nique, based on a model built on symbol frequencies observed in the first buffer-
load of data. Bytewise codes are another option. These are discussed below.
Another choice would be to use XRAY [21], in which an initial block of data
is used to train up a model. Each symbol, including all unique characters, is
then allocated a bitwise code. XRAY provides high compression efficiency and
fast decompression; in both respects it is superior to gzip on text data, for ex-
ample, even though the whole file is compressed with regard to one model. (In
gzip, a new model is built for each successive block of data. Compression effi-
ciency depends on block size, which is around 100 Kb in standard configurations;
with small blocks no size reduction is achieved.) However, the training process
is much too slow. Development of new XRAY-based compression techniques for
this application is a topic for further research.

Likely buffer sizes are a crucial factor in design of algorithms for this ap-
plication. We have assumed that tens of megabytes are a reasonable minimum
volume for sorting of data of up to gigabytes; in our experiments we report on
performance with 18.5 Mb and 37 Mb buffers. In this context, model sizes need
to be restricted to at most a couple of megabytes.

Huffman Coding of Bigrams

In compression, it is necessary to choose a definition of symbol. Using individual
characters as symbols gives poor compression; using all trigrams (sequences of
three distinct characters) consumes too much buffer space. Using variable-length
symbols requires an XRAY-like training process. We therefore chose to use bi-
grams, or all character pairs, as our symbols, giving an alphabet size of 2'6. The
amount of memory required for the model is approximately 800 Kb (528 Kb for
the decode part and 264 Kb for the additional encode part).

Huffman coding yields an optimal bitwise code for such a model. Standard
implementations of Huffman coding are slow; we used canonical Huffman coding,
with the implementation of Moffat and Turpin [22].

Bytewise Bigram Coding

Bitwise Huffman codes provide a reasonable approximation to symbol probabili-
ties; a symbol with a 5-bit code, for example, has a probability of approximately
1 in 32. Bytewise codes can be emitted and decoded much more rapidly, but do
not approximate the probabilities as closely, and thus have poorer compression
efficiency. However, their speed makes them an attractive option.

One possibility is to use radix-256 Huffman coding. However, given that
the model is based on partial information, it is attractive to use simple, fast
approximations to this approach — in particular, the bytewise codes that we have
found to be highly efficient in other work [I4]. In these codes, a non-negative
integer is represented by a series of bytes. One flag bit in each byte is reserved
for indicating whether the byte is final or has a successor; the remaining bits are
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used for the integer. Thus the values 0 to 27 — 1 can be represented in a single
byte, 27 to 2 — 1 in two bytes, and so on.

Using these bytewise codes, the calculation of codes for bigrams can be dis-
pensed with. The bigrams are simply sorted from most to least frequent and
held in an array, and each bigrams’s array index is its code. The first 27 or 128
most frequent bigrams are encoded in one byte, the next 2'* are be encoded in
two bytes, and so on.

This scheme is simple and fast, but does have the disadvantage that compres-
sion can no more than halve the data size, regardless of the bigram probabilities,
whereas Huffman coding could in principle provide reduction by around a factor
of 16 (ignoring the uncompressed sort key and record length). The model sizes
are identical to those for Huffman coding of bigrams above.

Bytewise Common-Quadgram Coding

To achieve better compression than is available with bigrams, we need to include
more information in each symbol. Longer character sequences can yield better
compression, but models based on complete sets of trigrams and quadgrams are
too large. Another approach is to model common grams and use individual char-
acters to represent other letter sequences. In a 32-bit architecture, it is efficient
to process 4-byte sequences, and thus we explored a compression regime based
on quadgrams and individual characters.

Because buffer space is limited, we cannot examine all quad-grams and choose
only the commonest. As a heuristic, our alphabet is the first L quadgrams ob-
served, together with all possible 256 single characters. We use a hash table
with a fast hash function [23] to accumulate and count the first L overlapping
quadgrams, and simultaneously count all character frequencies. The symbols —
quadgrams and characters together — are then sorted by decreasing frequency,
and indexed by bytewise codes as for bytewise bigram coding. This scheme is not
perfect; for example, “ther” and “here” may both be common, but they often
overlap, and if one is coded the other isn’t. Determining an ideal set of quad-
grams is almost certainly NP-hard. However, the frequencies are in any case
only an approximation, as only part of the data has been inspected. Also, in
the presence of overlap, choosing which quadgram to code (rather than greedily
coding the leftmost) can improve compression, but is slower. We use the simple
greedy approach.

We varied L for the two buffer sizes tested, using L = 2'¢ for the 18.5 Mb
buffer and L = 2!7 for the 37 Mb buffer. The amount of memory required for
the model is approximately 1.8 Mb (528 Kb for the decode part and 1.3 Mb
for the encode part) or 3.0 Mb (528 Kb for the decode part and 2.5 Mb for the
encode part). As for bigram coding, the commonest 27 symbols are represented
in a single byte.

Coding then proceeds as follows. If the current four characters from the in-
put form a valid quadgram, its code is emitted, and the next four characters
are fetched. Otherwise, the code for the first character is emitted, and the next
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character is fetched. Decoding proceeds by replacing successive codes by the cor-
responding symbols, which can be characters or quadgrams. We observed in our
experiments that about two-thirds of the output codes represented quadgrams.

6 Results

To test the effect of compression on external sorting, we implemented a fast
external sorting routine, and added as options the three compression schemes
described above. Runs were sorted with the best implementation of sorting we
able to locate; as part of a separate project we are investigating high-performance
sorting algorithms [2425].

We are confident that the implementation is of high quality. For example, on
the same data and with similar parameters, the Unix sort utility takes almost
twice as long (or four times as long to sort on strings, for experiments not
reported here). Two buffer sizes were used. The larger was 37 Mb, chosen as
36 Mb for data plus 1 Mb for housekeeping; the smaller was half that, 18.5 Mb.
These choices were arbitrary.

For data, we required a large number of records representing a realistic task.
We used a log derived from a web cache, in which each line includes information
such as file size, time and date, and HTML page request. Data volumes tested
ranged from 100 Mb to 10 Gb of distinct records. The task was to sort these on
one of the numerical fields.

All experiments were carried out on an Intel 1 GHz Pentium III with 512 Mb
of memory running the Linux operating system. Other processes and disk activity
were minimised during experiments, that is, the machine was under light load.

Tables [T and 2] show the effect that incorporating compression into external
sorting has on elapsed time and temporary disk requirements. The “build model”
time is the time to determine the model. The “generate runs” time is the time
to read in the data and write out all the runs. The “merge runs” time is the time
to read in and merge the runs and write out the result. The total sort times are
illustrated in Figure B, including additional data points.

These results show that, as the volume of data being sorted grows — or as
the amount of buffer space available decreases — compression becomes increas-
ingly effective in reducing the overall sort time. The gains are due to reduced
disk transfer, disk activity, and merging costs, which can clearly outweigh the
increased processor cost incurred by compression and decompression of the data.
In the best case observed, with an 18.5 Mb buffer on 10 Gb of data, total time
is reduced by a third. The computationally more expensive methods, such as
Huffman coding and common-quadgram coding, are slow for the smaller data
sets, where the disk and merging costs are a relatively small component of the
total. (For a given buffer size, the cost of building each run is more or less fixed,
and thus run construction cost is linear in data size; merge costs are superlin-
ear in data size, as there is a log K search cost amongst K runs for each record
merged. Use of hierarchical merge and other similar strategies does not affect the
asymptotic complexity of the merge phase.) However, because Huffman coding
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Table 1. Results for sorting with 18.5 Mb of buffer space, using no compression and
using three alternative compression techniques. Results shown include time to sort and
temporary space required.

No compression Huffman Bigram Quadgram

Build model (sec) — 0.34 0.26 2.84
Generate runs (sec) 10.62 14.37 11.29 15.69
Merge runs (sec) 12.85 19.31 14.99 13.27
Total time to sort (sec) 23.47 34.02 26.54 31.80
Comparative (%) 100.0 145.0 113.1 135.5
Number of runs 6 5 5 )
Size of runs (Gb) 0.101 0.066 0.078 0.057
Comparative (%) 100.0 64.6 76.5 56.5

(a) Results for sorting 100 Mb of data with 18.5 Mb of buffer space

No compression Huffman Bigram Quadgram

Build model (sec) — 0.33 0.26 2.84
Generate runs (sec) 109.23 134.49  115.68 146.83
Merge runs (sec) 176.24 197.58 161.82 142.09
Total time to sort (sec) 285.47 33241 277.76 291.76
Comparative (%) 100.0 116.4 97.3 102.2
Number of runs 56 39 46 36
Size of runs (Gb) 0.976 0.641 0.757 0.561
Comparative (%) 100.0 65.7 77.6 57.5

(b) Results for sorting 1 Gb of data with 18.5 Mb of buffer space

No compression Huffman Bigram Quadgram

Build model (sec) — 0.34 0.26 2.83
Generate runs (sec) 1305.25  1562.52 1262.95 1699.38
Merge runs (sec) 6140.86 4736.35 4769.87 3237.10
Total time to sort (sec) 7446.11  6299.21 6033.08 4939.32
Comparative (%) 100.0 84.6 81.0 66.3
Number of runs 568 394 462 372
Size of runs (Gb) 9.921 6.584 7.742 5.848
Comparative (%) 100.0 66.4 78.0 58.9

(c) Results for sorting 10 Gb of data with 18.5 Mb of buffer space

and common-quadgram coding achieve greater compression than does bigram
coding, the sort times decrease faster as database size grows. This is most no-
ticeable in the upper graph in Figure[3] which shows that, for smaller volumes of
data, compression and decompression speed is the dominating factor; and that
at larger volumes, the amount of compression achieved becomes the dominating
factor in determining the sort time.

Despite the greater compression achieved by Huffman coding in comparison
to bigram coding, the latter is always faster. This confirms that bytewise codes
are much more efficient, with the loss of compression efficiency more than com-
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Table 2. Results for sorting with 37 Mb of buffer space, using no compression and
using three alternative compression techniques. Results shown include time to sort and

temporary space required.

No compression Huffman

Bigram Quadgram

Build model (sec) — 0.66 0.51 6.02
Generate runs (sec) 8.39 13.41 12.17 15.13
Merge runs (sec) 12.79 19.37 15.09 13.20
Total time to sort (sec) 21.18 33.44 27.77 34.36
Comparative (%) 100 157.9 131.1 162.2
Number of runs 3 3 3 3
Size of runs (Gb) 0.101 0.0652  0.0773 0.0561
Comparative (%) 100 64.3 76.3 55.3

(a) Results for sorting 100 Mb of data with 37 Mb of buffer space

No compression Huffman Bigram Quadgram
Build model (sec) — 0.66 0.52 5.99
Generate runs (sec) 108.67 146.36  126.43 143.71
Merge runs (sec) 168.81 213.62 177.93 155.36
Total time to sort (sec) 277.49 360.65 304.88 305.06
Comparative (%) 100 130.0 109.9 110.0
Number of runs 28 19 23 18
Size of runs (Gb) 0.976 0.640  0.752 0.552
Comparative (%) 100 65.5 77.0 56.6

(b) Results for sorting 1 Gb of data with 37 Mb of buffer space

No compression Huffman Bigram Quadgram
Build model (sec) — 0.66 0.51 5.98
Generate runs (sec) 1291.94  1675.52 1395.19 1593.98
Merge runs (sec) 2852.07  2442.40 2245.25 1796.71
Total time to sort (sec) 4144.02  4118.58 3640.95 3396.66
Comparative (%) 100 99.4 87.9 82.0
Number of runs 287 193 226 181
Size of runs (Gb) 9.918 6.569 7.694 5.751
Comparative (%) 100 66.2 77.6 58.0

(c) Results for sorting 10 Gb of data with 37 Mb of buffer space

pensated for by the gain in processing speed. The common-quadgram method
had both better compression efficiency and high processing efficiency, and thus
was for large files superior to the other methods.

The tables also include the size of the resulting runs, giving an indication
of the amount of compression achieved. Because we are making a number of
compromises (compression and decompression must be fast, and the model must
not consume too much memory), only modest compression was achieved. Also,
as discussed earlier the key is not compressed, and there is the extra overhead
of storing the number of bytes encoded in the record, as this value is needed
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Fig. 3. Sort times as a percentage of the time to sort without compression. (a): with
18.5 Mb of buffer space. (b): with 37 Mb of buffer space.

by the decoder. The model is only built from symbols encountered in the first
buffer, not the entire database, so the model may not be optimal. However it
is worth noting that when compressing 10 Gb of data, comparing the values in
Tables [Mi(c) and Zc), using 36 Mb to build the model instead of 18 Mb only
resulted in an extra 1 to 2 percent decrease in size.

Even though the degree of compression is relatively small, from Table [2(c)
for bigram coding, we can see that a 22.4% saving in space due to the use
of compression has resulted in a 12.1% saving in time. From Table [(c) for
bigram coding, a 22.0% saving in space has resulted in a 19.0% saving in time.
For common-quadgram coding, a 41.1% reduction in the size of the runs has
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resulted in a 33.7% reduction in the sort time. It seems clear that more effective
compression should lead to further reduction in costs in both space and time.

7 Conclusions

We have developed new compression methods that accelerate external sorting
for large data files. The methods are simple; the most successful is based on
the expedient of identifying common quadgrams and replacing characters and
quadgrams by bytewise codes. The gain is greatest when memory is limited,
showing that the reduction in merging costs is a key reason that time is saved.
Even though the compression gains were only moderate, significant reductions
in costs were achieved.

For the largest file considered, most of the savings in data volume translate
directly to savings in sorting time. This strongly suggests that more effective
compression techniques will yield faster sorting, so long as the other constraints
— semi-static coding, rapid modelling, compression, and decompression, and low
memory use — continue to be met. It is also likely that similar techniques could
accelerate other database processing tasks, in particular large joins. That is, our
results indicate that compression of this kind could be used to reduce costs for
a range of applications involving manipulation of large volumes of data.
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