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Abstract

Ongoing changes in computer performance are affecting

the efficiency of string sorting algorithms. The size of

main memory in typical computers continues to grow, but

memory accesses require increasing numbers of instruction

cycles, which is a problem for the most efficient of the

existing string-sorting algorithms as they do not utilise cache

particularly well for large data sets. We propose a new

sorting algorithm for strings, burstsort, based on dynamic

construction of a compact trie in which strings are kept in

buckets. It is simple, fast, and efficient. We experimentally

compare burstsort to existing string-sorting algorithms on

large and small sets of strings with a range of characteristics.

These experiments show that, for large sets of strings,

burstsort is almost twice as fast as any previous algorithm,

due primarily to a lower rate of cache miss.

1 Introduction

Sorting is one of the fundamental problems of computer

science. In many current applications, large numbers of

strings may need to be sorted. There have been sev-

eral recent advances in fast sorting techniques designed

for strings. For example, many improvements to quick-

sort have been described since it was first introduced,

an important recent innovation being the introduction

of three-way partitioning in 1993 by Bentley and McIl-

roy [5]. Splaysort, an adaptive sorting algorithm, was

introduced in 1996 by Moffat, Eddy, and Petersson [14];
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it uses a combination of the splaytree data structure and

insertionsort. Improvements to radixsort for string data

were proposed in 1993 by McIlroy, Bostic, and McIl-

roy [13]; forward and adaptive radixsort for strings were

introduced in 1996 by Andersson and Nilsson [2, 15]; a

hybrid of quicksort and MSD radixsort named three-

way radix quicksort was introduced in 1997 by Bentley

and Sedgewick [4, 18]; and, as an extension to keys that

are made up of components, three-way radix quicksort

was extended by Bentley and Sedgewick in 1997 [3] to

give multikey quicksort.

While these algorithms are theoretically attractive,

they have practical flaws. In particular, they show poor

locality of memory accesses. This flaw is of increasing

significance. A standard desktop computer now has a

processor running at over 1 GHz and 256 Mb or more

of memory. However, memory and bus speeds have not

increased as rapidly, and a delay of 20 to 200 clock

cycles per memory access is typical. For this reason,

current processors have caches, ranging from 64 or 256

kilobytes on a Celeron to 8 megabytes on a SPARC;

however, these are tiny fractions of typical memory

volumes, of 128 to 256 megabytes on the former and

many gigabytes on the latter. On a memory access,

a line of data (32 or 128 bytes say) is transferred

from memory to the cache, and adjacent lines may be

pro-actively transferred until a new memory address is

requested. The paging algorithms used to manage cache

are primitive, based on the low-order bits of the memory

address.

Thus, some years ago, the fastest algorithms were

those that used the least number of instructions. Today,

an algorithm can afford to waste instructions if doing so

reduces the number of memory accesses [12]: an algo-



rithm that is efficient for sorting a megabyte of data, or

whatever the cache size is on that particular hardware,

may rapidly degrade as data set size increases. Radix-

sorts are more efficient than older sorting algorithms,

due to the reduced number of times each string is han-

dled, but are not necessarily particularly efficient with

regard to cache. The degree to which algorithms can ef-

fectively utilise cache is increasingly a key performance

criterion [12, 20]. Addressing this issue for string sorting

is the subject of our research.

We propose a new sorting algorithm, burstsort,

which is based on the burst trie [9]. A burst trie

is a collection of small data structures, or containers,

that are accessed by a conventional trie. The first few

characters of strings are used to construct the trie, which

indexes buckets containing strings with shared prefixes.

The trie is used to allocate strings to containers, the

suffixes of which are then sorted using a method more

suited to small sets. In principle burstsort is similar

to MSD radixsort, as both recursively partition strings

into small sets character position by character position,

but there are crucial differences. Radixsort proceeds

position-wise, inspecting the first character of every

string before inspecting any subsequent characters; only

one branch of the trie is required at a time, so it can

be managed as a stack. Burstsort proceeds string-wise,

completely consuming one string before proceeding to

the next; the entire trie is constructed during the sort.

However, the trie is small compared to the set of strings,

is typically mostly resident in cache, and the stream-

oriented processing of the strings is also cache-friendly.

Using several small and large sets of strings derived

from real-world data, such as lexicons of web collections

and genomic strings, we compared the speed of burstsort

to the best existing string-sorting algorithms. Burstsort

has high initial costs, making it no faster than the best

of the previous methods for small sets of strings. For

large sets of strings, however, we found that burstsort

is typically the fastest by almost a factor of two. Using

artificial data, we found that burstsort is insensitive to

adverse cases, such as all characters being identical or

strings that are hundreds of characters in length.

For large sets of strings, burstsort is the best sorting

method. Using a cache simulator, we show that the gain

in performance is due to the low rate of cache misses.

Not only is it more efficient for the data sets tested, but

it has better asymptotic behaviour.

2 Existing approaches to string sorting

Many sorting algorithms have been proposed, but most

are not particularly well suited to string data. Here we

review string-specific methods. In each case, the input

is an array of pointers to strings, and the output is the

same array with the strings in lexicographic order.

Quicksort Quicksort was developed in 1962 by

Hoare [10]. Bentley and McIlroy’s variant of quicksort

was proposed in the early 1990s [5] and has since then

been the dominant sort routine used in most libraries.

The algorithm was originally intended for arbitrary

input and hence has some overhead for specific data-

types. For our experiments, we use a stripped-down

version by Nilsson [15] that is specifically tailored for

character strings, designated as Quicksort.

Multikey quicksort Multikey quicksort was in-

troduced by Sedgewick and Bentley in 1997 [3]. It is a

hybrid of quicksort and MSD radixsort. Instead of tak-

ing the entire string and comparing with another string

in its entirety, at each stage it considers only a partic-

ular position within each string. The strings are then

partitioned according to the value of the character at

this position, into sets less than, equal to, or greater

than a given pivot. Then, like radixsort, it moves onto

the next character once the current input is known to

be equal in the given character.

Such an approach avoids the main disadvantage of

many sorting algorithms for strings, namely, the waste-

fulness of a string comparison. With a conventional

quicksort, for example, as the search progresses it is

clear that all the strings in a partition must share a pre-

fix. Comparison of this prefix is redundant [18]. With

the character-wise approach, the length of the shared

prefix is known at each stage. However, some of the

disadvantages of quicksort are still present. Each char-



acter is inspected multiple times, until it is in an “equal

to pivot” partition. Each string is re-accessed each time

a character in it is inspected, and after the first par-

titioning these accesses are effectively random. For a

large set of strings, the rate of cache misses is likely

to be high. In our experiments, we have used an im-

plementation by Sedgewick [3], designated as Multikey

quicksort.

Radixsort Radixsort is a family of sorting methods

where the keys are interpreted as a representation in

some base (often a power of 2) or as strings over a

given small alphabet. Instead of comparing keys in

their entirety, they are decomposed into a sequence of

fixed-sized pieces, typically bytes. There are two, fun-

damentally different approaches to radix sorting: most-

significant digit (MSD) and least-significant (LSD) [18].

It is difficult to apply the LSD approach to a string-

sorting application because of variable-length keys. An-

other drawback is that LSD algorithms inspect all char-

acters of the input, which is unnecessary in MSD ap-

proaches. We do not explore LSD methods in this pa-

per.

MSD radixsort MSD radixsort examines only the

distinguishing prefixes, working with the most signif-

icant characters first, an attractive approach because

it uses the minimum amount of information necessary

to complete the sorting. The algorithm has time com-

plexity Ω(n + S), where S is the total number of char-

acters of the distinguishing prefixes; amongst n dis-

tinct strings, the minimum value of S is approximately

n log|A| n where |A| is the size of the alphabet. The ba-

sic algorithm proceeds by iteratively placing strings in

buckets according to their prefixes, then using the next

character to partition a bucket into smaller buckets.

The algorithm switches to insertionsort or another

simple sorting mechanism for small buckets. In our

experiments we have used the implementation of Nils-

son [15], designated as MSD radixsort.

MBM radixsort Early high-performance string-

oriented variants of MSD radixsort were presented by

McIlroy, Bostic, and McIlroy [13]. Of the four variants,

we found programC to be typically the fastest for large

datasets. It is an array-based implementation of MSD

radixsort that uses a fixed 8-bit alphabet and performs

the sort in place. In agreement with Bentley and

Sedgewick [3], we found it to be the fastest array-based

string sort. In our experiments it is designated as MBM

radixsort.

Forward radixsort Forward radixsort was devel-

oped by Andersson and Nilsson in 1994 [1, 15]. It com-

bines the advantages of LSD and MSD radixsort and is

a simple and efficient algorithm with good worst-case

behavior. It addresses a problem of MSD radixsort,

which has a bad worst-case performance due to frag-

mentation of data into many sublists. Forward radixsort

starts with the most significant digit, performs bucket-

ing only once for each character position, and inspects

only the significant characters. A queue of buckets is

used to avoid the need to allocate a stack of trie nodes,

but even so, in our experiments this method had high

memory requirements. In our experiments we have used

the implementations of Nilsson [15], who developed 8-

bit and 16-bit versions, designated as Forward-8 and

Forward-16.

Adaptive radixsort Adaptive radixsort was de-

veloped by Nilsson in 1996 [15]. The size of the alphabet

is chosen adaptively based on a function of the number

of elements remaining, switching between two character

sizes, 8 bits and 16 bits. In the 8-bit case it keeps track

of the minimum and maximum character in each trie

node. In the 16-bit case it keeps a list of which slots

in the node are used, to avoid scanning large numbers

of empty buckets. In our experiments we have used the

implementation of Nilsson [15], designated as Adaptive

radixsort.

3 Cache-friendly sorting with tries

A recent development in data structures is the burst

trie, which has been demonstrated to be the fastest

structure for maintaining a dynamic set of strings in

sort order [8, 9]. It is thus attractive to consider

it as the basis of a sorting algorithm. Burstsort is

a straightforward implementation of sorting based on



burst trie insertion and traversal. We review the burst

trie, then introduce our new sorting technique.

Burst tries The burst trie is a form of trie that is

efficient for handling sets of strings of any size [8, 9].

It resides in memory and stores strings in approximate

sort order. A burst trie is comprised of three distinct

components: a set of strings, a set of containers, and an

access trie. A container is a small set of strings, stored

in a simple data structure such as an array or a binary

search tree. The strings that are stored in a container at

depth d are at least d characters in length, and the first

d characters in the strings are identical. An access trie

is a trie whose leaves are containers. Each node consists

of an array (whose length is the size of the alphabet) of

pointers, each of which may point to another trie node

or to a container, and a single empty-string pointer to a

container. A burst trie is shown in Figure 1. Strings in

the burst trie are “bat”, “barn”, “bark”, “by”, “byte”,

“bytes”, “wane”, “way” and “west”.

A burst trie can increase in size in two ways. First is

by insertion when a string is added to a container. Sec-

ond is by bursting, the process of replacing a container

at depth d by a trie node and a set of new containers

at depth d + 1; all the strings in the original container

are distributed in the containers in the newly created

node. A container is burst whenever it contains more

than a fixed number L of strings. Though the container

is an unordered structure, the containers themselves are

in sort order, and due to their small size can be sorted

rapidly.

A question is how to represent the containers. In

our earlier implementations we considered linked lists

and other structures but the best method we have

identified is to use arrays. In this approach, empty

containers are represented by a null pointer. When

an item is inserted, an array of 16 pointers is created.

When this overflows, the array is grown, using the

realloc system call, by a factor of 8. The container

is burst when the capacity L = 8192 is reached. (These

parameters were chosen by hand-tuning on a set of test

data, but the results are highly insensitive to the exact

values.) In practice, with our test data sets, the space

overhead of the trie is around one bit per string.

Insertion is straightforward. Let the string to be

inserted be c1, . . . , cn of n characters. The leading

characters of the string are used to identify the container

in which the string should reside. If the container is at

a depth of d = n + 1, the container is under the empty-

string pointer. The standard insertion algorithm for the

data structure used in the container is used to insert the

strings into the containers. For an array, a pointer to

the string is placed at the left-most free slot.

To maintain the limit L on container size, the

access trie must be dynamically grown as strings are

inserted. This is accomplished by bursting. When

the number of strings in a container exceeds L, a

new trie node is created, which is linked into the trie

in place of the container. The d + 1th character of

the strings in the container is used to partition the

strings into containers pointed to by the node. (In our

implementation the string is not truncated, but doing

so could save considerable space, allowing much larger

sets of strings to be managed [9].) Repetitions of the

same string are stored in the same list, and do not

subsequently have to be sorted as they are known to

be identical. In the context of burst tries, and in work

completed more recently, we have evaluated the effect

of varying parameters.

Burstsort The burstsort algorithm is based on the

general principle that any data structure that maintains

items in sort order can be used as the basis of a

sorting method, simply by inserting the items into the

structure one by one then retrieving them all in-order

in a single pass.1 Burstsort uses the burst trie data

structure, which maintains the strings in sorted or near-

sorted order. The trie structure is used to divide the

strings into containers, which are then sorted using

other methods. As is true for all trie sorts, placing

the string in a container requires reading of at most

the distinguishing prefix, and the characters in the

1Our implementations is available under the heading “String

sorting”, at the URL www.cs.rmit.edu.au/~jz/resources.
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Figure 1: Burst trie with four trie nodes, five containers, and nine strings, without duplicates.

prefixes are inspected once only. Also, in many data

sets the most common strings are short; these strings

are typically stored at an empty-string pointer and are

collected while traversing the access trie without being

involved in container sorting.

Burstsort has similarities to MSD radixsort, but

there are crucial differences. The main one is that mem-

ory accesses are more localized. During the insertion

phase, a string is retrieved to place it in a container,

then again when the container is burst (a rare event once

a reasonable number of strings have been processed).

Trie nodes are retrieved at random, but there are rela-

tively few of these and thus most can be simultaneously

resident in the cache. In contrast to this depth-first

style of sorting, radixsort is breadth-first. Each string

is refetched from memory per character in the string.

With a typical set of strings, most leaf nodes in

the access trie would be expected to have a reasonable

number of containers, in the range 10–100 for an

alphabet of 256 characters. Choosing L = 8, 192

means that container sizes will typically be in the range

100 to 1,000, allowing fast sort with another sorting

method. In preliminary experiments L = 8, 192 gave

the best results overall. Exploring the behaviour of this

parameter is a topic for further research.

Considering the asymptotic computational cost of

burstsort, observe that standard MSD radixsort uses a

similar strategy. Trie nodes are used to partition a set

of strings into buckets. If the number of strings in a

bucket exceeds a limit L, it is recursively partitioned;

otherwise, a simple strategy such as insertionsort is

used. The order in which these operations are applied

varies between the methods, but the number of them

does not. Thus burstsort and MSD radixsort have the

same asymptotic computational cost as given earlier.

4 Experiments

We have used three kinds of data in our experiments,

words, genomic strings and web URLs.2 The words

are drawn from the large web track in the TREC

project [6, 7], and are alphabetic strings delimited by

non-alphabetic characters in web pages (after removal

of tags, images, and other non-text information). The

web URLs have been drawn from the same collection.

The genomic strings are from GenBank. For word and

2Some of these data sets are available under the heading

“String sets”, at the URL www.cs.rmit.edu.au/~jz/resources.



Table 1: Statistics of the data collections used in the experiments.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Duplicates

Size Mb 1.013 3.136 7.954 27.951 93.087 304.279

Distinct Words (×105) 0.599 1.549 3.281 9.315 25.456 70.246

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

No duplicates

Size Mb 1.1 3.212 10.796 35.640 117.068 381.967

Distinct Words (×105) 1 3.162 10 31.623 100 316.230

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

Genome

Size Mb 0.953 3.016 9.537 30.158 95.367 301.580

Distinct Words (×105) 0.751 1.593 2.363 2.600 2.620 2.620

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

Random

Size Mb 1.004 3.167 10.015 31.664 100.121 316.606

Distinct Words (×105) 0.891 2.762 8.575 26.833 83.859 260.140

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

URL

Size Mb 3.03 9.607 30.386 96.156 304.118 —

Distinct Words (×105) 0.361 0.92354 2.355 5.769 12.898 —

Word Occurrences (×105) 1 3.162 10 31.623 100 —

genomic data, we created six subsets, of approximately

105, 3.1623×105, 106, 3.1623×106, 107, and 3.1623×107

strings each. We call these Set 1, Set 2, Set 3, Set 4,

Set 5, and Set 6 respectively. For the URL data we

created Set 1 to Set 5. Only the smallest of these sets

fits in cache. In detail, the data sets are as follows.

Duplicates. Words in order of occurrence, including

duplicates. Most large collections of English doc-

uments have similar statistical characteristics, in

that some words occur much more frequently than

others. For example, Set 6 has just over thirty

million word occurrences, of which just over seven

million are distinct words.

No duplicates. Unique strings based on word pairs in

order of first occurrence in the TREC web data.

Genome. Strings extracted from genomic data, a col-

lection of nucleotide strings, each typically thou-

sands of nucleotides long. The alphabet size is four

characters. It is parsed into shorter strings by ex-

tracting n-grams of length nine. There are many

duplications, and the data does not show the skew

distribution that is typical of text.

Random. An artificially generated collection of strings

whose characters are uniformly distributed over the

entire ASCII range and the length of each string is

randomly generated but less than 20. The idea

is to force the algorithms to deal with a large

number of characters where heuristics of visiting

only a few buckets would not work well. This is the

sort of distribution many of the theoretical studies

deal with [17], although such distributions are not

especially realistic.

URL. Complete URLs, in order of occurrence and

with duplicates, from the TREC web data, average



length is high compared to the other sets of strings.

Some other artificial sets were used in limited experi-

ments, as discussed later.

The aim of our experiments is to compare the per-

formance of our algorithms to other competitive algo-

rithms, in terms of running time. The implementations

of sorting algorithms described earlier were gathered

from the best source we could identify, and all of the

programs were written in C. We are confident that these

implementations are of high quality.

In preliminary experiments we tested many sort-

ing methods that we do not report here because they

are much slower than methods such as MBM radixsort.

These included UNIX quicksort, splaysort, and elemen-

tary techniques such as insertionsort.

The time measured in each case is to sort an array

of pointers to strings; the array is returned as output.

Thus an in-place algorithm operates directly on this

array and requires no additional structures. For the

purpose of comparing the algorithms, it is not necessary

to include the parsing time or the time used to retrieve

data from the disk, since it is the same for all algorithms.

We therefore report the CPU times, not elapsed times,

and exclude the time taken to parse the collections into

strings. The internal buffers of our machine are flushed

prior to each run in order to have the same starting

condition for each experiment.

We have used the GNU gcc compiler and the Linux

operating system on a 700 MHz Pentium computer with

2 Gb of fast internal memory and a 1 Mb L2 cache

with block size of 32 bytes and 8-way associativity. In

all cases the highest compiler optimization level 03 has

been used. The total number of milliseconds of CPU

time consumed by the kernel on behalf of the program

has been measured, but for sorting only; I/O times

are not included. The standard deviation was low.

The machine was under light load, that is, no other

significant I/O or CPU tasks were running. For small

datasets, times are averaged over a large number of runs,

to give sufficient precision.

5 Results

All timings are in milliseconds, of the total time to sort

an array of pointers to strings into lexicographic order.

In the tables, these times are shown unmodified. In the

figures, the times are divided by n logn where n is the

number of strings. With such normalisation, suggested

by Johnson [11], the performance of an ideal sorting

algorithm is a horizontal line.

Table 2 shows the running times for the algorithms

on duplicates. These are startling results. The previous

methods show only moderate performance gains in

comparison to each other, and there is no clear winner

amongst the four best techniques. In contrast, burstsort

is the fastest for all but the smallest set size tested,

of 100,000 strings, where it is second only to MBM

radixsort. For the larger sets, the improvement in

performance is dramatic: it is more than twice as fast

as MBM radixsort, and almost four times as fast as an

efficient quicksort.

The rate of increase in time required per key is

shown in Figure 2, where as discussed the time is

normalised by n logn. As can be seen, burstsort shows

a low rate of growth compared to the other efficient

algorithms. For example, the normalised time for

MBM radixsort grows from approximately 0.00014 to

approximately 0.00025 from Set 1 to Set 6, whereas

burstsort does not grow at all.

There are several reasons that burstsort is efficient.

In typical text the most common words are small, and

so are placed under the empty-string pointer and do not

have to be sorted. Only containers with more than one

string have to be sorted, and the distinguishing prefix

does not participate in the sorting. Most importantly,

the algorithm is cache-friendly: the strings are accessed

in sequence and (with the exception of bursting, which

only involves a small minority of strings) once only; the

trie nodes are accessed repeatedly, but are collectively

small enough to remain in cache.

Figure 3 shows the normalised running times for

the algorithms on no duplicates. Burstsort is again the

fastest for all but the smallest data set, and almost twice

as fast as the next best method for the largest data



Table 2: Duplicates, sorting time for each method (milliseconds).

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Quicksort 122 528 1,770 7,600 30,100 114,440

Multikey quicksort 62 272 920 3,830 14,950 56,070

MBM radixsort 58 238 822 3,650 15,460 61,560

MSD radixsort 72 290 1,000 3,870 14,470 56,790

Adaptive radixsort 74 288 900 3,360 12,410 51,870

Forward-8 146 676 2,030 7,590 28,670 113,540

Forward-16 116 486 1,410 5,120 19,150 74,770

Burstsort 58 218 630 2,220 7,950 29,910
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Figure 2: Duplicates. The vertical scale is time in milliseconds divided by n logn.

set. Elimination of duplicates has had little impact on

relative performance.

Table 3 shows the results for genome, a data set

with very different properties: strings are fixed length,

the alphabet is small (though all implementations allow

for 256 characters), and the distribution of characters

is close to uniform random. Burstsort is relatively even

more efficient for this data than for the words drawn

from text, and is the fastest on all data sets. For

burstsort, as illustrated in Figure 4, the normalised

cost per string declines with data set size; for all other

methods, the cost grows.

The URL data presents yet another distribution.

The strings are long and their prefixes are highly

repetitive. As illustrated in Figure 5, burstsort is much

the most efficient at all data set sizes. Taking these

results together, relative behaviour is consistent across

all sets of text strings—skew or not, with duplicates or

not. For all of these sets of strings drawn from real data,

burstsort is consistently the fastest method.

We used the random data to see if another kind of

distribution would yield different results. The behaviour

of the methods tested is shown in Figure 6. On the one

hand, burstsort is the most efficient method only for the

largest three data sets, and by a smaller margin than

previously. On the other hand, the normalised time per

string does not increase at all from Set 1 to Set 6, while

there is some increase for all of the other methods. (As
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Figure 3: No duplicates. The vertical scale is time in milliseconds divided by n log n.

Table 3: Genome, sorting time for each method (milliseconds).

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Quicksort 156 674 2,580 9,640 35,330 129,720

Multikey quicksort 72 324 1,250 4,610 16,670 62,680

MBM radixsort 72 368 1,570 6,200 23,700 90,700

MSD radixsort 102 442 1,640 5,770 20,550 79,840

Adaptive radixsort 92 404 1,500 4,980 17,800 66,100

Forward-8 246 1,074 3,850 12,640 41,110 147,770

Forward-16 174 712 2,380 7,190 23,290 86,400

Burstsort 70 258 870 2,830 8,990 31,540

observed in the other cases, there are several individual

instances in which the time per string decreases between

set x and set x+1, for almost all of the sorting methods.

Such irregularities are due to variations in the data.)

Memory requirements are a possible confounding

factor: if burstsort required excessive additional mem-

ory, there would be circumstances in which it could not

be used. For Set 6 of duplicates we observed that

the space requirements for burstsort are 790 Mb, be-

tween the in-place MBM radixsort’s 546 Mb and adap-

tive radixsort’s 910 Mb. The highest memory usage was

observed by MSD radixsort, at 1,993 Mb, followed by

forward-8 at 1,632 Mb and forward-16 at 1,315 Mb. We

therefore conclude that only the in-place methods show

better memory usage than burstsort.

Other data In previous work, a standard set of strings

used for sorting experiments is of library call numbers

[3],3 of 100,187 strings (about the size of our Set 1).

For this data, burstsort was again the fastest method,

requiring 100 milliseconds. The times for multikey

quicksort, MBM radixsort, and adaptive radixsort were

106, 132, and 118 milliseconds respectively; the other

methods were much slower.

We have experimented with several other

artificially-created datasets, hoping to bring out

3Available from www.cs.princeton.edu/~rs/strings.
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Figure 4: Genome sorting time. The vertical scale is time in milliseconds divided by n log n.

the worst cases in the algorithms. We generated three

collections ranging in size from one to ten million

strings, as follows.

A. The length of the strings is one hundred, the al-

phabet has only one character, and the size of the

collection is one million.

B. The length of the strings ranges from one to a

hundred, the alphabet size is small (nine) and

the characters appear randomly. The size of the

collection is ten million.

C. The length of the strings ranges from one to hun-

dred, and strings are ordered in increasing size in

a cycle. The alphabet has only one character and

the size of the collection is one million.

Table 4 shows the running times. In each case, burstsort

is dramatically superior to the alternatives, with the

single exception of quicksort on Set A; this quicksort

is particularly efficient on identical strings. In Set B,

the data has behaved rather like real strings, but with

exaggerated string lengths. In Set C, MBM radixsort—

in the other experiments, the only method to ever do

better than burstsort—is extremely poor.

Cache efficiency To test our hypothesis that the effi-

ciency of burstsort was due to its ability to make better

Table 4: Artificial data, sorting time for each method

(milliseconds).

Data set

A B C

Quicksort 1,040 34,440 3,900

Multikey quicksort 11,530 18,750 5,970

MBM radixsort 18,130 40,220 19,620

MSD radixsort 10,580 26,380 5,630

Adaptive radixsort 7,870 20,060 4,270

Forward-8 12,290 38,800 6,580

Forward-16 8,140 27,890 4,450

Burstsort 2,730 10,090 1,420

use of cache, we measured the number of cache misses

for each algorithm and sorting task. We have used

cacheprof, an open-source simulator for investigating

cache effects in programs [19]; the cache parameters of

our hardware were used. Figure 7 shows the rate of

cache misses per key for no duplicates (the upper) and

for URL (the lower). Similar behaviour to the no dupli-

cates case was observed for the other data sets. Figure 7

is normalised by n (not n log n as in Figure 3) to show

the number of cache misses per string.

For small data sets in the no duplicates case,

burstsort and MBM radixsort shows the greatest cache
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Figure 5: URL sorting time. The vertical scale is time in milliseconds divided by n log n.

efficiency, while for large data sets burstsort is clearly

superior, as the rate of cache miss grows relatively slowly

across data set sizes.

For the URL data, the difference in cache efficiency

is remarkable. For all set sizes, burstsort has less than

a quarter of the cache misses of the next best method.

We then investigated each of the sorting methods

in more detail. For quicksort, the instruction count is

high, for example 984 instructions per key on Set 6 of

duplicates ; the next highest count was 362, for multikey

quicksort. Similar results were observed on all data

sets. As with most of the methods, there is a steady

logarithmic increase in the number of cache misses per

key. For multikey quicksort, the number of instructions

per key is always above the radixsorts, by about 100

instructions. Although relatively cache efficient in many

cases, it deteriorates the most rapidly with increase in

data set size.

For smaller string sets, MBM radixsort, is efficient,

but once the set of pointers to the strings is too large

to be cached, the number of cache misses rises rapidly.

MSD radixsort is very efficient in terms of the number

of instructions per key, next only to adaptive radixsort,

and for no duplicates the number of cache misses rises

relatively slowly compared to the other radixsorts, again

next only to adaptive radixsort. Adaptive radixsort is

the most efficient of the previous methods in terms of

the number of instructions per key in all collections ex-

cept random. The rate of cache miss rises slowly. Thus,

while MBM radixsort is more efficient in many of our

experiments, adaptive radixsort appears asymptotically

superior. In contrast, forward 8 and 16 are the least

efficient of the previous radixsorts, in cache misses, in-

struction counts, and memory usage.

Burstsort is by far the most efficient in all large

data sets, primarily because it uses the cpu-cache

effectively—indeed, it uses 25% more instructions than

adaptive radixsort. For all collections other than URL,

the number of cache misses per key only rises from 1

to 3; for URL it rises from 3 to 4. No other algorithm

comes close to this. For small sets, where most of the

data fits in the cache, the effect of cache misses is small,

but as the data size grows they become crucial. It is

here that the strategy of only referencing each string

once is so valuable.

Recent work on cache-conscious sorting algorithms

for numbers [12, 16, 17, 20] has shown that, for other

kinds of data, taking cache properties into account can

be used to accelerate sorting. However, these sorting

methods are based on elementary forms of radixsort,

which do not embody the kinds of enhancements used

in MBM radixsort and adaptive radixsort. The im-

provements cannot readily be adapted to variable-sized

strings.
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Figure 6: Random. The vertical scale is time in milliseconds divided by n log n.

6 Conclusions

We have proposed a new algorithm, burstsort, for fast

sorting of strings in large data collections. It is based on

the burst trie, an efficient data structure for managing

sets of strings in sort order. To evaluate the performance

of burstsort, we have compared it to a range of string

sorting algorithms. Our experiments show that it is

about as fast as the best algorithms on smaller sets of

keys—of 100,000 strings—and is the fastest by almost

a factor of two on larger sets, and shows much better

asymptotic behaviour.

The main factor that makes burstsort more efficient

than the alternatives is the low rate of cache miss on

large data sets. The trend of current hardware is for

processors to get faster and memories to get larger,

but without substantially speeding up, so that the

number of cycles required to access memory continues

to grow. In this environment, algorithms that make

good use of cache are increasingly more efficient than

the alternatives. Indeed, our experiments were run

on machines that by the standards of mid-2002 had

a slow processor and fast memory; on more typical

machines burstsort should show even better relative

performance. Our work shows that burstsort is clearly

the most efficient way to sort a large set of strings.
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