
What’s Next?
Index Structures for Efficient Phrase Querying

Hugh E. Williams Justin Zobel Phil Anderson
hugh@cs.rmit.edu.au jz@cs.rmit.edu.au phil@mds.rmit.edu.au

Dept of Computer Science, RMIT
GPO Box 2476V, Melbourne 3001, Australia

Abstract. Text retrieval systems are used to fetch documents from large
text collections, using queries consisting of words and word sequences.
A shortcoming of current systems is that word-sequence queries, also
known as phrase queries, can be expensive to evaluate, particularly if
they include common words. Another limitation is that some forms of
querying are not supported; an example is phrase completion, which
provides an alternative way of locating information. We propose a new
index structure, a nextword index, that addresses both of these problems.
We show experimentally that nextword indexes can be used for rapid
phrase querying, and show that they allow practical phrase completion.

1 Introduction

Digital text collections are increasingly important as information repositories
and as corporate assets. With the current rapid growth in the use of internet
searching and text databases, users expect all documents to be stored online and
to be readily available in response to simple queries to text database systems.
These systems, which are based on well-understood information retrieval prin-
ciples, are efficient for simple queries—that is, able to find documents quickly—
and effective—that is, able to find documents that satisfy users’ information
needs [Salton, 1989]. However, growth in the volume of stored information ad-
versely affects the performance of retrieval systems. Obviously, larger indexes
must be processed to resolve a query. A more insidious factor is that more in-
formation (and much more junk) is retrieved in response to each query, so that
effectiveness is degraded; users respond by specifying more complex queries, fur-
ther increasing costs.

These problems can be addressed in two ways. First, new, more efficient query
evaluation techniques can be developed. Second, alternative forms of querying

Proceedings of the Tenth Australasian Database Conference, Auckland, New Zealand,
January 18–21 1999. Copyright Springer-Verlag, Singapore. Permission to copy this
work for personal or classroom use is granted without fee provided that: copies are not
made or distributed for profit or personal advantage; and this copyright notice, the
title of the publication, and its date appear. Any other use or copying of this document
requires specific prior permission from Springer-Verlag.

can be used to identify relevant documents; for example, in practice users do
not rely solely on traditional queries to retrieve documents, but instead com-
bine querying with browsing and with techniques such as assisted query refine-
ment [Agosti and Smeaton, 1996].

We propose a new structure, a nextword index, that provides a fast alter-
native approach for querying using phrases and for phrase browsing. Compared
to a standard inverted index, our nextword index provides more efficient phrase
querying. A standard inverted index for a text database contains, for each dis-
tinct word in the database, a list of the locations in the database at which the
word occurs. In contrast, a nextword index contains, for each distinct word, a
list of the words that immediately follow it anywhere in the database, and the
locations at which they do so. Using a sequence of words, a nextword index can
identify all possible successor words, or can be used to complete successor words
that have been partially specified. In conjunction with a standard inverted index,
a nextword index provides a rich additional mechanism for accessing documents
in large collections.

We have implemented a simple nextword-based retrieval system, Bebop. Us-
ing Bebop we show experimentally that typical phrase queries can be resolved
in a fraction of the time required with conventional indexes. We also show that
nextword indexes can be built with only moderate resources. To our knowledge,
comprehensive phrase indexes have not previously been built or tested for large
text databases, and similarly phrase browsing and phrase completion have pre-
viously only been practical on small data sets.

Naively implemented, a nextword index would be unmanageably large. Using
standard index compression techniques our experiments show that the size of a
nextword index for a large database is 60% or less of that of the indexed data, and
further size reductions are available. Our results show that nextword indexing
and phrase browsing are practical on a desktop machine.

2 Text databases and query evaluation

Text database systems are used to store large volumes of text, typically as a
series of discrete documents. There are several kinds of queries to such sys-
tems [Salton, 1989]. Boolean queries consist of words and Boolean operators; for
example, a query such as

(seatbelt or airbag) and safety

would match all documents containing “safety” and either “seatbelt” or “airbag”.
Ranked queries are a natural language expression or a list of words such as

road safety airbag seatbelt car accident

The query is statistically compared to each stored document to identify those
that are most similar to the query, using properties such as the relative rareness
of each query term and the number of occurrences of each query term in each
document. Both forms of query can be extended to, for example, make use of

structure such as document markup [Sacks-Davis et al., 1997]. To allow efficient
and effective resolution of queries, every word occurring in every document is
indexed [Moffat and Zobel, 1996] [Persin et al., 1996].

The most efficient data structure for evaluating ranked or Boolean queries
on large collections is an inverted index [Zobel et al.]. An inverted index consists
of a vocabulary, containing each distinct word w that occurs in the database,
and a set of inverted lists, one for each w. At a minimum, each list contains the
identifier of each document d containing w; to allow effective ranking, the list
must contain each frequency of occurrence of w in d; to allow phrase querying,
it must also contain the sequence of ordinal positions at which w occurs in d.
Thus the inverted list for the term “safety” might be

16, 1: 11; 51, 3: 11, 81, 90; 52, 1: 136; . . .

representing the fact that it occurs once in document 16, at position 11; three
times in document 51, at positions 11, 81, and 90; and so on. Using simple cod-
ing techniques this information can be compressed to around 25% of the size of
the indexed data (perhaps one-sixth of the size of an uncompressed representa-
tion) [Witten et al., 1994].

These coding techniques are based on the principle that, with variable-
bit representations for the integers such as Elias or Golomb codes [Elias, 1975]
[Golomb, 1966], small numbers can be efficiently represented in just a few bits.
Variable-bit codes can be directly applied to counts such as the number of occur-
rences of a word in a document; for values such as document identifiers, taking
the difference between adjacent entries in an inverted list yields small positive
integers suitable for variable-bit coding. Use of such compression not only re-
duces space requirements but also reduces typical query response times, as the
cost of decoding is offset by the reduction in disk transfer costs.

Using an inverted file, a query is evaluated by fetching the inverted list of
each query term. For Boolean queries, the lists are logically combined to give a
set of answer documents; for ranked queries, the lists are used to update values
in a structure of accumulators (each corresponding to a document), and the
documents with the largest accumulator values are fetched as answers.

Both ranked and Boolean queries can involve phrases, that is, sequences of
words that must be contiguous in matching documents. A ranked query involving
phrases might be

“road safety” airbag seatbelt “car accident”

which has four query terms, two of which are phrases. Use of phrases in queries
can significantly increase effectiveness [Callan et al., 1995] [Xu and Croft, 1996].
To evaluate such a query it is necessary to construct a temporary inverted list
for each of the phrases, by fetching the inverted list of each of the individual
terms and combining them. If the inverted list for “safety” is as above and the
inverted list for “road” is

16, 1: 16; 51, 2: 12, 30; 68, 2: 9, 53; . . .

then both words occur in document 16, but not as a pair; one or the other
but not both occur in documents 52 and 68; but the phrase “road safety” does
appear once in document 51, at position 11. The list for “road safety” is thus

51, 1: 11; . . .

Phrase queries can involve more than two words, as for example when searching
for documents containing a particular business name.

Ranked or boolean querying is not the only way of searching a text database.
An alternative is to use browsing, typically via manually-added or automatically-
generated hypertext links; in practice most users find documents using a mix of
querying and browsing. Another searching mechanism is to browse the vocab-
ulary of the database to refine the query. A powerful mechanism of this kind
is to view terms, and more generally phrases, in the contexts in which they
occur in the database [Dennis et al., 1998] [Nevill-Manning and Witten, 1997]
[Nevill-Manning et al., 1998].

Improving the efficiency of phrase queries and phrase browsing is the subject
of this paper. In the next section we describe our proposed index structure for
supporting this kind of query, then in Section 4 give our experimental results.

3 Nextword indexes

We propose that phrase querying and browsing be supported by a nextword in-
dex. A nextword index consists of a vocabulary of distinct words and, for each
word w, a nextword list and a position list. The nextword list consists of each
word s that succeeds w anywhere in the database, interleaved with pointers into
the position list. For each pair ws there is a sequence of locations (document iden-
tifier and position within document) at which the pair occurs; these sequences
are concatenated to give the position list.

The structure of a nextword index is illustrated in Figure 1. In this structure,
the vocabulary is held in a structure such as a B-tree. The nextwords are sorted
and stored contiguously. This allows the use of front-coding; only the characters
of each word that differ from those of the previous word need be stored, giving
substantial space savings. For example, the sequence of words

4 acne 7 acolyte 5 acorn 6 acorns 8 acoustic,

in which the numbers indicate the length of each string, can be replaced by

4,0 acne 5,2 olyte 3,3 rn 1,5 s 5,3 ustic,

in which the first number is the length of the stored string and the second is
the number of characters shared with the previous string. These two numbers
are typically small and in a practical application can be stored in codes of 4 bits
each; one code must be reserved as an escape for the rare occurrences of larger
values. Note that front-coding (the implementation used for the experiments in

Vocabulary

safetyby worksNextwords

Positions

road

Fig. 1. Organisation of a nextword index.

this paper) means that nextword lists must be processed sequentially even if
only one nextword is required.

For each word-nextword pair the locations are sorted, then compressed with
the techniques used for standard inverted lists. The set of location lists are then
concatenated and stored contiguously, so that overall only two disk accesses are
required to fetch all the information concerning each index term. As we show
below, a nextword index represented in this way is around 60% of the size of the
indexed data, an overhead that is significant but not prohibitive.

Contiguous storage of variable-length structures (with, in practical imple-
mentations, only the longest lists divided into separate blocks for ease of main-
tenance) does add somewhat to update costs, but, compared to alternatives such
as dividing lists into separately-stored blocks, has the benefit of greatly reduc-
ing the cost of query evaluation. This is because disk accesses, particularly to
randomly-placed linked structures, are a significant bottleneck in current archi-
tectures: in some cases in excess of a million instructions can be executed during
the time required to fetch a single block from disk.

Nextword indexes can be used to support querying as follows.

– A phrase query w1w2 of two words is evaluated by fetching the nextword
list for w1, decoding to find w2, then fetching the location list for w1w2.
(The other positions for w1 are not required and do not need to be fetched.)
Compared to an inverted index—where the complete inverted lists for both
w1 and w2 must be fetched—the cost saving should be particularly high if
the second word is common, that is, has a long inverted list.
For longer phrases greater cost savings can be achieved, as the locations of
the rarest pairs within the phrase can be processed first, typically narrowing
down the number of locations to either zero or one after processing only one
or two location lists. In the former case processing can stop immediately; in
the latter the document can be fetched.
The only instance in which there is potential for a nextword index to be

slower than an inverted index is when the first word is common and the
second is rare, since the nextword list is typically only a little shorter than
a conventional inverted list. Even in this case, however, the location list for
the pair is by construction shorter than the inverted list of the second word,
and if the pair does not occur a disk access is saved.

– Given a word w, the nextword list can be used to identify all following words.
This functionality cannot be provided with a conventional inverted index,
other than by the costly mechanism of accessing all documents in which the
word occurs.
More generally, a nextword list can be used for phrase browsing. Given a
phrase of several words, the nextword index can be used to identify all
nextwords for the phrase, as follows. The phrase is processed to find all
locations, then the nextword list and position list of the last word in the
phrase is filtered to give only the nextwords that follow the phrase. This is
more costly than determining nextwords for a single word (in which case the
positions do not need to be accessed) but, without a nextword index, this
information can only be computed by accessing the documents.

– A nextword index can be used for phrase completion. Suppose that, via the
nextword index or an inverted index, it is known that two given words occur
in the same document k words apart. The nextword index can be used to
fill in the gap.

– A nextword index can also be used for word completion in the context of a
phrase. That is, given a phrase such as “road safety l”, the nextword index
can suggest completions such as “aw” or “egislation”.

For example, a user might be interested in finding information about the
liabilities of the Central Bank. All of these query terms are common in a hypo-
thetical database of finance articles, so the query “liability Central Bank” might
find no relevant documents, while the phrase “Central Bank” has no matches.
However, exploration of the word “Central” with a nextword index reveals that
“Central Bank” does not exist, but that the phrase “Central Commercial Bank”
is common. The user could then give a new ranked query or alternatively directly
use the phrase to retrieve documents.

When constructing a nextword index, some decision must be taken about
the treatment of punctuation. Some punctuation, such as stops and arguably
commas and colons, terminates phrases; other punctuation, such as quotes, can
be ignored. When a word occurs at the end of a phrase, it has no nextword.
In this case it is helpful to explicitly store a null nextword, to allow accurate
processing of phrase completion.

Perhaps the most significant drawback of nextword indexes is that they are
monodirectional—they cannot be used to identify preceding words in a phrase.
For this task an independent index of prior words is needed. Note that stopping
cannot readily be applied to reduce the size of a nextword index, nor indeed is
it clear that it is desirable, since phrases often involve common words.

Nextword indexes have several advantages compared to the alternative struc-
tures that can be used for the same tasks. One such alternative is PAT trees

[Gonnet and Baeza-Yates, 1991], in which each node is the root of a tree, each
pointer is from a predecessor to a successor, and each leaf has a pointer to a list
of document occurrences of the sequence of words. A PAT tree of words could
be used for phrase browsing, but is impractical for large collections: the whole
structure must be kept in memory, and is likely to be considerably larger than
the data being indexed.

Another structure that can be used for phrase browsing is the hierarchi-
cal non-recursive grammar generated by the Sequitur general-purpose compres-
sion algorithm [Nevill-Manning and Witten, 1997] [Nevill-Manning et al., 1998].
In this grammar each rule has a nonterminal on the left and a sequence of sym-
bols on the right, each of which is either a nonterminal or a word. This grammar
allows browsing of any sequence of words in the collection and is designed to
help the user to grasp the general content of a corpus. This approach does not
readily yield the information required for ranking, but note that ranking is not
an application for which it was designed. However, the Sequitur approach has
several other disadvantages: in particular, to generate the grammar the corpus
must be held in memory, and the size of the grammar, which must be held in
memory during phrase browsing, is prohibitive.

Perhaps the most obvious alternative structure is an inverted index of word
pairs, a structure that, assuming that the vocabulary is lexicographically sorted,
is highly similar to a nextword index. The major difference is that the inverted
lists of such an index—containing the same information as a location list in a
nextword index—would not be stored contiguously, significantly increasing the
cost of phrase completion. In other respects there is little to choose between the
structures, but this difference is crucial to efficiency.

Note that an index of nextword lists (without positions) together with a
separate index of word positions does not provide the same functionality as a
nextword index. An index of nextword lists cannot be used for phrase completion
or to verify the existence of phrases of more than two words, and only yields a
cost saving when querying for phrases that do not exist. The design of nextword
indexes means that documents do not have to be accessed until query evaluation
is complete; that is, there is no need for costly processes such as false match
elimination.

4 Experiments

To test the efficiency of nextword indexes we implemented a nextword indexing
system, Bebop. This system is currently a prototype, but in speed of phrase
querying is likely to be little different to a production implementation. Each
query to Bebop is a phrase of at least one word; output is either the number of
matching instances (documents and occurrences within documents); the list of
nextwords for the phrase; or the documents with the matching instances.

As test data we used the 508 megabytes of the Wall Street Journal (WSJ)
from TREC disks 1 and 2 [Harman, 1995]. (TREC is an ongoing international
collaborative experiment in information retrieval sponsored by NIST and ARPA.)

As test queries we generated lists of phrases as follows. From WSJ we randomly
extracted 100 two- and five-word phrases (200 phrases in total), giving query
sets W2 and W5; in these phrases we imposed the restriction that the first word
have at least five letters, to avoid selecting large numbers of phrases beginning
with common words, as we judged these to be less interesting queries. We also
extracted the commonest phrase for the commonest word (which was “the com-
pany”), the 100 rarest two-word phrases beginning with the commonest word,
and 100 rare two-word phrases ending with the commonest word, giving query
sets Wcc, Wcr, and Wrc. Each of these “W” phrases has, by construction, a
least one match in WSJ. We would expect Wcr to show the worst relative per-
formance for Bebop, because for both kinds of index costs are dominated by the
need to decode a long list. Wrc should show the best relative performance for
Bebop because decoding of a long list is entirely avoided.

We repeated the process of random extraction for the 500 megabytes of As-
sociated Press (AP) data from TREC, giving query sets A2 and A5. For many
of the “A” phrases there were no matches in WSJ, allowing early termination
when the query evaluation mechanism detected that the phrase did not occur.
We also extracted 174 two-word phrases from the TREC queries, giving query
set Q2.

To give a baseline for Bebop performance we measured MG [Bell et al., 1995]
[Witten et al., 1994] on the same data. The prototype text retrieval engine MG,
which is based on compressed inverted files, has recently been extended to eval-
uate phrase queries. All experiments were run on a Sun SPARC E2000.

We first used MG and Bebop to build indexes of WSJ. (Bebop index con-
struction is a fairly simplistic implementation that could be improved using the
pre-planned layout method of MG [Moffat, 1992].) Index construction time for
MG was approximately 40 minutes and index size was 153 megabytes, or 30.1%
of the indexed data.1 Index construction time for Bebop was approximately
83 minutes and index size was 57% of the indexed data, consisting of 18% for
vocabulary and nextwords and 39% for positions. Only 70 megabytes of memory
was used during index construction.

We then used MG and Bebop to evaluate our 775 test queries and timed their
performance. Before each run with each query set all system caches were flushed
to give a “cold start”, ensuring that index information was indeed fetched from
disk. Results are shown in Table 1.

Bebop was four to five times faster than MG in finding the matching docu-
ments and positions of each query in W2 and A2 and in the Q2 set of two-word
phrases from real queries. For each query, Bebop only decodes a single list for
the matching phrase, while MG retrieves two lists and subsequently processes
both lists. This effect is equally marked in searching with “the company” (Wcc),
where MG retrieves and processes two long lists, while Bebop processes the much
1 Typical index sizes reported elsewhere for a word-position index are 22%–25%.

The higher figure here is because in these experiments index terms were neither
stemmed nor casefolded, increasing the number of inverted lists and reducing their
compressibility.

Table 1. Average perquery evaluation time for MG and Bebop on WSJ (millisec-
onds). The second and third columns are time to find the locations of all matching
phrases. The fourth column is the time under Bebop to find all nextwords for each
phrase. (This functionality is not supported by MG.)

Query set MG Bebop Nextwords
W2 304 80 2213
W5 383 190 864
Wcc 2093 464 21929
Wcr 121 48 138
Wrc 713 443 9263
A2 254 62 1813
A5 263 80 119
Q2 131 24 164

shorter “the company” list and the list of nextwords for “the”; Bebop is over
four times faster than MG for this query.

Bebop is also 1.6 times faster than MG in searching with the Wrc query set.
The Wrc query set is ideal for Bebop, since the single list required is that of a
rare word, while the two lists required for MG are that of the rare word and
the common following word (“the”). However, as the same following word was
used in each case MG was able to buffer its inverted list, giving a considerable
saving; in retrospect this query set may not have been well chosen. The savings
in searching with Wcr are also good—Bebop is 2.5 times faster than MG—
which is surprising, as we had constructed Wcr as a worst case for Bebop. As
both systems retrieve long common word (“the”) lists, Bebop processes many
nextwords in locating the rare term, while the second list retrieved by MG is
very short.

For longer queries, Bebop is twice as fast as MG to process the W5 queries
that are known to occur in the collection, while Bebop is three times faster
than MG in processing the A5 queries that sometimes do not occur. To process
five-word phrases, both systems retrieve and process several lists. In the case
of Bebop, three lists are required to locate a phrase: the nextword lists for the
first and fourth words, as well as the shortest of the second and third word lists;
these are processed in order from rarest (shortest) to most common (longest).
In MG, up to five lists are retrieved, again beginning with shortest list for the
rarest term.

For A5 queries, early termination in Bebop is common during processing of
the first nextword list for the rarest query term, resulting in a saving in query
evaluation time. For MG on the same queries, two lists are required to get early
termination. For W5 queries, no early termination is possible and the processing
costs of both systems are similar: MG retrieves and processes five lists (where
the most common term has a long list of occurrences), while Bebop retrieves

and processes three lists (where the most common term often has a shorter list
of occurrences than MG, but requires processing of large numbers of nextwords
to locate the list).

Bebop, in contrast to MG and other systems based on inverted files, can be
used to find the nextwords occurring after a phrase. For the five-word queries,
the costs in finding nextwords are much less than finding nextwords for the two-
word queries. For A5 queries, many of the phrases do not occur, allowing early
termination, while the number of matching occurrences in W5 is typically small.
For Wrc, the cost of finding nextwords is high since all nextwords and related
lists for “the” must be processed to resolve the query. Wcr has much lower costs,
since the nextword lists and occurrences are much shorter. A2, W2, and Q2 have
similar costs in finding nextwords relative to the costs of finding occurrences
of the phrase; in some cases, Q2 and A2 phrases do not occur, allowing early
termination, while for most of the queries further processing is required to find all
possible nextwords. Wcc is the worst-case for Bebop and requires the complete
processing of all lists associated with the 19,000 nextwords of “the company”,
which have over 77,000 separate occurrences.

5 Variations on the theme

Our experiments show that nextword indexing is practical and efficient. How-
ever, further efficiency gains are available. For example, the cost of process-
ing each nextword list can be significantly reduced by partitioning the list into
groups of words, and then front-coding within groups only, yielding fixed-length
chunks [Moffat et al., 1997]. With this strategy the first word of each chunk can
be used to determine whether the chunk should be decoded, and binary search
can be used to search amongst chunks. Other strategies could be used to further
reduce index size. For example, after front-coding the characters in the nextword
lists can be compressed with a scheme such as Huffman coding. The nextwords
could also be back-coded with respect to the collection vocabulary; for example,
if “acolyte”, “acorn”, and “acoustic” are adjacent, “acorn” can be unambigu-
ously represented by the string “acor”, which is sufficient to distinguish it from
its neighbours. We estimate that the total size of nextword structures can be
reduced to around 13%.

Significant reductions in the size of the position lists can be achieved by
observing that, in a practical system, a nextword index will not be used in iso-
lation; there will also be an inverted index for use in conventional querying. The
function of the nextword index can in this context be regarded as a mechanism
for identifying whether a phrase is present and what the nextwords are. If the in-
verted index can then be used to efficiently identify the locations of the phrase, it
is possible to reduce the size of location information held in the nextword index.

The stored locations can be approximate rather than exact and therefore
represented in fewer bits; so long as the information allows correct matching
between position lists it does not matter what location values are actually stored.
We have developed a model of such a scheme and estimate that the total size of

position lists can be reduced to approximately 34%. The greater compactness of
such alternatives may well make them attractive in practice, particular if phrase-
browsing is used to construct queries rather than for direct access to documents.
We plan to explore these options in further work.

6 Conclusions

Phrases provide a powerful alternative form of accessing text databases, via use
of phrases in conventional queries and via new querying modes such as phrase
browsing. In this paper we have shown that use of phrases is practical and
efficient.

We have proposed a new index structure, a nextword index, for supporting
queries on phrases. This structure allows rapid evaluation of phrase queries and
provides phrase-browsing functionality that is not available for large databases
with any existing structure. Our experiments with Bebop, a prototype retrieval
system based on nextwords, show that phrase completion is practical and that
phrase queries can be evaluated four times as fast as with an inverted index. The
relative improvement in speed should improve with increasing database size. In
the initial Bebop implementation index size was approximately 60% of that of
the indexed data. Such an index size is not impractical, and, we have argued, can
be further reduced through application of additional compression techniques.

We believe that the useability of text databases is greatly enhanced by pro-
vision of a rich set of alternative methods of expressing information needs. Prac-
tical phrase browsing and phrase completion are important additions to these
alternatives.

Acknowledgements

We are grateful to Neil Sharman and William Webber for their assistance with
the experiments. This work was supported by the Australian Research Council.

References

[Agosti and Smeaton, 1996] Agosti, Maristella and Smeaton, Alan, editors (1996). In-
formation Retrieval and Hypertext. Kluwer Academic Publishers, Dordrecht, Nether-
lands.

[Bell et al., 1995] Bell, T.C., Moffat, A., Witten, I.H., and Zobel, J. (1995). The MG
retrieval system: Compressing for space and speed. Communications of the ACM,
38(4):41–42.

[Callan et al., 1995] Callan, J., Croft, W.B., and Broglio, J. (1995). TREC and
TIPSTER experiments with INQUERY. Information Processing & Management,
31(3):327–343.

[Dennis et al., 1998] Dennis, S., McArthur, R., and Bruza, P. (1998). Searching the
world wide web made easy? the cognitive load imposed by query refinement mech-
anisms. In Kay, J. and Milosavljevic, M., editors, Proc. Australian Document Com-
puting Conference, Sydney, Australia. University of Sydney. To appear.

[Elias, 1975] Elias, P. (1975). Universal codeword sets and representations of the inte-
gers. IEEE Transactions on Information Theory, IT-21(2):194–203.

[Golomb, 1966] Golomb, S.W. (1966). Run-length encodings. IEEE Transactions on
Information Theory, IT–12(3):399–401.

[Gonnet and Baeza-Yates, 1991] Gonnet, G. and Baeza-Yates, R. (1991). Handbook
of data structures and algorithms. Addison-Wesley, Reading, Massachusetts, second
edition.

[Harman, 1995] Harman, D. (1995). Overview of the second text retrieval conference
(TREC-2). Information Processing & Management, 31(3):271–289.

[Moffat, 1992] Moffat, A. (1992). Economical inversion of large text files. Computing
Systems, 5(2):125–139.

[Moffat and Zobel, 1996] Moffat, A. and Zobel, J. (1996). Self-indexing inverted files
for fast text retrieval. ACM Transactions on Information Systems, 14(4):349–379.

[Moffat et al., 1997] Moffat, A., Zobel, J., and Sharman, N. (1997). Text compres-
sion for dynamic document databases. IEEE Transactions on Knowledge and Data
Engineering, 9(2):302–313.

[Nevill-Manning and Witten, 1997] Nevill-Manning, C.G. and Witten, I.H. (1997).
Compression and explanation using hierarchical grammars. Computer Journal,
40(2/3):103–116.

[Nevill-Manning et al., 1998] Nevill-Manning, C.G., Witten, I.H., and Paynter, G.W.
(1998). Browsing in digital libraries: a phrase-based approach. In Allen, R.B. and
Rasmussen, E., editors, Proc. ACM Digital Libraries, pages 230–236, Philadephia,
Pennsylvania.

[Persin et al., 1996] Persin, M., Zobel, J., and Sacks-Davis, R. (1996). Filtered docu-
ment retrieval with frequency-sorted indexes. Journal of the American Society for
Information Science, 47(10):749–764.

[Sacks-Davis et al., 1997] Sacks-Davis, R., Dao, T., Thom, J.A., and Zobel, J. (1997).
Indexing documents for queries on structure, content, and attributes. In Yoshikawa,
M. and Uemura, S., editors, Proc. Int. Symp. on Digital Media Information Base,
pages 236–245, Nara, Japan.

[Salton, 1989] Salton, G. (1989). Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading, MA.

[Witten et al., 1994] Witten, I.H., Moffat, A., and Bell, T.C. (1994). Managing Giga-
bytes: Compressing and Indexing Documents and Images. Van Nostrand Reinhold,
New York.

[Xu and Croft, 1996] Xu, J. and Croft, W.B. (1996). Query expansion using local and
global document analysis. In Frei, H.-P., Harman, D., Schäuble, P., and Wilkinson,
R., editors, Proc. ACM-SIGIR International Conference on Research and Develop-
ment in Information Retrieval, pages 4–11, Zurich, Switzerland.

[Zobel et al.] Zobel, J., Moffat, A., and Ramamohanarao, K. Inverted files versus
signature files for text indexing. ACM Transactions on Database Systems. To appear.

