
Storage Management for Files of
Dynamic Records

Justin Zobel
Department of Computer Science,

RMIT, GPO Box 2476V, Melbourne 3001, Australia.
jz@cs.rmit.edu.au

Alistair Moffat
Department of Computer Science

The University of Melbourne, Parkville 3052, Australia.
alistair@cs.mu.oz.au

and

Ron Sacks-Davis
Collaborative Information Technology Research Institute

723 Swanston St., Carlton 3053, Australia.
rsd@cs.rmit.edu.au

Abstract

We propose a new scheme for managing files of variable-length dynamic records,
based on storing the records in large, fixed-length blocks. We demonstrate the
effectiveness of this scheme for text indexing, showing that it achieves space
utilisation of over 95%. With an appropriate block size and caching strategy,
our scheme requires on average around two disk accesses—one read and one
write—for insertion of or change to a record.

1 Introduction

Many database applications require that files of variable-length dynamic records be
managed. For example, inverted files are frequently used for indexing stored data.
For non-key attributes, each distinct indexed value can occur many times, so that
the entry for each distinct value—that is, the list of records containing that value—
can be of any length, and, moreover, can change in length as records are inserted,
deleted, or updated. Space efficient representations of these entries require that each
be stored as a unit1,2,3, hence the necessity that variable-length dynamic records be
stored efficiently. This behaviour is also typical of other applications, for example,
the disk buckets of a hashed file, and the nodes of a B-tree.

We propose a new method for managing dynamic records on disk, based on storing
records in large, fixed-length blocks. This scheme was sketched briefly by us in a
previous paper3; here we give both details of our proposal and experimental results in
support of our performance claims. In our scheme, each block contains several records,
a table describing those records, and, in general, some free space. The amount of free



space is kept small by relocating records when blocks overflow. Disk access costs are
kept low by the observation that, with current technology, it is not much more costly
to retrieve a large block than a small block, and by storing the contents of each record
contiguously.

We have tested our scheme, using as an example the management of indexes for
full-text database systems. We generated inverted files for several test databases and
simulated the performance of our scheme on these indexes, measuring space utilisation
and the number of disk accesses required as each term was inserted into its inverted
file entry. These simulations showed space utilisation of, in most cases, over 95%.

Our results compare well with those quoted for earlier schemes. Knuth’s de-
scription of memory management schemes, including best fit methods and the buddy
system, includes experiments that show space utilisation of less than 80%4. Biliris has
described a page allocation scheme for large objects that achieves excellent within-
page space utilisation, but relies on the buddy system to supply it with appropriate
pages5,6 and thus, if we include the cost of unused pages, does not achieve such good
utilisation overall. Nor have other schemes for index management been as effective.
The schemes surveyed by McDonell7 appear to have space utilisation of up to 50%;
the exact utilisation is unclear, as items such as pointers between list nodes are re-
garded as part of the data, whereas we would include these as overhead. The schemes
described by Faloutsos and Jagadish do better; they do not give space utilisation for
their experiments, but in their graphs the maximum utilisation is about 90%8.

Our results can be applied to problems such as B-tree indexes. Utilisation in B-
trees is usually quoted at 69%, and a recent B-tree scheme ‘with good performance’
only achieves space utilisation of 82%9. We are currently developing B-tree algorithms
based on our space management scheme that we believe will have substantially higher
utilisation ratios.

In Section 2 we review inverted file indexing. The indexes and test databases
we used to test our scheme are described in Section 3. In Section 4 we describe the
structures we propose for managing dynamic records on disk; maintenance of these
structures is described in Section 5. Results of simulation of our scheme are given in
Section 6.

2 Inverted file indexes

A general inverted file index for a text database consists of two main components: a
set of inverted file entries, being lists of identifiers of the documents containing each
indexed term; and a search structure for identifying the location of the inverted file
entry for each term, containing a vocabulary of query terms, and an index mapping
that maps ordinal term numbers onto disk addresses in the inverted index. This
arrangement is illustrated in Figure 1. The index mapping can either be stored on
disk as a separate file, or can be held in memory with the vocabulary. We assume
that inverted file entries store ordinal document numbers rather than addresses, and



so to map the resulting document identifiers to disk addresses there must also be a
document mapping .

index
mapping

search structure

inverted
file

entries

document
mapping

documents

fish

...fishing...

...Fish... ...fished...

elephant

...fish... ...fishy... ...fishery...

vocabulary

wombat

Figure 1: Inverted file index structure

We assume that the contents of each inverted file entry are stored contiguously, in
contrast to other schemes, in which entries are often stored as linked lists with each
node randomly placed on disk7,8,10, or with the documents chained together on the
basis of common attribute values11. Given this structure, queries are processed by
using the vocabulary and index mapping to find the location of the inverted file entry
for each term in the query; accessing the disk to retrieve the inverted file entries for
those terms; performing any logical operations on those entries; and then using the
document mapping to access the document file to retrieve the answers. If the search
structure is a B-tree, typically one or at most two disk accesses will be required to
find the location of the inverted file entry of each term, since the memory of current
machines is large enough to hold a substantial portion of the search structure. The
number of accesses to retrieve the entry itself is the number of blocks containing
the entry, which in our scheme will usually be one; then, depending on whether the
document mapping is in memory or on disk, one or two disk accesses will be required
for each answer.

To simplify query evaluation, inverted file entries should be maintained in sorted
order of document number. On insertion of new terms into existing documents, this
will involve shifting large volumes of data in memory to make space for the new
identifier, but such shifts are faster than retrieval of the same volume of data from
disk. Since shifts of data will generally precede a write to disk, the shift will be
dominated by other costs.



Bible Comact Trec

Text size (Mb) 4.4 132.1 1,198.7
Number of records 31,102 261,829 511,514
Distinct terms 9,073 36,840 407,820
Distinct terms per record (av.) 23 49 165
Longest entry (bytes) 3,888 32,729 63,939
Average entry length (bytes) 60 242 154
Total number of terms 701,533 12,745,527 84,286,478
Compressed index size (Mb) 0.5 8.5 59.9

Table 1: Sizes of test databases

3 Test databases and indexes

We used the inverted files of three text databases to test our method for storing files of
dynamically changing variable length records. Each database consists of documents;
the indexed values were the words occurring in each document. Thus some indexed
values, such as the word ‘the’, were frequently repeated, about half occurred more
than once, and each document contained many values to be indexed. Index entries
noted only whether or not a document contained the word being indexed, so that
even if a document contained several occurrences of a word the inverted file entry
only listed that document’s number once. Before the indexes were generated, the
words in the documents were stemmed—that is, case was folded and variant endings
such as ‘ed’, ‘ing’, and ‘lessly’ were removed12.

The databases were the complete King James edition of the Bible, or Bible, in
which each document is a verse; the complete Commonwealth Acts of Australia, 1901
to 1989, or Comact , in which each document is a page; and the (first) TREC collection
of articles extracted from the TIPSTER database, or Trec, in which each document
is an article from such sources as the Wall Street Journal or Associated Press, or a
legal document such as a United States Federal Regulation. The parameters of these
databases are given in Table 1.

Each inverted file entry is a sorted list of ordinal document identifiers. Since
the largest identifier is not known in advance, in a fixed-length representation some
number of bits must be chosen in advance to store each identifier. Typically 24 or 32
bits would be suitable. As we have shown elsewhere, however, compression techniques
can be used to represent these entries much more compactly, typically reducing the
space required by a factor of about five while still permitting fast decoding1,2. With
such compression, each addition of a record will add, for each term in the record, a
small number of bits to the inverted file entry of that term. In our simulations we
have concentrated on compressed entries; the figures in Table 1 assume that each



entry is compressed using a ‘local VG’ code2.

4 Storage of records on disk

There are two difficulties in managing dynamic records on disk. The first is that they
vary in length. The second is that each record can change in length over time.

We propose a space management scheme in which records are stored in large,
fixed-length blocks3. In this scheme, records are numbered contiguously from zero.
This number is used as an index into a record mapping indicating which disk block
contains each record. Records are stored in fixed-length blocks of B bytes, where B
is significantly greater than the average record length. (We consider records of more
than B bytes later.) Each block contains a block table of addresses of records within
the block, used to find the location of an record within the block once the block has
been retrieved from disk. The record mapping need only store the number of the
block containing each record; to retrieve a record, the whole block is fetched. With
current disk performance, it only takes about twice as long to fetch a block of 64 Kb
than a block of 1 Kb∗, and, as we show in the next section, block sizes of around
32 Kb to 64 Kb give good results with our data.

Blocks will in general have some free space, because the records and block table do
not occupy exactly B bytes, as illustrated in Figure 2. To minimise shifting of data
within each block, the block table is stored at one end of the block and the records
at the other, so that both grow towards the middle.

To manage free space we require a free list , which will generally be short, of
descriptions of blocks (other than the last block of the file) whose free space is in
excess of some fixed tolerance, typically a few percent. This list should be held in
memory; if it becomes large, indicating that the file is becoming disorganised, data
should be moved amongst blocks to get better space utilisation. However, the free
list itself will not occupy much space: a linked list representation will require at most
12 bytes per block, to hold the number of the block, the number of free bits in the
block, and a pointer to the next node in the list. For example, on a file of 1 Gb stored
in 64 Kb blocks, the free list will consume at most 200 Kb, and normally much less.

The last block in the index should also be held in memory, rather than on disk,
to facilitate update. The value of keeping the last block in memory is illustrated by
the insertion and update algorithms shown below.

The block table can account for a significant fraction of a block’s space. For
example, if record numbers and record lengths are represented in 32 bits each, a block
of only 128 entries will have a 1 Kb table; in the simulations described below, blocks
of several hundred small records were common. A simple technique for reducing the

∗We note that typical figures for disk retrieval are not very informative. For example, for the
three kinds of disk drives attached to our Sun SPARCserver 2, the overheads of retrieving 64 Kb
compared to retrieving 1 Kb were 30%, 45%, and 400%. Factors involved include seek, latency,
caching and prefetch strategies, and disk channel speed.



...

record

record
record

...
record number
record number
record number address

address
address

...

number of records in block
block table

free space

records

B byte
block

Figure 2: Block structure

size of the block table is to use fixed length representations of values, but keep the
length of these representations as small as possible. For example, if the block size is
16 Kb then 17 bits is sufficient to identify any bit in the block. The maximum record
number can vary, but it is straightforward to let the largest record number held in
the block govern the number of bits used to store each record number; for example,
if the largest record number was 881,634 then dlog2 881, 634e = 20 bits should be
used. This implies that the block table must occasionally be rebuilt, but in practice
rebuilds will be rare and in any case require only a few instruction cycles per record.

Another technique for reducing the size of the block table is to compress it. Since
the records can easily be stored in order, the techniques we use for compressing
inverted file entries can be applied to record numbers. However, compared to the
fixed length scheme described above, the additional space saving would be relatively
small. Space in the table might also be saved by byte or word alignment of records
within the block. For example, byte alignment would waste an average of four bits
per record, but would allow table pointers that were three bits shorter. Moreover, in
many situations records will in fact be an integral number of bytes, or even words,
long.

The final component of our scheme is an update cache, used to keep access costs
down during insertion, update, and deletion. This cache contains a series of pairs,
each pair being the number of the record to be changed and the change to be made
to that record. In text databases, for example, it is common for adjacent documents
to contain duplicate terms, so if updates to the index are cached then disk accesses
can be saved. The size of the cache is the number of pairs it can contain. In our



simulations, described in Section 6, we investigated a range of cache sizes.

5 Index maintenance

Given the file structures described in the previous section, file maintenance is straight-
forward. New records should be inserted according to the following algorithm.

1. If there is a block in the free list with sufficient free space, add the record to
that block and update the free list.

2. Otherwise, if the last block has sufficient free space, add the record to the last
block.

3. Otherwise, write the last block to disk, add it to the free list if necessary, create
a new last block in memory, and add the record to that block.

‘Adding a record to a block’ consists of copying the record into the block; updating its
block table; and updating the record mapping. Whichever of the above steps is used,
if the record is smaller than a block, and if the record mapping is in main memory,
then at most one disk read and one disk write is required to update the file; and,
assuming that inserted records are small, will usually require no disk operations.

Record extension should be performed with the following algorithm.

1. Read the block containing the record to be extended, if it is not already in
memory.

2. If the block contains sufficient free space for the extended record, move other
records to accommodate the altered record, update the block table, and write
the block to disk.

3. If there is not sufficient free space,

(a) If moving a record in the block to either a block in the free list or the
last block leaves sufficient space, then move that record, update the record
mapping, and return to step (2).

(b) Otherwise, move the extended record to the last block, creating a new last
block if necessary.

4. Update the free list.

Assuming that the record is smaller than a block, at most two reads and two writes
are required by this procedure, and usually one read and one write will be sufficient
because only the block containing the record will be affected. Note that moving
the average B/2 bytes sideways within a block, as required for update in place, will
take considerably less time than a single disk access for reasonable values of B. For



example, on a Sun SPARCserver 2, 32 Kb can be moved in about 5 milliseconds,
compared to about 40 milliseconds to write a 64 Kb block.

Variations on the above procedures based on strategies such as best fit, worst
fit, and so on, can be applied. Record deletion and contraction can be handled by
procedures that are similar to those described above, with similar costs.

With large blocks, many records can be kept in each block and most records will
fit within a block. Some records may, however, be larger than a block. There are
several possible strategies for dealing with such long records. We chose to allow each
block to contain, in addition to short records, up to one record that was larger than
the block size and a series of pointers to overflow blocks containing the parts of the
record that did not fit in the main block. There is a trade-off between choice of block
size and the proportion of records that are longer than a block. Large blocks imply
greater retrieval time, but the block size should be substantially greater then the size
of the average record, or the average number of disk accesses required to retrieve a
record will be large.

Update of long records requires that each of the blocks containing part of the
record be read and written, so in practice it is desirable to store the overflow blocks
contiguously, possibly in a separate file. Although dynamically maintaining contiguity
would be expensive, an occasional re-ordering could be used to keep access costs down.
In our simulations, we have pessimistically assumed that a separate access is required
for each overflow block. Biliris5,6 considers in detail the problem of storing dynamic
records that are large compared to the block size.

6 Results

To test our space management scheme we implemented a space usage simulator that
kept track of space utilisation, block table size, and number of disk accesses during
creation of inverted file indexes. The parameters of this simulator were block size,
tolerance, and cache size. As input, we used sequences of ‘entry-num, bit-incr’ pairs,
where the bit-incr is the number of bits an update operation adds to the entry with
identifier entry-num. These pairs were output from a program for creating inverted
indexes, and so the data stream was, in effect, the sequence of term insertions that
would take place if a compressed inverted index was being built during a linear pass
over the document collection, assuming that the vocabulary and compression param-
eters had been accumulated in a pre-scan of the text.

Space utilisation

Our measure of space utilisation is the space required to store entries as a percentage
of the total file size, so that a file 8,000 bits long with 7,000 bits of entries would have
an 87.5% space utilisation, with the remaining 12.5% occupied by block tables and



any free space†. The final space utilisation for our test databases is given in Table 2
in the first group of columns; the second group of columns shows the average ratio of
records to blocks. The tolerance used for these experiments was 5%.

Block size (Kb) Utilisation (%) Records per block
Bible Comact Trec Bible Comact Trec

4 95.5 97.5 97.3 64.3 30.7 70.3
8 94.9 97.3 96.9 127.8 46.5 101.9
16 93.5 97.4 96.7 252.0 76.8 157.6
32 93.5 97.1 96.6 504.1 131.1 249.1
64 93.5 96.7 96.8 1,008.1 261.3 409.5

Table 2: Space utilisation

As this table shows, excellent space utilisation is achieved across a range of block
sizes. The utilisation does not change once the block size significantly exceeds the size
of the longest entry, so that, for example, the utilisation for Bible does not change for
blocks of 16 Kb or over; as shown in Table 1, the longest Bible entry is about 4 Kb.
In these results, when space had to be created in a block the smallest sufficiently large
entry was moved; we also tried moving the first sufficiently large entry (to minimise
shifting of data within the block), but did not achieve such good space utilisation
with this strategy. The entry, when moved, was placed in any block with sufficient
free space; use of other strategies, such as best fit or worst fit, did not appear to make
a significant difference to space utilisation.

Space utilisation as a function of index size during the construction of the Trec
index is shown in Figure 3. The dip in the graph beginning at 15 Mb is a quirk of
our data: a large number of new terms are introduced at that point. The minimum
utilisation of 93%—excluding the initial index creation phase, in which utilisation is
poor because the entries are very small compared to the block size and the block table
size is more significant—is typical of all of the indexes and block sizes.

There was no marked relationship between cache size and space utilisation. How-
ever, we would expect use of a large cache to degrade utilisation slightly—the grouping
of updates means that larger numbers of bits are being added to each record, so that
fine control over allocation of entries to blocks is not possible. In our experiments,
a cache of size 1,000 typically led to a 0.1% decline in utilisation. We found that
space utilisation was also almost independent of tolerance for values between 1% and
10%; the main effect of changing tolerance was in the length of the free list. In our
experiments, for tolerances of 5% or more the free list did not exceed 500 nodes.

†For consistency with previous reports4,5,6,7,8, we have not, however, included the cost of the
mapping that identifies, for each record number, the block containing the record.



Size of index (Mb)

0 10 20 30 40 50 60

Space

utilisation

(percent)

90.0

91.0

92.0

93.0

94.0

95.0

96.0

97.0

98.0

99.0

100.0

Figure 3: Space utilisation for 16 Kb blocks in Trec

We also experimented with use of run-length compression for the record numbers
in the block table. This gave only a slight improvement in utilisation, however, with
a typical change from 96.0% to 96.5%. Given that an uncompressed table can be
searched much more rapidly, we do not believe that such compression is worthwhile.

Disk accesses

Although block size does not have much impact on space utilisation, it does affect
the number of disk accesses required for an extension, as shown in Table 3. Since the
longest entries will occupy many short blocks, and in our ‘extension only’ experiments
are the entries that are accessed most frequently, the number of accesses required for
an average update declines rapidly with increase in block size. Again, once the block
size exceeds the length of the longest entry the cost stabilises, as expected, at less
than 2 accesses per operation, assuming that the record mapping is held in main
memory.



Block size Bible Comact Trec

4 2.0 3.6 4.1
8 1.9 2.9 3.2
16 1.9 2.4 2.7
32 1.8 2.0 2.3
64 1.6 2.0 2.0

Table 3: Average disk accesses per operation

Based upon these results, block sizes of 32 Kb to 64 Kb appear to be well suited
to our data; however, the best choice of block size will depend heavily on the average
entry length, on the distribution of entry lengths, and the frequency with which
longer entries are accessed during operations other than extension. We are currently
planning experiments to test our scheme in such an environment.

The number of disk accesses needed for an update is approximately double the
number required to retrieve an entry in answer to a query. Thus, although more data
may have to be fetched if long blocks are used—because more entries not pertinent to
the query are fetched—long blocks also imply fewer accesses, because there are fewer
overflow blocks to be retrieved, and, within bounds, less access time overall.

Caching

Use of a cache of updates has, like block size, a dramatic effect on the number of
disk accesses required for an average operation, as shown in Table 4. (The cache does
not, of course, affect the cost of retrieving an entry.) In our simulations the cache
was used in a very simple way: if the cache contained several updates to an entry
then these updates were performed together. We did not attempt to order updates
so that, for example, two entries residing in the same block were updated at the same
time, but such an optimisation would only further improve the performance of the
cache; for example, for 16 Kb blocks and a cache of size 1,000,000 we estimate that
this optimisation would reduce the number of disk accesses per insertion by a factor
of at least 10.

The number of disk accesses required per operation, with and without caching,
is shown as a function of index size in Figure 4. The number of disk accesses does
grow slowly with the size of the index. This is because the number of entries that are
longer than a block increases, and extra disk accesses are required for overflow blocks.
However, for large blocks the number of disk accesses is certainly not excessive, and,
given that, with our scheme, the index never needs to be rebuilt, the claim that
inverted files are expensive to maintain13 no longer holds.

We have used large caches for our experiments because a single record insertion can
generate hundreds—or, in the case of one of the Trec records, over twenty thousand—



Cache size Bible Comact Trec

1 1.9 2.4 2.7
10 1.8 2.4 2.7
100 1.3 1.7 2.6

1,000 0.6 0.6 1.7
10,000 0.2 0.2 0.7
100,000 ≈0.05 ≈0.07 0.2

1,000,000 <0.01 ≈0.02 ≈0.07

Table 4: Average disk accesses per operation with caching and 16 Kb blocks

updates to an index. For other kinds of data such large caches may not be practical,
particularly if insertions are infrequent, although if insertions are infrequent their cost
is not so important. With text data, small caches are unlikely to be effective, because
each entry will be modified at most once per document insertion, and each document
contains many distinct terms.

7 Conclusion

We have described a scheme for managing large collections of records of dynamically
varying length. The application we have used to prove the technique is the storage of
a compressed inverted file to a large text collection, and in this case we have achieved
space utilisations in excess of 93%; update costs of less than two disk operations per
operation or amendment; access costs of a little over one disk operation per retrieval;
and have assumed only that the record mapping (two bytes per record) can be stored
in memory, and that relatively fast access to large disk blocks is possible. To date
we have applied the technique to the storage of inverted indexes for text databases
through the use of a simulator, as described in this paper. However, the technique is
also applicable to a variety of other application areas, such as the storage of the text
of such a document collection; the storage of buckets of data in a hashed file system;
and the storage of B-tree nodes in a tree structured file system. Experiments to test
the usefulness of the method in these areas with a full implementation are underway.

8 Acknowledgements

We would like to thank Neil Sharman for several suggestions and assistance with the
implementation. This work was supported by the Australian Research Council.



Size of index (Mb)

0 10 20 30 40 50 60 70

Number

of

disc

accesses

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

No cache
Cache of size 1,000
Cache of size 1,000,000

Figure 4: Number of disk accesses for 16 Kb blocks in Trec

9 References

1. A. Moffat and J. Zobel. Coding for compression in full-text retrieval systems. In
Proc. IEEE Data Compression Conference, pages 72–81, Snowbird, Utah, March
1992. IEEE Computer Society Press, Los Alamitos, California.

2. A. Moffat and J. Zobel. Parameterised compression for sparse bitmaps. In Proc.
ACM-SIGIR International Conference on Research and Development in Information
Retrieval, pages 274–285, Copenhagen, Denmark, June 1992. ACM Press.

3. J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing technique for full-text
database systems. In Proc. International Conference on Very Large Databases, pages
352–362, Vancouver, Canada, August 1992.

4. D.E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms, Second Edition. Addison-Wesley, Massachusetts, 1973.

5. A. Biliris. The performance of three database storage structures for managing large
objects. In Proc. ACM-SIGMOD International Conference on the Management of
Data, pages 276–285, 1992.

6. A. Biliris. An efficient data storage structure for large dynamic objects. In Proc.
IEEE International Conference on Data Engineering, pages 301–308, Phoenix, Ari-
zona, February 1992.

7. K.J. McDonell. An inverted index implementation. Computer Journal, 20(1):116–
123, 1977.



8. C. Faloutsos and H.V. Jagadish. On B-tree indices for skewed distributions. In Proc.
International Conference on Very Large Databases, pages 363–374, Vancouver, 1992.

9. D.B. Lomet. A simple bounded disorder file organisation with good performance.
ACM Transactions on Database Systems, 12(4):525–551, 1988.

10. G. Wiederhold. File Organisation for Database Design. Computer Science Series.
McGraw-Hill, New York, 1987.

11. D. Grosshans. File Systems Design and Implementation. Prentice-Hall, New Jersey,
1986.

12. J.B. Lovins. Development of a stemming algorithm. Mechanical Translation and
Computation, 11(1-2):22–31, 1968.

13. C. Faloutsos. Access methods for text. Computing Surveys, 17(1):49–74, 1985.


