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Abstract

In standard text retrieval systems, the documents
are gathered and indexed on a single server. In dis-
tributed information retrieval (DIR), the documents
are held in multiple collections; answers to queries
are produced by selecting the collections to query and
then merging results from these collections. However,
in most prior research in the area, collections are as-
sumed to be disjoint. In this paper, we investigate the
effectiveness of different combinations of server selec-
tion and result merging algorithms in the presence of
duplicates. We also test our hash-based method for
efficiently detecting duplicates and near-duplicates in
the lists of documents returned by collections. Our
results, based on two different designs of test data,
indicate that some DIR methods are more likely to
return duplicate documents, and show that remov-
ing such redundant documents can have a significant
impact on the final search effectiveness.

Keywords: Distributed information retrieval, dupli-
cate and near-duplicate detection, similarity measure-
ment, search engines

1 Introduction

In standard text retrieval systems, the collection of
documents is indexed at a single location and made
available to users through a search interface. Such
centralized information retrieval (IR) is efficient and
effective when the documents can be gathered to-
gether, but such consolidation is not always possible.
On the web, for example, many documents are not
crawlable and can only be accessed by that particular
site’s search interface. Such documents form the hid-
den web, which has been reported to be many times
larger than the fraction of the web that can be crawled
(Bergman 2001). Also, crawling the web can be pro-
hibitively slow; some documents are held on servers
whose delivery speed makes crawling impractical.

A solution is provided by distributed information
retrieval (DIR), in which documents held on multi-
ple servers are made available through a single inter-
face. Distributed search over multiple collections—
also known as federated search—has been an active
area of research for over a decade. In addition to mak-
ing hidden-web documents centrally accessible, there
are other gains; for example, with DIR the costs of
crawling can be avoided, and distributed indexes can
be updated more easily than the alternatives.
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In DIR, queries are submitted to a central com-
ponent, known as the broker. For efficiency, the
broker sends the query to only a limited number of
collections—creating the problem of collection selec-
tion. In order to select suitable collections for each
query, the broker should acquire information about
each collection in advance—creating the problem of
collection representation. A collection’s representa-
tion set is the broker’s knowledge about each collec-
tion. Queries are compared with representation sets,
and collections that are more likely to return relevant
documents are selected (Callan, Lu & Croft 1995,
Gravano, Garcia-Molina & Tomasic 1999). The se-
lected collections return their answers to the broker,
which merges the results and presents them to the
user (Callan et al. 1995, Si & Callan 2003b)—creating
the problem of result merging.

In cooperative environments, collections provide
the broker with comprehensive information about
their indexes, typically comprised of data such as
lexicon statistics and collection size, allowing the
broker to effectively select suitable collections for a
query (Allan et al 2003, Meng, Yu & Liu 2002). In
uncooperative environments, collections do not pro-
vide such information. To identify likely collections,
the broker must first create sample surrogates by
downloading a limited number of documents from
collections (Callan, Connell & Du 1999, Callan &
Connell 2001, Ipeirotis & Gravano 2004, Ipeirotis &
Gravano 2002). In semi-cooperative environments,
the broker has incomplete knowledge about the col-
lections. However, it might receive supplementary
information such as document scores from collec-
tions, allowing more accurate results merging (Callan
et al. 1995, Si & Callan 2003b).

Many collection representation techniques (Callan
et al. 1999, Callan & Connell 2001, Ipeirotis &
Gravano 2004, Ipeirotis & Gravano 2002, Shokouhi,
Scholer & Zobel 2006), collection selection techniques
(Callan et al. 1995, Gravano et al. 1999, Nottelmann
& Fuhr 2003, Si & Callan 2003a, Si & Callan 2004, Yu-
wono & Lee 1997, Zobel 1997), and result merging
techniques (Callan et al. 1995, Kirsch 2003, Si &
Callan 2003b) have been investigated. However, in
almost all reported experiments, it is assumed that
collections do not overlap, so that any given docu-
ment is only available in one collection.

In practice, however, this assumption is frequently
valid. For example, many research articles are in-
dexed by both the ACM portal1 and the IEEE
Xplore2 digital libraries. Therefore, a broker that
sends queries to both online collections may receive
many duplicate documents. Detecting such dupli-
cates is far from straightforward, as they may be de-
livered from different URLs and have slight changes,
such as in their metadata or presentation, that do not
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alter the content but mean that the documents are
not identical. Retrieval of all candidate documents
by the broker to check for duplication imposes sig-
nificant expense—in standard DIR the broker need
not inspect the documents—while, as we show, fail-
ure to eliminate duplicates can significantly degrade
the quality of answers returned.

Although distributed search among overlapped
collections has been suggested as one of the major is-
sues in DIR (Allan et al 2003, Meng et al. 2002), the
problem has not been thoroughly explored. We have
previously proposed that grainy hash vectors (GHVs)
can be used for removing duplicate and near-duplicate
documents from result lists (Bernstein, Shokouhi &
Zobel 2006). However, these experiments used a cen-
tralized index. Moreover, in this work the perfor-
mance of DIR techniques in the presence of dupli-
cates and near-duplicates is not comprehensively in-
vestigated.

In this paper, we use GHVs on distributed testbeds
to remove duplicate and near-duplicate documents
from the results. We also analyze the behavior of
well-known DIR collection selection and result merg-
ing strategies on overlapped collections. As a basis for
this work, we propose two mechanisms for creating
experimental testbeds from standard test collections.
One, based on windowing, is somewhat artificial but
allows precise setting of the level of duplication, thus
allowing us to explore the impact of parameters in a
controlled way; the other, based on query result sets,
generates collections with some consistency of topic.
To our knowledge, such a study on overlapped collec-
tions has not previously been undertaken.

In our experiments, we find that GHVs are effec-
tive at identifying duplicates in answer sets, and that
removal of such duplicates can have a substantial im-
pact on effectiveness. We also find that relative per-
formance of the collection selection and result merg-
ing methods depends to some extent on the testbed
used, demonstrating that care is required in the de-
velopment of resources and interpretation of outcomes
for such research questions.

2 Distributed information retrieval

In DIR, the broker receives each query, distributes
it to selected servers, and merges results to give a
consolidated list to return to the user. Before the
broker can begin processing queries, it must gather a
representation set for each collection. In cooperative
protocols such as STARTS (Gravano, Chang, Garcia-
Molina & Paepcke 1997), collections provide the bro-
ker with comprehensive information about their in-
dexes including the lexicon statistics and the number
of documents. However, access to such a representa-
tion set for each collection may not be possible; in un-
cooperative environments, the broker must download
a limited number of documents from each collection
and use them as a representation set.

Query-based sampling (QBS) was proposed by
Callan et al. (1999) for uncooperative environments.
In this approach, an initial query is selected from a
list of frequent keywords and is submitted to a col-
lection. The top N documents returned by the col-
lection are downloaded by the broker and the next
query is picked, usually at random, from the contents
of these documents. This process continues until a
sufficient number of documents (k) has been down-
loaded. Callan et al. (1999) claimed that N = 4 and
k = 300 are suitable values; in contrast, we have sug-
gested that the rate of discovery of new terms in the
downloaded documents is a suitable indicator of when
sampling should stop (Shokouhi et al. 2006). In this
paper, we use the values suggested by Callan et al.

(1999), to make our results comparable to related
work in this area (Nottelmann & Fuhr 2003, Si &
Callan 2003b, Si & Callan 2003a, Si & Callan 2004).

Once representation sets are created, the broker
can use them to pass queries to collections that are
deemed as likely to contain relevant documents. In
some collection selection techniques, the broker uses
variants of standard IR measures to compute the
similarity of a query with collection representation
sets. CORI (Callan et al. 1995), GlOSS (Gravano
et al. 1999) and CVV (Yuwono & Lee 1997) are a
few well-known examples of such approaches. Among
these, CORI was reported to produce the highest pre-
cision (Craswell, Bailey & Hawking 2000, Powell &
French 2003, Rasolofo, Abbaci & Savoy 2001).

In CORI, the belief P (t|c) for observing a query
term t in collection c is computed as below:

P (t|c) = db + (1 − db) × Tc × Ic

Tc = dt + (1 − dt) ·
log(ft,c + 0.5)

log(maxc(ft ) + 1.0)

Ic =
log(N+0.5

cf
)

log(N + 1.0)

where ft,c is the document frequency of t in c and cf
is the number of collections containing the term t. dt

is the minimum term frequency component while db

is the minimum belief component when t occurs in
c. dt and db are respectively set to 0.4 and 0.5 by
default. N represents the total number of collections
while maxc(ft ) is the maximum document frequency
in c. The final weight of a collection c for query Q is
calculated by summing up the computed beliefs P (t|c)
for all query terms t ∈ Q.

Although more recent studies suggest that CORI is
generally worse than other methods on many testbeds
(D’Souza, Zobel & Thom 2004, Si & Callan 2003a), it
is still used frequently for collection selection research
(Si & Callan 2004, Si & Callan 2005, Avrahami, Yau,
Si & Callan 2006). Thus we use CORI as one of our
collection selection methods in this paper.

In recent years, new collection selection algorithms
have been shown to produce better results than
CORI (Hawking & Thomas 2005, Si, Jin, Callan &
Ogilvie 2002, Si & Callan 2003a, Si & Callan 2004, Si
& Callan 2005) on some testbeds. In HARP (Hawking
& Thomas 2005), the anchor texts available in a large
crawled repository are used to create the representa-
tion sets, which for each collection consists of the an-
chor texts of URLs available in the crawled data that
are targeting the collection. This is similar to Q-pilot
(Sugiura & Etzioni 2000).

ReDDE (Si & Callan 2003a) ranks collections ac-
cording to the estimated number of relevant docu-
ments. The broker creates a central index of all sam-
pled documents, then each submitted query is eval-
uated on this index before being sent to collections.
The number of relevant documents in each collection
is estimated from the contribution of collections in the
top-ranked documents. UUM (Si & Callan 2004) esti-
mates the probability of relevance of documents inside
each collection using training queries and their related
relevance judgments. UUM was reported to produce
better results than ReDDE (Si & Callan 2004).

RUM (Si & Callan 2005) is a variant of UUM
that also considers the search effectiveness of collec-
tions. As in ReDDE, RUM maintains a central in-
dex of all sampled documents on the broker. In the
training stage, the documents returned by collections
for queries are compared to those ranked by the cen-
tral index. In addition, the broker downloads a few



top-ranked documents from each collection and cal-
culates their weights in the central index. Based on
the weights of downloaded documents for the train-
ing queries, the broker then approximates the search
effectiveness of each collection. Si & Callan (2005)
suggest that RUM can slightly outperform UUM.

RUM and UUM have significant drawbacks: both
require a set of training queries and relevance judg-
ments. RUM also downloads documents from each
collection for the training queries. In practical situa-
tions, relevance judgments may be costly and down-
loading documents might be infeasible. Therefore, we
use ReDDE (Si & Callan 2003a) as a practical repre-
sentative of recent collection selection algorithms.

Selected collections return their answers to the
broker. The broker then merges the results and rep-
resents them to the user.

The document score values reported by collections
are not comparable as they are computed by differ-
ent retrieval models and rely on inconsistent lexicon
statistics. The goal of result merging algorithms is
to calculate a global score for each document that is
comparable to the scores of documents returned by
other collections.

In CORI result merging (Callan et al. 1995), the
global score DG of a document d returned by a collec-
tion (c) is calculated according to its normalized doc-
ument score (D′) and collection score (C′). The for-
mer is the collection-specific weight of d reported by
its original collection (c) and the latter is the weight
of c calculated by the broker.

C′ =
(C − Cmin)

(Cmax − Cmin)

D′ =
(D − Dc

min)

(Dc
max − Dc

min)

DG =
D′ + 0.4 × D′ × C′

1.4

where Dc
min and Dc

max are respectively the minimum
and maximum document scores reported by collection
c, and Cmin and Cmax are the minimum and maxi-
mum weights that can be assigned to any collection
by the broker during collection selection.

SSL (Si & Callan 2003b) uses a semi-supervised
learning method to create a model for each collection
that maps document scores into global scores. SSL
creates a central index of all sampled documents. For
a query, some of the documents returned by any col-
lection c might be already available in the central in-
dex. SSL compares the central weights of such overlap
documents with the reported scores from c and then
approximates the weights of other documents that are
not available in the central index.

When collections use an identical retrieval model,
all overlap documents can be used to train a single
linear model that maps collection-specific scores into
approximated global scores. In such a scenario, for an
overlap document d returned from any selected col-
lection c, two scores are available: D is the score re-
ported by the original collection and DS is the weight
of document computed by the central, sample-based
index.

Using the values for D and DS , SSL trains a linear
model that converts the reported scores by collections
to their approximated central scores, with parameters
a and b used to combine scores as follows:

DG = a × D + b × DS × C

where C is the weight of collection c from which d is
drawn. Given this information, SSL can accurately
approximate the central scores of documents. The

central index can be assumed to be representative of
the global information, so the weights of documents
in the central index are likely to be representative of
their global scores.

For simplicity, we assume that all collections in
our experiments are using INQUERY (Callan, Croft
& Harding 1992) as their retrieval model. Thus, we
use SSL single-model as one of our merging methods.

CORI and SSL are intended for semi-cooperative
environments where document scores are broadcast
by collections. In the absence of document scores,
they calculate the pseudoscores of documents as de-
scribed by Si et al. (2002). Other merging strategies
(Kirsch 2003, Si et al. 2002) typically follow the same
strategy but are not as well-known as CORI and SSL.
Therefore, in our experiments we use CORI and SSL
for merging.

DIR merging is not equivalent to data fusion or the
merging problem in metasearch (Croft 2000, Fox &
Shaw 1994, Lee 1997). In data fusion, different rank-
ing functions are applied to the same collection (Meng
et al. 2002). In the presence of multiple collections,
queries are usually sent to all of them without collec-
tion selection. Therefore, in data fusion or metasearch
merging, collection representation sets are not usually
required. Also, documents are merged solely based on
their ranks or reported scores by collections.

3 Overlapping collections

Distributed retrieval from overlapped collections has
been described as one of the current challenges in IR
(Allan et al 2003, Meng et al. 2002). However, all of
the methods discussed above assume that collections
do not have overlapped documents or that the number
of duplicates is negligible.

Metasearch engines such as ProFusion (Gauch,
Wang & Gomez 1996), MetaCrawler (Selberg &
Etzioni 1997), and Grouper (Zamir & Etzioni 1999)
remove duplicate documents from the results by ag-
gregating those that point to the same URL. The
rank of a duplicate document in the final result is
calculated according to its position in the ranklists of
different search engines. Typically, this involves use
of methods such as CombSUM or ComMNZ (Fox &
Shaw 1994), or other similar approaches (Lee 1997).
Some researchers argue that such methods cannot
be defined in the context of DIR and should be de-
scribed in the broader category of metasearch (Si &
Callan 2003b).

These metasearch methods have two major draw-
backs; they cannot detect and remove near-duplicates
and they are unable to distinguish exact dupli-
cate documents with different URLs (mirror URLs).
Moreover, a recent study (Wu & McClean 2006) sug-
gests that when the rate of overlap between the final
results of collections is less than 60%, the performance
of such methods significantly degrades.

To our knowledge, the only discussion of removal
duplicates and near-duplicates during merging in DIR
is that given by Bernstein et al. (2006). This approach
is discussed in detail in the following sections.

Duplicate documents can also be avoided by using
an overlap-aware collection selection method. Her-
nandez & Kambhampati (2005) introduced COSCO,
which considers the rate of overlap among collections
during collection selection. For a query, COSCO does
not select two collections that are likely to return
many identical documents. The approach, although
interesting, has defects. COSCO requires a large
number of training queries to learn the rates of over-
lap between collections for each topic. In addition,
COSCO was not tested for detection of near-duplicate



documents, which, as discussed below, is a much more
challenging problem (Zobel & Bernstein 2006).

We argue that removal of duplicates during merge
is more appropriate because overlap-aware collection
selection methods may be lossy. That is, ignoring a
collection that includes unvisited relevant documents
can affect the final precision. In contrast, if dupli-
cate removal occurs during merging, all relevant docu-
ments can be retrieved by the broker. We now explore
methods for detection and removal of duplicates.

4 Detection of duplicates and near-duplicates

There are many sources of duplication in text collec-
tions. For example, a crawl of documents harvested
from the web may yield duplicates due to factors in-
cluding URL aliasing; copies of the same document
held at several mirrors; each author of a paper plac-
ing a copy on their website; republication of news sto-
ries by multiple online newspapers; and commercial
websites presenting local copies of public documents.

Exact copies are easy to detect, but many dupli-
cates are not exact copies. A newspaper that repub-
lishes a newswire article may edit it to reflect local
knowledge, and the page context such as advertis-
ing and ‘related story’ links is likely to be different.
Some stories are regularly recycled, such as birthday
notices and Groundhog Day features. Policy docu-
ments and legislation may differ little from jurisdic-
tion to jurisdiction, as policymakers adopt models
from elsewhere. Ultimately, the question of whether
two documents are duplicates is highly application-
dependent—for example, in some contexts two docu-
ments that differ only in publication date may be re-
garded as having a significant difference. However, we
have found that, in the context of search, mechanisms
for detecting duplication such as those described in
this section are consistent with user judgements as to
whether documents are duplicates or near-duplicates.
(Bernstein & Zobel 2005, Zobel & Bernstein 2006).

In the context of search, duplicate detection can
take place during either indexing or retrieval. At in-
dexing time, duplicate detection involves processing
the entire collection to find pairs of documents that
appear to be duplicates or near-duplicates (Manber
1994, Brin, Davis & Garćıa-Molina 1995, Broder,
Glassman, Manasse & Zweig 1997, Fetterly, Manasse
& Najork 2003, Bernstein & Zobel 2004). In a DIR
system, such an approach is unlikely to be feasible,
particularly in uncooperative environments. Thus we
must focus on methods that can be used to eliminate
duplicates from answer lists. However, we wish to
avoid adding significant costs to the query evaluation
mechanism. A DIR duplicate-detection mechanism
that involved fetching all of the answer documents
from each collection is not attractive.

As we have described elsewhere (Bernstein et al.
2006), the most suitable methods described in previ-
ous literature are based on computing a brief descrip-
tor of each document. In a semi-cooperative environ-
ment, each collection could return these descriptors,
allowing efficient duplicate detection. We now sum-
marize our previous analysis of prior methods.

A descriptor-based approach that is superficially
attractive is to use deterministic term extraction to
identify terms in each document that are deemed
likely to be indicative of duplication (Chowdhury,
Frieder, Grossman & McCabe 2002, Ilyinski, Kuzmin,
Melkov & Segalovich 2002, Cooper, Coden & Brown
2002, Conrad, Guo & Schriber 2003, Kolcz, Chowd-
hury & Alspector 2004). The assumption is that near-
duplicates will share an exact set of such terms, so
that hashing them will produce a descriptor that can
be matched extremely fast. This term extraction pro-

cess must take place at index time; otherwise, query
processing would be much more expensive.

However, such approaches can only succeed if they
are effective at identifying indicative terms. A prob-
lem is that a common design principle in these ap-
proaches is to select terms that are significant within
the document, that is, are relatively rare across the
corpus. In DIR, there are no cross-corpus statistics,
and even in centralized retrieval the corpus is not
static; thus the same term extraction method will pro-
duce different term sets in different collections. It is
not at all clear that such term extraction methods can
be reliable in the absence of global statistics. Another
problem is that it is not known how robust these tech-
niques are, as a single difference between the term sets
means that near-duplication is not detected. A pro-
posed solution is to return multiple hashes per doc-
ument (Pugh & Henzinger 2003, Kolcz et al. 2004),
but in the absence of global statistics it is still unclear
that this can be effective.

The other widely-investigated approach to dupli-
cate detection is to use chunks (Hoad & Zobel 2003),
an approach that has been proposed for a vari-
ety of applications (Manber 1994, Lyon, Malcolm &
Dickerson 2001, Brin et al. 1995, Conrad et al. 2003,
Broder et al. 1997, Bernstein & Zobel 2004, Bern-
stein & Zobel 2005). In chunking, each document
is parsed into strings of text, each typically of some
fixed length or some fixed number of words. A pair of
documents is deemed to be duplicated if they share
a sufficient number of chunks. Chunk-extraction can
be selective or exhaustive; some methods use only a
few chunks per document, while in others every word
occurrence is the start of a new chunk. Given a set
of chunks, the resemblance between two documents
(Broder et al. 1997) can be defined as:

R(d, d′) =
|d̂ ∩ d̂′|

|d̂ ∪ d̂′|

where d̂ is the set of chunks extracted from docu-
ment d.

A complete set of chunks is not a particularly use-
ful document descriptor in DIR. However, the method
of Fetterly et al. (2003), which we call minimal-chunk
sampling, can be used for chunk selection. By use
of an appropriate class of hash functions, by use of
ρ functions from this class, chunks can be sampled
in an unbiased way. Each chunk is hashed with each
function, and for each of the ρ functions the small-
est observed hash value yielded by any chunk is kept.
These hash values can be used as proxies for chunks
in determining resemblance. Fetterly et al. (2003) use
ρ = 84, giving 84 32-bit hashes, a total of 336 bytes.
For DIR, this is a significant data volume to trans-
mit per document. It is therefore attractive to seek a
more compact alternative.

5 Grainy hash vectors

A grainy hash vector (GHV) (Bernstein et al. 2006)
is a form of minimal-chunk sampling method. How-
ever, it has features derived from deterministic term
extraction techniques, and the vectors are only a few
bytes, making it suitable for DIR. Bernstein et al.
(2006) list the major benefits of GHVs as below:

• Efficiency; the hash vectors are designed to fit
into a single machine word of 32 or 64 bits.

• Theoretical foundation; GHVs are based on
mathematical principles that are amenable to
analysis.



• Fast comparison; thousands of document vectors
can be compared in a few milliseconds using bit-
parallelism techniques.

• Robust comparison; GHVs do not change sig-
nificantly in the presence of small differences in
documents.

A GHV of n bits consists of ρ w-bit hashes and is
represented as follows:

ρ(n, w) =
⌊ n

w

⌋

Each of the w-bit hashes is produced by a separate
minimal-chunk sampling technique. Therefore, for a
64-bit GHV with w = 2, there are 32 2-bit hashes that
are merged into the vector. The value of w should be
a factor of n, to avoid having unused bits.

For small values of w, there is a significant prob-
ability of collision between the outputs of different
minimal hashes. For w = 2, for example, it is likely
that most of the minimal hashes will be the bit pair 00
(hash values for different chunks are sorted and the 2
least significant bits of the smallest hash value are se-
lected). On the other hand, using large values for
w may be computationally expensive, and reduces
the number of hashes per vector. Therefore, GHV
initially uses minimal sampling to produce ρ 32-bit
hashes for each document. Then the least significant
w bits of each hash value are used to give the GHV.

For a pair of documents with resemblance r (0 ≤
r ≤ 1), the probability of having the same hash value
at any given position of their GHVs is:

φ(r; w) = r + (1 − r)(2−w)

If two documents have resemblance r, they will at
least have r of their hash vectors in common. Thus,
the probability of a hash match between their hash
vectors is r. The second component calculates the
probability of having the same hash value while the
two source chunks are different.

Assuming that for each bit the in a vector the
probability of being 0 or 1 is independent the other
bits, we can conclude that the number of matches
between two vectors with resemblance r follows a bi-
nomial distribution Bi(ρ(n, w), φ(r; w)), and thus

P (X = k) =

(

ρ

k

)

φk(1 − φ)ρ−k

where P (X = k) is the probability of having k
matches between the vectors of two documents with
resemblance r.

For each query, collections send a GHV per docu-
ment they return to the broker. The broker detects
and removes duplicates or near-duplicates according
to the number of mismatches between any given pair
of vectors. If w = 1, this amounts to counting the
number of bits that match in the vectors; if the num-
ber is sufficiently high, the documents are deemed to
be likely to be duplicates or near-duplicates.

A critical question, then, is what is the minimum
number of mismatches between two GHVs if the doc-
uments they represent are not near-duplicates? That
is, a threshold for the number of mismatches needs
to be set to minimise the number of false misses.
(False misses are much more acceptable than false
matches in this application; the former means that
duplicate information is presented, while the latter
means that novel information is lost.) Bernstein
et al. (2006) compared the accuracy of GHVs with
the duplicate detection method DECO (Bernstein &
Zobel 2004), for different values of n and w. They
found that GHVs can effectively detect duplicates or
near-duplicates using n = 64, w = 2, and a threshold
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Figure 1: Collection sizes, distribution of relevant
documents and the amount of overlap between con-
sequent collection pairs in the uniform testbed.

of 8 mismatches, without significant false misses. We
apply the suggested values by Bernstein et al. (2006)
and use 32 minimal-chunk hashes to create 32 2-bit
hash values for each document.

We now compare the performance of collection se-
lection and result merging algorithms on collections
that overlap. We also analyze the impact of removing
duplicates and near-duplicates from the list of results
in terms of search effectiveness, using GHVs to deter-
mine whether documents are likely to be duplicates.

6 Testbeds

In current well-known DIR testbeds such as trec123-
100col-bysource or trec4-kmeans,3 the degree of over-
lap between collections is intentionally set to zero.
Therefore, current testbeds are not suitable for eval-
uating DIR methods in the presence of overlap. We
create three testbeds using the documents available
in the TREC GOV data (Craswell & Hawking 2002).
These testbeds are as follows:

uniform-112col-dups (uniform): This testbed is
comprised of 112 collections, each containing 30 000
documents, created using a sliding window on the
TREC GOV documents. The first 30 000 documents
comprise the first collection. Then a random percent-
age R (R ≥ 25%) is picked. The second collection is
created from the last R% of the first collection and
the next documents from the GOV corpus to a total
size of 30 000 documents. The rest of the collections
are generated in the same sliding window manner.

Figure 1 shows the distribution of relevant docu-
ments for TREC topics 551–600 among the collections
in this testbed. As was expected, relevant documents
are spread uniformly among collections. The figure
also shows the number of documents in each collec-
tion that are shared with the previous collection. The
rate of overlap varies from 25% to 99%.

skewed-115col-dups (skewed): Collection selec-
tion algorithms show variable performance on differ-
ent testbeds. Some approaches such as CORI are
found to be less effective when the distribution of
collection sizes is skewed (D’Souza et al. 2004, Si &
Callan 2003a). To create such a testbed, we adapt
the approach Si & Callan (2003a) used for deriving

3Available at www.cs.cmu.au/∼callan/Data.
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Figure 2: Collection sizes in the Qprobed testbed.
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Figure 3: Distribution of relevant documents in the
Qprobed testbed.

the so-called representative testbed from the trec123-
100col-bysource documents. Every tenth collection
in the uniform testbed starting from the first collec-
tion is collapsed into a single large collection. The
same procedure is repeated starting with the second
and third collections and another two large collections
are created. The testbed thus contains the uniform
testbed plus an additional three large collections.

Qprobed-176col-dups (Qprobed): 176 collec-
tions have been generated by passing 200 probe
queries to an index of the TREC GOV documents.
Queries are the most frequent single terms in a query
log supplied by a major search engine, of queries with
a highly ranked answer in the .gov domain. For
each query, a random number of results between 5 000
and 30 000 are extracted and gathered as a collection.
Queries that return less than 5 000 documents are dis-
carded. The average size of collections in this testbed
is 16 100 documents while the largest and smallest
collections contain 29 956 and 5 016 documents. The
distribution of collection sizes and the number of rel-
evant documents among collections are depicted in
Figures 2 and 3. Considering Figure 3, for example,
there are 50 collections that have between 5 000 and
10 000 documents, and there are 38 collections that
contain between 10 and 20 relevant documents each
for TREC topics 551–600.

The degree of overlap among collections in this
testbed is diverse. Figure 4 shows that there are
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Figure 4: Degree of overlap between collections in the
Qprobed testbed.

29 813 collection pairs that have less than 10% over-
lap while the rate of overlap for four collection pairs
is close to 100%.

The ideal testbed for these experiments would be
complete crawls of websites from the hidden web, but
by construction such crawls are not easily available.
Another good testbed would be crawls of sites known
to contain high levels of overlap. There are such sites
in the TREC GOV data (in which we believe more
than half the pages are duplicates or near duplicates),
but identifying them is far from straightforward. It is
for these reasons that other ways of forming testbeds
are of interest. The uniform and skewed collections
are somewhat artificial, but they allow exploration of
the effectiveness of DIR methods as a function of the
extent of overlap. The Qprobed testbed consists of
collections with some degree of internal consistency,
and the collections are comprised of documents se-
lected by a method that is fully independent of the
techniques we are exploring.

In the next section we investigate the effectiveness
of different DIR algorithms on the discussed testbeds.

7 Experimental results

On each testbed, we explore three combinations of
collection selection and result merging algorithms.
These are CORI-CORI, ReDDE-CORI, and ReDDE-
SSL where the first part specifies the collection selec-
tion method and the last part represents the merging
algorithm used for the experiments.

We use query-based sampling to gather 300 docu-
ments from each collection. The sampled documents
from each collection are used as its representation set.
In addition, aggregating all representation sets cre-
ates a central sample index that is used by SSL re-
sult merging (Si & Callan 2003b). All experiments
reported in this paper use the Lemur toolkit.4 Meth-
ods are compared according to their precision at the
top n returned documents (P@n). For each query, at
most 1 000 answers are returned.

We use a 64-bit GHV with w = 2 and a threshold
of 8 mismatches out of possible 32, as recommended
by Bernstein et al. (2006). Collections provide the
broker with a GHV for each answer they return. They
also publish the document scores of their returned an-
swers that then will be used by the broker for result

4http://www.lemurproject.org



merging. That is, we assume a semi-cooperative en-
vironment.

Duplicate and near-duplicate documents in an an-
swer list can be regarded as redundant and irrelevant,
as they do not add to the user’s knowledge. We use
GHV to identify duplicate and near-duplicate docu-
ments in the final merged results. Then we compare
the search effectiveness of two scenarios where in the
first one, duplicates are considered as irrelevant and
in the second set duplicates are removed. In the first
scenario, the broker removes those documents that
GHV detects as redundant from the list of results.
The upper tables for each combination contain the
precision values for this scenario.

In the second scenario, the returned duplicate
and near-duplicate documents are considered as ir-
relevant. To avoid bias, we do not use GHV to
judge whether documents are duplicates and near-
duplicates; instead, the broker uses a list of near-
duplicate documents in the TREC GOV that are
identified by DECO (Bernstein & Zobel 2004) dupli-
cate detection method.5

One might expect that the lists of duplicate doc-
uments detected by GHV and DECO would be sig-
nificantly different. However, our investigations show
that 93% of documents that are identified as near-
duplicate by GHV are also detected by DECO, while,
72% of all documents that are identified by DECO
are detected by GHV. The high rate of accuracy and
coverage of GHVs for detecting near-duplicate docu-
ments is consistent with the reported values by Bern-
stein et al. (2006) on a centralized index. On av-
erage, over all experiments, use of GHVs detects 9
near-duplicates per query while this number is 12.5
for DECO. Considering that 1 000 documents are col-
lected per query, the difference of 2.5 documents has
negligible impact on the final effectiveness. Also, this
is further evidence that GHVs avoid false misses.

Note that DECO removes exact-duplicate pairs
according to their document identifiers. All exact-
duplicates are detected and removed by GHV as there
is no mismatch between their vectors.

We use the t-test to measure the statistical sig-
nificance of difference between results in the presence
and absence of duplicates. The differences at 0.95,
0.99 and 0.999 confidence intervals are respectively
specified with ∗, †, and ‡. The baseline for all exper-
iments against which significance is measured is the
effectiveness of retrieval when the returned duplicates
and near-duplicates are considered as irrelevant. The
differences are measured against the scenario in which
redundant documents are removed by GHV.

Table 1 shows the effectiveness of different com-
binations on the uniform testbed. Cutoff (CO) val-
ues indicate the number of collections selected for
each query. Comparing the first two sets of ex-
periments (CORI-CORI and ReDDE-CORI) suggests
that CORI and ReDDE collection selection meth-
ods have similar performance on the uniform testbed.
Considering that all collections in this testbed con-
tain an identical number of documents, the results
are consistent with the previous observations of Si
& Callan (2003a), which suggest the performance of
CORI and ReDDE are similar when the distribution
of collection sizes is not skewed. As in experiments on
collections that do not overlap (Si & Callan 2003b),
SSL merges results more effectively than does CORI
on the uniform testbed.

The impact of removing duplicates and near-
duplicates becomes more apparent as the cutoff value
grows. In addition, the effectiveness of ReDDE-SSL
improve more significantly than the other combina-

5The list of near-duplicate documents detected by DECO is
available at: http://www.cs.rmit.edu.au/∼ybernste

Table 1: The impact of removing duplicate and near-
duplicate documents. Results are obtained by running
the TREC topics 551–600 (title) on the “uniform”
testbed. CO represents the cutoff value.

P@5 P@10 P@15 P@20
Duplicates Removed (CORI-CORI)
CO3 0.0840 0.0620 0.0507 0.0470
CO5 0.0840 0.0700 0.0587 0.0510
CO10 0.1760∗ 0.1240† 0.1093∗ 0.0970†

CO20 0.1959† 0.1449† 0.1252† 0.1153†

Duplicates Irrelevant (CORI-CORI)
CO3 0.0800 0.0600 0.0493 0.0460
CO5 0.0800 0.0680 0.0573 0.0500
CO10 0.1560 0.1120 0.1027 0.0890
CO20 0.1592 0.1306 0.1129 0.1031
Duplicates Removed (ReDDE-CORI)
CO3 0.0907 0.0542 0.0431 0.0354
CO5 0.1250 0.0729 0.0583 0.0521
CO10 0.1583 0.1083 0.0958 0.0857
CO20 0.1625 0.1333† 0.1139∗ 0.1083†

Duplicates Irrelevant (ReDDE-CORI)
CO3 0.0907 0.0542 0.0431 0.0354
CO5 0.1208 0.0708 0.0583 0.0479
CO10 0.1500 0.0979 0.0917 0.0833
CO20 0.1542 0.1187 0.1056 0.1010
Duplicates Removed (ReDDE-SSL)
CO3 0.1167 0.0667 0.0528 0.0490
CO5 0.1583 0.1062∗ 0.0861 0.0719
CO10 0.1875∗ 0.1479∗ 0.1347∗ 0.1177∗

CO20 0.2042∗ 0.1979∗ 0.1667‡ 0.1458†

Duplicates Irrelevant (ReDDE-SSL)
CO3 0.1167 0.0667 0.0514 0.0479
CO5 0.1417 0.0979 0.0847 0.0708
CO10 0.1759 0.1375 0.1264 0.1135
CO20 0.1792 0.1792 0.1500 0.1323

tions when duplicates are removed. This suggests
that selecting more collections and using ReDDE-
SSL combination increase the likelihood of finding
duplicate documents in the final results. The proba-
ble explanation is that ReDDE-SSL is more effective
than the other methods at giving the same document
the same score when it is present in multiple collec-
tions. That is, if one copy of a duplicate document
is fetched, then under ReDDE-SSL the other copy is
also likely to be fetched. (The number of duplicates
and near-duplicates returned by different combina-
tions is shown in Table 4 and is discussed later.)

Table 2 shows similar results on the skewed
testbed. For small cutoff values, ReDDE significantly
outperforms CORI, because the three largest collec-
tions contain many relevant documents that get high
ranks by ReDDE for the majority of queries. The bet-
ter performance of ReDDE is not surprising as it is
designed for situations where the distribution of col-
lection sizes is skewed (Si & Callan 2003a). SSL is
again the dominant merging algorithm and produces
better results than CORI.

As in previous experiments on the uniform
testbed, removing duplicate documents changes the
final precision more significantly for larger cutoff val-
ues. The gaps are also similarly larger when ReDDE
is used for collection selection and SSL is used for
result merging, for the reasons given above.

However, the results on the Qprobed testbed,
shown in Table 3, are rather different. The CORI-
CORI combination produces the greatest effective-
ness when duplicate documents are removed. Com-
paring the results of ReDDE-CORI and ReDDE-SSL
combinations suggests that the performance of SSL



Table 2: The impact of removing duplicate and near-
duplicate documents. Results are obtained by run-
ning the TREC topics 551–600 (title) on the “skewed”
testbed. CO represents the cutoff value.

P@5 P@10 P@15 P@20
Duplicates Removed (CORI-CORI)
CO3 0.0880 0.0660 0.0573 0.0520
CO5 0.0800 0.0680 0.0613 0.0530
CO10 0.1680† 0.1220∗ 0.1133∗ 0.0970†

CO20 0.1840† 0.1380‡ 0.1253† 0.1140‡

Duplicates Irrelevant (CORI-CORI)
CO3 0.0840 0.0640 0.0560 0.0510
CO5 0.0760 0.0660 0.0600 0.0520
CO10 0.1440 0.1120 0.1053 0.0900
CO20 0.1520 0.1200 0.1133 0.0990
Duplicates Removed (ReDDE-CORI)
CO3 0.1625 0.1312 0.1139∗ 0.1052
CO5 0.1625 0.1417 0.1208∗ 0.1125
CO10 0.1667 0.1437 0.1250∗ 0.1177∗

CO20 0.1583∗ 0.1417∗ 0.1278∗ 0.1208†

Duplicates Irrelevant (ReDDE-CORI)
CO3 0.1583 0.1271 0.1097 0.1010
CO5 0.1583 0.1375 0.1167 0.1083
CO10 0.1583 0.1354 0.1194 0.1125
CO20 0.1542 0.1333 0.1208 0.1135
Duplicates Removed (ReDDE-SSL)
CO3 0.1625 0.1417† 0.1097∗ 0.1000∗

CO5 0.1708∗ 0.1458∗ 0.1278† 0.1115†

CO10 0.1917∗ 0.1583† 0.1444† 0.1260†

CO20 0.1833† 0.1646† 0.1556‡ 0.1437‡

Duplicates Irrelevant (ReDDE-SSL)
CO3 0.1458 0.1208 0.1014 0.0906
CO5 0.1542 0.1354 0.1111 0.1010
CO10 0.1750 0.1312 0.1250 0.1104
CO20 0.1583 0.1417 0.1306 0.1135

and CORI merging methods is similar. Therefore,
the high effectiveness of CORI-CORI is largely due
to its effective collection selection method. We ob-
served similar trends for CORI and ReDDE on a simi-
lar testbed (trec4-kmeans (Xu & Callan 1998)) in our
preliminary experiments. We believe that ReDDE is
not as effective as CORI on testbeds where the distri-
bution of collection sizes in not skewed and the doc-
uments within each collection have similar topicality.

These results illustrate the importance of using di-
verse testbeds in such experiments; the uniform and
skewed results are not predictive of the results on a
collection created with another method.

As in experiments on the other testbeds, removal
of duplicates may drastically improve the final preci-
sion. The difference can be significant at the 0.999
confidence interval for larger cutoff values.

The number of duplicate and near-duplicate doc-
uments detected by GHVs for different combina-
tions is presented in Table 4. In the uniform and
skewed testbeds, the number of near-duplicates de-
tected climbs significantly for CORI-CORI while it
remains near constant for the other combinations. In
the Qprobed testbed, the number of near-duplicates
in the result declines by selecting more collections,
which is possibly an artefact of the way the testbed
was constructed.

Comparing the exact-duplicate (ED) numbers for
ReDDE-CORI and ReDDE-SSL suggests that SSL is
more likely to return exact-duplicates in the final re-
sults than CORI. Using CORI and ReDDE collec-
tion selection algorithms leads to similar number of
exact-duplicates on the uniform and skewed testbeds.

Table 3: The impact of removing duplicate and near-
duplicate documents. Results are obtained by running
the TREC topics 551–600 (title) on the “Qprobed”
testbed. CO represents the cutoff value.

P@5 P@10 P@15 P@20
Duplicates Removed (CORI-CORI)
CO3 0.1959 0.1776† 0.1578† 0.1378∗

CO5 0.2163 0.1857† 0.1592† 0.1439†

CO10 0.2204† 0.1898† 0.1660‡ 0.1469†

CO20 0.2571† 0.2143‡ 0.1782‡ 0.1612‡

Duplicates Irrelevant (CORI-CORI)
CO3 0.1878 0.1612 0.1442 0.1296
CO5 0.2000 0.1653 0.1401 0.1235
CO10 0.1918 0.1633 0.1333 0.1204
CO20 0.2204 0.1776 0.1429 0.1255
Duplicates Removed (ReDDE-CORI)
CO3 0.1750 0.1500 0.1194 0.1000∗

CO5 0.2000 0.1729 0.1403∗ 0.1167∗

CO10 0.2125 0.1938∗ 0.1597† 0.1406†

CO20 0.2083 0.1958 0.1681† 0.1469†

Duplicates Irrelevant (ReDDE-CORI)
CO3 0.1667 0.1396 0.1139 0.0938
CO5 0.1875 0.1583 0.1292 0.1094
CO10 0.2000 0.1771 0.1389 0.1271
CO20 0.1958 0.1812 0.1444 0.1302
Duplicates Removed (ReDDE-SSL)
CO3 0.1625 0.1396 0.1083 0.0958
CO5 0.2125∗ 0.1542† 0.1319† 0.1146∗

CO10 0.2458† 0.1958† 0.1611† 0.1427‡

CO20 0.2292† 0.2021‡ 0.1736‡ 0.1542‡

Duplicates Irrelevant (ReDDE-SSL)
CO3 0.1625 0.1313 0.1028 0.0885
CO5 0.1917 0.1333 0.1153 0.1042
CO10 0.2042 0.1687 0.1403 0.1167
CO20 0.1750 0.1500 0.1319 0.1156

However, collections selected by CORI return more
exact-duplicates on the Qprobed testbed.

The coverage values in Table 4 represent the frac-
tion of unique documents in the testbeds that are
being searched on different cutoff points. The cov-
erage values grow linearly for all combinations in the
uniform and Qprobed testbeds. This implies that col-
lections selected by CORI and ReDDE contain similar
number of documents.

In the skewed testbed, the coverage values for
ReDDE collection selection increases very quickly for
small cutoff values while it grows linearly for CORI.
This is due to the fact that the three largest collec-
tions in the skewed testbeds get high ranks by ReDDE
for the majority of queries. Therefore, they are very
likely to be selected by the broker in the top three or
five collections. However in CORI, the three largest
collections do not have any advantage over the other
collections to be selected.

8 Conclusions

We have investigated the problem of distributed in-
formation retrieval on collections that overlap, eval-
uating the effectiveness of several collection selection
and result merging algorithms. Our experiments are
broadly consistent with previous observations on the
traditional, disjoint DIR testbeds: ReDDE is a bet-
ter collection selection algorithm than CORI when
the distribution of collection sizes is skewed, and SSL
is a more effective result merging method than CORI.
However, on a testbed where documents in each col-



Table 4: Number of duplicates, near-duplicates and coverage values obtained by collection selection and result
merging combinations on the three testbeds. For all experiments, the TREC topics 551–600 (title) have been
used and the numbers are averaged over all queries. CO is the cutoff value. For each query, 1 000 answers are
collected. ND and ED stand for near-duplicate and exact-duplicate respectively.

ND ED coverage ND ED coverage ND ED coverage

CORI-CORI ReDDE-CORI ReDDE-SSL
Uniform
CO3 8 53 0.06 9 19 0.06 10 53 0.06
CO5 10 78 0.11 9 66 0.11 11 77 0.11
CO10 11 116 0.21 8 110 0.21 9 118 0.21
CO20 15 191 0.38 11 174 0.38 11 195 0.38
Skewed
CO3 9 56 0.06 11 106 0.31 10 143 0.31
CO5 11 82 0.11 9 140 0.35 11 193 0.35
CO10 13 122 0.23 12 163 0.42 10 229 0.42
CO20 15 211 0.42 9 211 0.54 11 298 0.54
Qprobed
CO3 15 136 0.06 8 76 0.04 8 83 0.04
CO5 9 218 0.11 6 145 0.07 6 158 0.07
CO10 5 340 0.21 5 241 0.14 6 264 0.14
CO20 5 451 0.38 6 335 0.27 4 371 0.27

lection may share topicality, CORI seems to be a bet-
ter option than ReDDE for collection selection.

For this work we introduced three testbeds created
from documents available in the TREC GOV corpus.
The different testbeds yield results that are some-
what inconsistent, demonstrating that design of ex-
periment is critical to achieving robust results in this
area—conclusions based solely on one testbed might
not generalise.

We have shown that removing duplicates and near-
duplicates can significantly improve the final search
effectiveness. We used grainy hash vectors to de-
tect duplicate and near-duplicate documents in the
final list of results on the broker. Grainy hash vec-
tors successfully identified 72% of all near-duplicate
documents in the results. The accuracy of GHVs is
consistent with the values we previously reported on
a centralized index (Bernstein et al. 2006). These
results demonstrate that duplicate removal need not
be expensive, and can greatly enhance the quality of
results returned by a search engine.
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