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Abstract

Indexes are the key technology underpinning efficient text
search. A range of algorithms have been developed for fast
query evaluation and for index creation, but update algo-
rithms for high-performance indexes have not been evalu-
ated or even fully described. In this paper, we explore the
three main alternative strategies for index update: in-place
update, index merging, and complete re-build. Our experi-
ments with large volumes of web data show that re-merge
is for large numbers of updates the fastest approach, but
in-place update is suitable when the rate of update is low
or buffer size is limited.

1 Introduction

High-performance text indexes are key to the use of mod-
ern computers. They are used in applications ranging from
the large web-based search engines to the “find” facilities
included in popular operating systems, and from digital li-
braries to online help utilities. The past couple of decades
have seen dramatic improvements in the efficiency of
query evaluation using such indexes (Witten, Moffat &
Bell 1999, Zobel, Moffat & Ramamohanarao 1998, Sc-
holer, Williams, Yiannis & Zobel 2002). These advances
have been complemented by new methods for building in-
dexes (Heinz & Zobel 2003, Witten et al. 1999) that on
typical 2001 hardware allow creation of text databases at
a rate of around 8 gigabytes per hour, that is, a gigabyte
every 8 minutes.

In contrast, the problem of efficient maintenance of in-
verted indexes has had relatively little investigation. Yet
the problem is an important one. In some applications,
documents arrive at a high rate, and even within the con-
text of a single desktop machine a naive update strategy
may be unacceptable — a search facility in which update
costs were the system’s major consumer of CPU cycles
and disk cycles would not be of value.

In this paper we explore the three main strategies to
maintaining text indexes, focusing on addition of new doc-
uments.

To our knowledge, there has been no previous evalua-
tion of alternative update strategies.

The first strategy for update is to simply amend the in-
dex, list by list, to include information about a new docu-
ment. However, as a typical document contains hundreds
of distinct terms, such an update involves hundreds of disk
accesses, a cost that is only likely to be tolerable if the
rate of update is very low indeed. This cost can be ame-
liorated by buffering new documents; as they will share
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many terms, the per-document cost of update will be re-
duced. The second strategy is to re-build the index from
scratch when a new document arrives. On a per-document
basis this approach is extremely expensive, but if new doc-
uments are buffered then overall costs may well be accept-
able. Indeed many intranet search services operate with
exactly this model, re-crawling (say) every week and re-
indexing. The third strategy is to make use of the strategies
employed in algorithms for efficient index construction.
In these algorithms, a collection is indexed by dividing
it into blocks, constructing an index for each block, and
then merging. To implement update, it is straightforward
to construct an index for a block of new documents, then
merge it with the existing index.

In all of these approaches, performance depends on
buffer size. Using large collections of web documents, we
explore how these methods compare for different index
sizes and buffer sizes. These experiments, using a version
of our open-source LUCY search engine, show that the in-
place method becomes increasingly attractive as collection
size grows. We had expected to observe that re-build was
competitive for large buffer sizes; this expectation was not
confirmed, with re-merge being substantially more effi-
cient. Our results also show that incremental update of
any kind is remarkably slow even with a large buffer; for
a large collection our best speed is about 0.1 seconds per
document, compared to roughly 0.003 seconds per docu-
ment for batch index construction using the same imple-
mentation.

Overall, given sufficient buffer space for new docu-
ments and sufficient temporary space for a copy of the
index, it is clear that re-merge is the strategy of choice.
For a typical desktop application, however, where keeping
of spare indexes may be impractical, in-place update is not
unduly expensive and provides a reasonable pragmatic al-
ternative.

2 Indexes for text retrieval

Inverted files are the only effective structure for support-
ing text search (Witten et al. 1999, Zobel et al. 1998). An
inverted index is a structure that maps from a query term,
typically a word, to a postings list that identifies the docu-
ments that contain that term. For efficiency at search time,
each postings list is stored contiguously; typical query
terms occur in 0.1%–1% of the indexed documents, and
thus list retrieval, if fragmented, would be an unaccept-
able overhead.

The set of terms that occur in the collection is known
as the vocabulary. Each postings list in a typical imple-
mentation contains the number and locations of term oc-
currences in the document, for each document in which
the term occurs. More compact alternatives are to omit
the locations, or even to omit the number of occurrences,
recording only the document identifiers. However, term
locations can be used for accurate ranking heuristics and
for resolution of advanced query types such as phrase
queries (Bahle, Williams & Zobel 2002).



Entries in postings lists are typically ordered by doc-
ument number, where numbers are ordinally assigned to
documents based on the order in which they are indexed
by the construction algorithm. This is known as document
ordering and is commonly used in text retrieval systems
because it is straightforward to maintain, and additionally
yields compression benefits as discussed below. However,
ordering postings list entries by metrics other than docu-
ment number can achieve significant efficiency gains dur-
ing query evaluation (Anh & Moffat 2002, Persin, Zobel
& Sacks-Davis 1996).

Another key to efficient evaluation of text queries is in-
dex compression. Well-known integer compression tech-
niques (Golomb 1966, Elias 1975, Scholer et al. 2002) can
be applied to postings lists to significantly reduce their
size. Integer compression has been shown to reduce query
evaluation cost by orders of magnitude for indexes stored
both on disk and in memory (Scholer et al. 2002).

To realise maximal benefits from integer compression,
a variety of techniques are used to reduce the magnitude
of the numbers stored in postings lists. For example, doc-
ument ordering allows differences to be taken between
consecutive numbers, and then the differences can be en-
coded rather than the document numbers. This technique,
known as taking d-gaps, can also be applied to within-
document term occurrence information in the postings list,
for further compression gains. Golomb-coding of d-gaps,
assuming terms are distributed randomly amongst docu-
ments, yields optimal bitwise codes (Witten et al. 1999);
alternatively, byte-oriented codes allow much faster de-
compression (Anh & Moffat 2002, Scholer et al. 2002).

Compression can reduce the total index size by a fac-
tor of three to six, and decompression costs are more than
offset by the reduced disk transfer times. However, both
integer compression and taking d-gaps constrain decod-
ing of the postings lists to be performed sequentially in
the absence of additional information. This can impose
significant overheads in situations where large portions of
the postings list are not needed in query evaluation.

Techniques for decreasing the decoding costs imposed
by index compression have been proposed. Skipping
(Moffat & Zobel 1996) involves encoding information
into the postings lists that allows portions of the post-
ings list to be passed over without cost during decod-
ing. This can greatly increase the speed at which con-
junctive queries, such as Boolean AND queries, can be
processed. Non-conjunctive queries can also benefit from
this approach, by processing postings lists conjunctively
after selecting a set of candidate results disjunctively (Anh
& Moffat 1998).

Inverted indexes are key to fast query evaluation, but
construction of the inverted index is a resource intensive
task. On 2001 hardware and using techniques described
twelve years ago (Harman & Candela 1990), the inversion
process would require around one day per gigabyte. The
latest techniques in index construction have dramatically
reduced this time, to around 8 minutes per gigabyte on the
same hardware.

The most efficient method for index construction is a
refinement of sort-based inversion (Heinz & Zobel 2003).
Sort-based inversion operates by recording a posting —
consisting of a term, ordinal document number, and oc-
currence information — in temporary disk space for each
term occurrence in the collection. Once the postings for
the entire collection have been accumulated in temporary
disk space, they are sorted — typically using an external
merge-sort algorithm — to group postings for the same
term into postings lists (Harman & Candela 1990). The
postings lists then constitute an inverted index of the col-
lection. Sort-based inversion has the advantages that it
only requires one pass over the collection and can oper-
ate in a limited amount of memory, as full vocabulary ac-
cumulation is not required. Simple implementations are
impractically slow, but the strategy of creating temporary
indexes in memory, writing them as blocks, then merging

the blocks to yield the final index is highly efficient.
An alternative to sort-based inversion is in-memory in-

version (Witten et al. 1999), which proceeds by building
a matrix of terms in the collection in a first pass, and then
filling in document and term occurrences in a second pass.
If statistics about term occurrences are gathered during
the first pass, the exact amount of memory required to in-
vert the collection can be allocated, from disk if necessary.
Term occurrence information is written into the allocated
space in a second pass over the collection. Allocation of
space to hold postings from disk allows in-memory inver-
sion to scale to very large collection sizes. However, in-
memory inversion does have the disadvantages that it re-
quires two passes over the collection and vocabulary must
be accumulated over the entire collection.

Another alternative to construction is a hybrid sorting
approach (Moffat & Bell 1995) in which the vocabulary is
kept in memory while blocks of sorted postings are writ-
ten to disk. However, compared to the pure sort-based
approach, more memory and indexing time is required
(Heinz & Zobel 2003).

To evaluate a ranked query with an inverted index,
most text retrieval systems read the postings lists associ-
ated with the terms in the query. The lists are then pro-
cessed from least- to most-common term (Kaszkiel, Zobel
& Sacks-Davis 1999). For each document that occurs in
each postings list, a score for that document is increased
by the result of a similarity computation such as the cosine
(Witten et al. 1999) or Okapi BM-25 (Robertson, Walker,
Hancock-Beaulieu, Gull & Lau 1992) measures. The sim-
ilarity function considers factors including the length of
the document, the number of documents containing the
term, and the number of times the term occurred in the
document. Other types of query — such as Boolean or
phrase queries — can also be resolved using an inverted
index.

The techniques described here have been implemented
in the LUCY text search engine, written by the Search En-
gine Group at RMIT.1. This search engine was used for
all experiments described in this paper.

3 Index update strategies

For text retrieval systems, the principles of index mainte-
nance — that is, of update — are straightforward. When
a document is added to the collection, the index terms
are extracted; a typical document contains several hun-
dred distinct terms that must be indexed. (It is well es-
tablished that all terms, with the exception of a small
number of common terms such as “the” and “of”, must
be indexed to provide effective retrieval (Baeza-Yates &
Ribeiro-Neto 1999, Witten et al. 1999). For phrase match-
ing to be accurate, all terms must be indexed.) For each of
these terms it is necessary to retrieve its postings list from
disk, add to the list information about the new document
and thus increase its length by a few bytes, then store the
modified list back on disk.

This simple approach to update, naively implemented,
carries unacceptable costs. On 100 gigabytes of text, the
postings lists for the commonest of the indexed terms
is likely to be tens of megabytes long, and the median
list tens to hundreds of kilobytes. To complete the up-
date the system must fetch and modify a vast quantity of
data, find contiguous free space on disk for modified post-
ings lists, and garbage-collect as the index becomes frag-
mented. Therefore, the only practical solution is to amor-
tise the costs over a series of updates.

The problem of index maintenance for text data has not
been broadly investigated: there is only a little published
work on how to efficiently modify an index as new docu-
ments are accumulated or existing documents are deleted
or changed (Clarke, Cormack & Burkowski 1994, Cut-
ting & Pedersen 1990, Tomasic, Garcia-Molina & Shoens

1Available at http://www.seg.rmit.edu.au/lucy



1994). This work pre-dates the major innovations in text
representation and index construction that were described
in the previous section.

There are several possible approaches to cost amorti-
sation for index maintenance. One approach is to adapt
the techniques used for index construction. In efficient in-
dex construction techniques, a temporary index is built in
memory until space is exhausted. This temporary index is
then written to disk as a run. When all documents have
been processed, the runs are merged to give a final index.
The re-merge strategy could be used for index mainte-
nance: as new documents are processed, they are indexed
in memory, and when memory is exhausted this run of new
information could be merged with the existing index in a
single linear pass. While the index would be unavailable
for some time during the merge (tens of minutes on an
index for 100 gigabytes of text), the overall cost is much
lower than the naive approach. To avoid the system itself
being unavailable at this time, a copy of the index can be
kept in a separate file, and the new index is switched in
once the merge is complete.

Update deferral using a temporary in-memory index
can be used to improve the naive update strategy. Once
main memory is exhausted, the postings lists on disk are
individually merged with entries from the temporary in-
dex. Updating postings lists in-place still requires con-
sideration of the problems associated with space manage-
ment of postings lists, but the cost of update can be sig-
nificantly reduced by reducing the number of times that
individual postings lists have to be written to disk.

A more primitive, but still commonly used, approach
to cost amortisation is to but re-build the entire index from
the stored collection. This approach has a number of dis-
advantages, including the need to store the entire collec-
tion and that the index is not available for querying during
the re-building process. Re-building is intuitively worse
than the re-merge strategy, but that does not mean that it is
unacceptable. Consider for example a typical 1-gigabyte
university web site. A re-build might take 10 minutes —
a small cost given the time needed to crawl the site and
the fact that there is no particular urgency to make updates
immediately available.

Update techniques from other areas cannot be readily
adapted to text retrieval systems. For example, there is
a wide body of literature on maintenance of data struc-
tures such as B-trees, and, in the database field, specific
research on space management for large objects such as
image data (Biliris 1992a, Biliris 1992b, Carey, DeWitt,
Richardson & Shekita 1986, Carey, DeWitt, Richardson &
Shekita 1989, Lehman & Lindsay 1989). However, these
results are difficult to apply to text indexes: they present
very different technical problems to indexes for conven-
tional databases. On the one hand, the number of terms per
document and the great length of postings lists make the
task of updating a text retrieval system much more costly
than is typically the case for conventional database sys-
tems. On the other hand, as query-to-document matching
is an approximate process — and updates do not neces-
sarily have to be instantaneous as there is no equivalent
in a text system to the concept of integrity constraint —
there are opportunities for novel solutions that would not
be considered for a conventional database system.

4 Update algorithms

Three algorithms are compared in the experiments pre-
sented in this paper. All three algorithms accumulate post-
ings in main memory as documents are added to the col-
lection. These postings can be used to resolve queries,
making new documents retrievable immediately. Once
main memory is filled with accumulated postings, the in-
dex is updated according to one of the three strategies.

In-place. The in-place algorithm updates postings lists
for each term that occurred in the new documents. The
list updates are not performed in a specific order other than
that imposed by the data structures used to accumulate the
postings. This is almost certainly not the optimal disk ac-
cess pattern, and is thus a topic for further research. Free
space for the postings lists is managed using a list of free
locations on the disk. These are ordered by disk location
so that a binary search can be used to determine whether
an existing postings list can be extended using additional
free space occurring immediately after it. A first fit algo-
rithm is used to search for free space if a postings list has
to be moved to a new location or a new postings list must
be created. The entire algorithm is described below.

1. Postings are accumulated in main memory as docu-
ments are added to the collection.

2. Once main memory is exhausted, for each in-
memory postings list:

(a) Determine how much free space follows the
corresponding on-disk postings list.

(b) If there is sufficient free space, append the in-
memory postings list, discard it and advance to
the next in-memory postings list.

(c) Otherwise, determine a new disk location with
sufficient space to hold the on-disk and in-
memory postings lists, using a first-fit algo-
rithm.

(d) Read the on-disk postings list from its previous
location and write it to the new location.

(e) Append the in-memory postings list to the new
location.

(f) Discard the in-memory postings list and ad-
vance to the next.

Note that this algorithm requires that it is possible to ap-
pend to a postings list without first decoding it. Doing so
involves separately storing state information that describes
the end of the existing list: the last number encoded, the
number of bits consumed in the last byte, and so on. For
addition of new documents in document ordered lists, such
appending is straightforward; under other organisations of
postings lists, the entire existing list must be decoded. In
our experiments, we test both append and (in one data set)
full-decode implementations.

Re-merge. The re-merge algorithm updates the on-disk
index by performing a merge between the on-disk postings
and the postings in main memory, writing the result to a
new disk location. This requires one complete scan of the
existing index. The on-disk postings and the in-memory
postings are both processed in ascending order, using the
hash values of the terms as the sorting key. This allows the
use of a simple merge algorithm to combine them. After
the merge is finished, the new index is substituted for the
old. In detail, this algorithm is as follows.

1. Postings are accumulated in main memory as docu-
ments are added to the collection.

2. Once main memory is exhausted, for each in-
memory postings list and on-disk postings list:

(a) If the term for the in-memory posting list has
a hash value less than the term for the on-
disk postings list, write the on-disk postings list
to the new index and advance to the next in-
memory postings term.

(b) Otherwise, if the in-memory posting term has a
hash value equal to the on-disk postings term,
write the on-disk postings list followed by the
in-memory postings list to the new index. Ad-
vance to next in-memory and on-disk postings
lists.



(c) Otherwise, write the on-disk postings list to the
new index and advance to the next on-disk post-
ings list.

3. The old index and in-memory postings are discarded,
replaced by the new index.

The re-merge algorithm processes the entire index, merg-
ing in new postings that have been accumulated in mem-
ory. This algorithm allows the index to be read efficiently,
by processing it sequentially, but forces the entire index to
be processed for each update.

If queries must be processed while maintenance is un-
der way, two copies of the index must be kept, as queries
cannot be resolved using the new index until it is complete.
The drawback, therefore, is that the new index is written
to a new location and there are therefore two copies of the
index; however, the index can be split and processed in
chunks in order to reduce this redundancy. The benefit is
that unlike the in-place algorithm, this ensures that lists
are stored contiguously, that is, there is no fragmentation.

Re-build. The re-build algorithm discards the current
index after constructing an entirely new index. The new
index is built on the stored collection and the new doc-
uments added since the last update. In order to service
queries during the re-building process, a copy of the index
and the accumulated in-memory postings must be kept.
After the re-building process is finished, the in-memory
postings and old index are discarded and the new index
substituted in their place. This process is as follows.

1. Postings are accumulated in main memory as docu-
ments are added to the collection.

2. Once main memory is exhausted, a new index is built
from the current entire collection.

3. The old index and in-memory postings are discarded,
replaced by the new index.

The re-building algorithm constructs a new index from
stored sources each time that maintenance is required.
This necessitates that the entire collection be stored and
re-processed in the indexing process. Moreover, existing
postings are ignored.

Similarly to the re-merge algorithm, a separate copy
of the index must be maintained to resolve queries during
the maintenance process. In addition, as in the other ap-
proaches, postings must still be accumulated in-memory
to defer index maintenance and these must be kept until
the re-build is complete. This requirement has impact on
the index construction process, since less main-memory is
available to construct runs.

5 Experiments

Experiments were performed on a dual Pentium III
866 MHz machine, with 256 Mb of main memory on a
133MHz front side bus, and a quad Xeon 2 GHz machine
with 2 GB main memory on a 400 MHz front side bus.

Two sets of experiments were run on the dual Pen-
tium III using 1 Gb and 2.75 Gb collections taken from
the TREC WT10g collection. TREC is a large-scale in-
ternational collaboration intended primarily for compar-
ison of text retrieval methods (Harman 1995), and pro-
vides large volumes of data to participants, allowing di-
rect comparison of research results. The WT10g collec-
tion contains around 1.7 million documents from a 1997
web crawl (Hawking, Craswell & Thistlewaite 1999); it
was used primarily as an experimental collection at TREC
in 2000 and 2001.

The first experiment with the Pentium III was to update
the index of the 1 Gb collection, where an initial index
on 500 Mb of data (75,366 documents) was updated with

500 Mb of new data (75,368 documents). In these exper-
iments, we varied the size of the buffer used to hold new
documents, to measure the relative efficiency of the differ-
ent methods as the number of documents to be inserted in
a batch was varied.

The second experiment used the 2.75 Gb collection,
where an initial index on 2.5 Gb (373,763 documents)
was updated with 250 Mb (39,269 documents). A smaller
number of updates was used due to time constraints; at
around a second per document in the slower cases, and 15
separate runs, this experiment took a week to complete.

A third experiment was run on the quad Xeon machine
using 21 Gb of data, where an initial index of 20 Gb
of data (3,989,496 documents) was updated with 1 Gb
(192,264 documents). The data for the third experiment
was taken from the TREC WT100g collection, a superset
of the WT10g 1997 web crawl.

These experiments were chosen to explore the charac-
teristics of the three strategies when operating under dif-
ferent conditions. In particular, we explored the behaviour
of the approaches when the index fits into memory, and
contrasted this with the behaviour when the index is many
multiples of main-memory size. The different collection
sizes were chosen to explore the maintenance cost of each
of the three strategies with different amounts of data.

6 Results

The results of the timing experiments are shown in Fig-
ures 1, 2, and 3. In all experiments the machines are under
light load, that is, no other significant tasks are accessing
the disk or memory.

Figure 1 shows the results of the first experiment,
where 500 Mb of data was added to an initial index on
500 Mb. The in-place and re-merge strategies were run
with buffered numbers of documents ranging between 10
and 10,000. The re-build strategy was limited to buffering
numbers of documents ranging from 100 to 10,000 due to
the excessive running times required for lower numbers.2

The results support our intuitive assessment that the
re-building strategy is less efficient than re-merging for
all non-trivial scenarios. Both strategies outperform the
in-place update for large document buffers, which can be
attributed to the advanced index construction algorithms
that underly their operation. However, their performance
degrades at a faster rate than in-place update with smaller
buffer sizes, to eventually become slower than in-place up-
date. This highlights that both algorithms need to process
the entire index or collection every update, even for small
updates.

The in-place variant that decodes the postings lists be-
fore updating them is also shown in Figure 1. As expected,
it is less efficient than the more optimised in-place strat-
egy in all cases. List decoding is not a significant over-
head for large document buffer sizes but, as buffer size
decreases, the per-document overhead increases and de-
coding becomes impractical.

The results of the second experiment, where 250 Mb of
data was added to an initial index of 2.5 Gb, are shown in
Figure 2. The re-building strategy was again always worse
than re-merging. All three strategies show comparable be-
haviour to the first experiment, but all schemes are slower
because of the processing costs associated with a larger
index. As discussed previously, the re-build and re-merge
strategies’ performance degraded faster than the in-place,
making them both slower than in-place update at a buffer
size of 100 documents. This is a larger buffer size than the
corresponding point in Figure 1, showing that the in-place
scheme has degraded less under the increased index size.
In contrast to the other two strategies, the in-place algo-
rithm only needs to process the sections of the index that
it updates. However, this does not make its performance

2In these experiments and those discussed below, buffer sizes ranged up to ap-
proximately 200 Mb
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Figure 1: Running times per input document for the three update strategies for the 1 GB collection on the dual Pentium
III, for a range of buffer sizes.
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Figure 2: Running times per input document for the three update strategies for the 2.75 GB collection on the dual Pentium
III, for a range of buffer sizes.
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Figure 3: Running times per input document for the three update strategies for the 21 GB collection on the quad Xeon,
for a range of buffer sizes.

independent of the index size, as the postings lists that it
manipulates have size that is proportional to the index.

Figure 3 shows the results of the third experiment,
which were performed on the quad Pentium IV. Unfor-
tunately, a lack of time prevented us from running this
experiment with the re-build strategy. The results shown
using the re-merge and in-place strategies are consis-
tent with earlier results, with the re-merge scheme out-
performing the in-place strategy for large document buffer
sizes. These results are not directly comparable to the pre-
vious experiments, since the experiment was performed
on a different machine. However, the relative performance
of the strategies is comparable, and the point at which in-
place becomes more efficient than re-merge is higher than
in the two previous experiments. The index size in this ex-
periment is approximately ten times the size of the index
used in the second experiment, which corresponds to the
relative improvement in the efficiency of the in-place algo-
rithm. The results support the expectation that the in-place
algorithm continues to work well as index size increases.

The fragmentation of the final index produced for the
in-place strategy in each of the experiments is shown in
Figure 4. (Note that the results from different experiments
are not directly comparable to each other, due to the differ-
ing sizes of the collections.) The figures shown are frag-
mentation as a percentage of the total space used to hold
the postings lists. The high fragmentation suggests that
space management is a significant problem in implement-
ing the in-place strategy.

To explore fragmentation of the index during mainte-
nance, the fragmentation was sampled after every update
of the on-disk postings for the 1 Gb collection. Document
buffer sizes 200, 1000 and 5000 were plotted, with the re-
sults shown in Figure 5. These results indicate that after an
initial period where the fragmentation rapidly rises after
updating the initially-packed organisation of the postings
lists, the fragmentation remains relatively stable. Interest-
ingly, the degree of fragmentation in the index appears to
be related to the size of the updates applied to it, not to the
number of updates. The results in Figure 4 indicate that
this relationship also depends on the size of the existing
index, indicating that the size of the updates applied to the
index relative to the size of the index may be a key factor
in the level of fragmentation.

The oscillation that can be observed in the fragmenta-
tion results is due to the movement of large postings lists.
Postings lists for frequently occurring words such as “the”
are large, and have to be updated for almost every docu-

ment added to the index. This frequent growth causes the
postings list to be moved toward the back of the index,
where previously unused space can be allocated to hold
them. Fragmentation then jumps because a large space in
the index is left in the previous position of the list. Once
at the back of the index, the large postings list can grow
without having to be moved and smaller postings lists can
be placed in its previous position. This causes fragmenta-
tion to fall, and can continue until another large postings
list needs to be relocated to the end of the index, starting
the process again.

7 Conclusions

Inverted indexes are data structures that support query-
ing in applications as diverse as web search, digital li-
braries, application help systems, and email searching.
Their structure is well-understood, and their construction
and use in querying has been an active research area for
almost fifteen years. However, despite this, there is al-
most no publically-available information on how to main-
tain inverted indexes when documents are added, changed,
or removed from a collection.

In this paper, we have investigated three strategies for
inverted index update: first, an in-place strategy, where
the existing structure is added to and fragmentation oc-
curs; second, a re-merge strategy in which new structures
are merged with the old to create a new index; and, last,
a re-build strategy that entirely re-constructs the index
at each update. We have experimented with these three
approaches using different collection sizes, and by vary-
ing the number of documents that are buffered in main-
memory before the update process.

Our results show that when reasonable numbers of
documents are buffered, the re-merge strategy is fastest.
This result is largely because the index fragments under
the in-place strategy, necessitating frequent reorganisation
of large parts of the index structure and rendering it less
efficient. However, an in-place approach is desirable if it
can be made more efficient, since it is the only strategy
in which two copies of the index are not needed during
update.

We believe that optimisation of the in-place strategy is
a promising area for future work. Unlike the re-build and
re-merge strategies — which are the product of more than
ten years of index construction research — the in-place
strategy is new and largely unoptimised. We plan to in-
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vestigate how space can be pre-allocated during construc-
tion to reduce later fragmentation, what strategies work
best for choosing and managing free space, and whether
special techniques for frequently-used or large entries can
reduce overall costs.
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