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Abstract

Sorting is a fundamental algorithmic task. Many general-

purpose sorting algorithms have been developed, but efficiency

gains can be achieved by designing algorithms for specific kinds

of data, such as strings. In previous work we have shown that

our burstsort, a trie-based algorithm for sorting strings, is for

large data sets more efficient than all previous algorithms for

this task. In this paper we re-evaluate some of the implemen-

tation details of burstsort, in particular the method for man-

aging buckets held at leaves. We show that better choice of

data structures further improves the efficiency, at a small ad-

ditional cost in memory. For sets of around 30,000,000 strings,

our improved burstsort is nearly twice as fast as the previous

best sorting algorithm.

Keywords: Sorting, string management, algorithms,

experimental algorithmics.

1 Introduction

Algorithms for sorting are a key topic of computer

science. They have been investigated since before the

first computers were constructed, yet developments

and improvements are ongoing, with for example con-

siderable new research in the 1990s. Sorting also con-

tinues to be a key consumer of computing resources,

due to its use in applications such as database sys-

tems. Indeed, with growth in stored data volumes

well outstripping improvements in processor perfor-

mance, the need for better sorting algorithms is con-

tinuing.

Most of the best-known sorting algorithms are

general-purpose or are best suited to fixed-length

items such as integers: quicksort, mergesort, inser-

tionsort, shellsort, and so on (Sedgewick 1998). Over

the last decade, however, new sorting algorithms have

been developed for the specific task of sorting strings,

and these significantly outperform existing general-
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purpose methods (Bentley & Sedgewick 1998). Many

of these methods are adaptations of radixsort. In

radixsorts, the items to be sorted are treated as se-

quences of symbols drawn from a finite alphabet, and

each symbol is represented in a fixed number of bits.

Traditional radixsort proceeds by assuming the items

to consist of a fixed number of symbols and ordering

the items on the rightmost or least significant sym-

bol, then the next rightmost symbol, and so on. Thus

the final stage is to sort on the most significant sym-

bol. However, such right-to-left approaches are not

well-suited to variable-length strings.

The newer radixsort algorithms are left-to-right or

MSD (most significant digit first), commencing at the

left with the most significant symbol, and in outline

all are similar. The set of strings is partitioned on the

leftmost symbol, giving a set of buckets. Then each

bucket is partitioned recursively, until the buckets are

so small that a simple algorithm such as insertionsort

can be efficiently used. These algorithms outperform

previous methods, but do not make good use of cache

due to the need to repeatedly re-reference each string.

In previous work we developed a new string sort-

ing algorithm, burstsort (Sinha 2002, Sinha & Zobel

2003). The principle of burstsort is that a trie is dy-

namically constructed as the strings are sorted, and is

used to allocate each string to a bucket (Heinz, Zobel

& Williams 2002). The theoretical cost is the same as

that of the MSD radixsorts, in that the leading char-

acters of each string are inspected once only, but the

pattern of memory accesses makes better use of cache.

In MSD radixsorts, prior to the bucket-sorting phase

each string is repeatedly accessed, once for each char-

acter; in contrast, in burstsort each string is accessed

once only, while the trie nodes are accessed randomly.

As the set of trie nodes is much smaller than the set

of strings, better use is made of cache. We showed

that burstsort is competitive with the best methods

on smaller sets of strings, and is considerably faster

once the volume of strings significantly exceeds cache

size.

In this paper, we re-investigate our implementa-

tion of burstsort. A particular issue is the data struc-

ture used to represent the buckets. The original im-



plementation used linked lists, which are relatively

compact, avoid dynamic memory management, and

are only traversed during bucket sorting; that is, lists

are suitable for this application because random ac-

cess is not required. However, an alternative is to use

dynamic arrays, which avoid pointers at some cost in

memory management, and lead to stable sorting.

Using experiments on a variety of string data sets,

ranging in size from 100,000 items to over 30,000,000

items, we have found that burstsort with array-based

buckets is much faster than the original implementa-

tion. In all cases tested, burstsort is the fastest string

sorting method; for the largest data set, it is almost

twice as fast as the best of the previous methods—and

almost four times as fast as an efficient implemen-

tation of quicksort (Bentley & McIlroy 1993). The

results unequivocally show that burstsort has better

asymptotic behaviour, and is the best method to use

for sorting strings.

2 Background

A great variety of general-purpose sorting methods

have been proposed. However, many of the best-

known methods are not particularly well-suited to

sorting of strings. Consider for example the behaviour

of quicksort (Hoare 1962, Sedgewick 1998). An ar-

ray of strings to be sorted is recursively partitioned,

the size of each partition approximately halving at

each stage, if the pivot is well-chosen. As the sort-

ing proceeds, the strings in a given partition become

increasingly similar; that is, they tend to share pre-

fixes. Determining the length of this shared prefix is

costly, so they must be fully compared at each stage;

thus the lead characters are repeatedly examined, a

cost that is in principle unnecessary. Similar prob-

lems arise with tree-based methods such as splaysort

(Moffat, Eddy & Petersson 1996), which is efficient

for special cases such as sorted data, but otherwise is

not competitive. It is for this reason that methods

designed specifically for strings can be substantially

more efficient.

As discussed by us in more detail elsewhere

(Sinha 2002, Sinha & Zobel 2003), a range of new

string sorting methods have been proposed in the

last ten years. One is Bentley and Sedgewick’s multi-

key quicksort (Bentley & Sedgewick 1997, Bentley &

Sedgewick 1998), in which the sorting proceeds one

character at a time. When strings with the same first

character are formed into a contiguous sequence, sort-

ing of this sequence proceeds to the next character.

We call this method multikey quicksort.

A family of methods that yields better perfor-

mance is based on radixsort (Andersson & Nilsson

1993, McIlroy, Bostic & McIlroy 1993, Nilsson 1996,

Rahman & Raman n.d.). All of these methods are

based on the same principle: the first character (or

more generally, the first symbol) of each string is used

to allocate the string to a bucket. The strings in a

bucket are then recursively distributed according to

the next character (or symbol), continuing until the

buckets are small. These final buckets can then be

sorted with some simple method such as insertion-

sort.

Radixsorts are theoretically attractive because the

leading characters in each string that are used to al-

locate the string to a bucket are inspected once only.

As, clearly, these distinguishing characters must be

inspected at least once—if they are not inspected, the

value of the string cannot be determined—these algo-

rithms approach the minimum theoretical cost. Note

that the cost is still O(n log n) for a set of n distinct

strings. While it is true that each character must be

inspected at most once only, the length of the prefix

that must be inspected grows as the log of the number

of strings.

There are several distinct radixsort methods for

string sorting. In 1993, McIlroy, Bostic, and McIl-

roy (McIlroy et al. 1993) reported several in-place

versions that partition the set of strings character

by character. This method was observed by Bentley

and Sedgewick (Bentley & Sedgewick 1997) to be the

fastest general string-sorting method, and in our ear-

lier experiments (Sinha & Zobel 2003) we found that

it was usually the fastest of the existing methods. We

call this method MBM radixsort. Stack-based ver-

sions of radixsort were developed by Andersson and

Nilsson (Andersson & Nilsson 1993, Nilsson 1996),

which build and destroy tries branch by branch as the

strings are processed. In our experiments, we test the

most efficient of these methods, which we call adap-

tive radixsort.

These methods share the property that the sorting

proceeds character by character. The first character

of every string is inspected, to allocate each string to

a bucket. The set of buckets can be managed with a

simple structure such as an array of pointers, which

is effectively a trie node. Then the first bucket is

taken, and the second character of each string in the

bucket is inspected to determine the next level of par-

titioning into buckets. Although in effect a trie is

being used to allocate strings to small buckets, only

one branch of the trie need exist, corresponding to

the recursively-constructed stack of subroutine calls.

However, at each recursive step the accesses to the

strings in a bucket are more or less random—unless

the strings were originally sorted there is no locality.

These random accesses are punitive in current com-

puter architectures. In typical machines, instruction

cycles are 20 to 200 times faster than memory access

times; indeed, due to speed-of-light limitations, the

processor can cycle once or twice before a signal can



even reach memory.

3 Burstsort

In work with string data structures by Heinz, Zo-

bel, and Williams (Heinz et al. 2002), it was found

that a burst trie that combined the properties of tries

and trees could achieve the speed of the former in

the space of the latter, while (in contrast to hash ta-

bles) maintaining the data in sort order. It was there-

fore attractive to investigate whether burst tries could

form the basis of a fast sorting algorithm, by insert-

ing strings into a burst trie then traversing. This led

to the development of burstsort (Sinha 2002, Sinha &

Zobel 2003).

In outline, burstsort is straightforward. A trie is

created dynamically, initially consisting of a single

trie node and a set of empty buckets. The input is

an array of pointers to strings. First is an insertion

phase. As strings are inserted, they are placed in

buckets according to their leading characters. When

the capacity of a bucket is reached, it is burst, that

is, replaced by a trie node with a set of child buckets.

Second is a traversal phase. Once all strings are in-

serted, the trie is traversed, and each bucket is sorted

with a simple sort routine such as insertionsort. Dur-

ing this phase the pointers to the strings are copied

back to the original array, in sort order.

Figure 1 shows an example of a burst trie stor-

ing ten keys: “able”, “aback”, “a”, “abet”, “acid”,

“yawn”, “yard”, “yarn”, “year”, and “yoke” respec-

tively. In this example, the alphabet is the set of let-

ters from A to Z, and in addition an empty string sym-

bol ⊥ is shown; the container used is a list. The access

trie has just one trie node, at depth one. The left-

most container has five records, corresponding to the

strings “able”, “aback”, “a”, “abet”, and “acid” and

the rightmost container has four records correspond-

ing to the strings “yawn”, “yard”, “yarn”, “year”,

and “yoke”. The string “a” corresponds to the list

node ⊥ in the leftmost container.

Figure 2 shows the burst trie after bursting both

the left and the right containers in Figure 1. The

records of the container are redistributed among the

containers of the new trie node. For example, given

the term “ble” in the original container, the first char-

acter ‘b’ determines that the suffix “le” be inserted

into the container below the ‘B’ slot. (In our imple-

mentation the string is not actually truncated, but do-

ing so saves considerable space, allowing much larger

sets of strings to be managed (Heinz et al. 2002).)

Note how the string “a” is represented: as a sin-

gle node under an empty-string pointer, because the

characters of the string, including the string termina-

tor, are represented in the trie path to this node.

In detail, burstsort proceeds as follows.

1. Each string is inserted in turn into a burst trie,

which is grown as necessary to maintain the limit

L on container size.

2. When all strings have been inserted, the burst

trie is traversed depth first and from left-to-right

in each node, observing the following conditions.

• If the size of a container is one, the string

can be output immediately.

• If the container is under the empty-string

pointer, it can be traversed and output im-

mediately.

• Other containers with more than one string

must be sorted, starting at character po-

sition d for a container at depth d, and

can then be output. We have used multi-

key quicksort in our experiments; it is not

tightly integrated with burstsort and there

is scope for further improvement.

The cost of sorting a set of n identical strings is

O(n). A property of burstsort and of radixsorts in

general is that sets of identical strings are handled

efficiently; as the whole of each string must be in-

spected prior to placing it in a bucket (in an attempt

to distinguish it from identical strings), it is known

at insertion time that all the strings in that bucket

are identical, and they do not subsequently need to

be sorted.

Our previous experiments showed that burstsort

made better use of cache than did other string sort-

ing methods. The main reason appears to be the

fact that each string is handled once only during the

insertion phase and some strings are accessed again

during bursting. Handling a string requires travers-

ing a branch of trie nodes to find which bucket to

place the string in. For reasonable choices of bucket

capacity, the total number of trie nodes is small; for

even the largest of our data sets, the trie size was

less than a megabyte, and thus comfortably resided

in cache. (The overhead space required for the trie

was less than one bit per string.) In contrast, the

radixsorts re-fetch the string for each trie node in the

path, after a delay that leads to a reasonable likeli-

hood that—for a large set of strings—the string is no

longer in cache.

For sets of 100,000 strings, burstsort was as good

as the various radixsorts, but no better. With larger

sets, however—for which even the array of pointers to

the strings cannot be held in cache on our hardware—

burstsort required only 60%–80% of the time used

by the other methods. For example, on “Set 5” of

10,000,000 distinct strings (described below), burst-

sort required 11.3 seconds, while the best of the other

methods required 14.6 seconds.
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Figure 2: Burst of containers into new trie nodes.

These experiments showed that, of the earlier sort-

ing methods, MBM radixsort and adaptive radixsort

were the fastest. The performance of these methods

is explored below.

4 Implementation options

The implementation of burstsort used for our original

work was strongly influenced by design choices that

had proven effective for burst tries. However, these

are not necessarily ideal for sorting, where for exam-

ple random access to stored strings is not required.

We therefore identified and evaluated a range of im-

plementation options. These were:

• Data structure used to represent buckets.

• Size of the root trie node.

• Bucket capacity.

• Bucket sorting method.

In detail, these options are as follows.

Bucket representation

In our original work, we used linked lists to represent

buckets. During the insertion phase, linked lists are

highly efficient. First, the list nodes for all the strings

can be allocated as a single array, and the array of

pointers can be copied to the array of nodes in one

pass. The strings themselves are not accessed during

this process, which requires only a tiny fraction of the

total sorting time. Second, during the insertion phase

a linked list need only be accessed when a bucket

is burst, which is a relatively rare occurrence; the

great majority of strings do not participate in a burst

operation. As each inserted string can be placed at

the start of a linked list representing a bucket, the

existing nodes in the list are not accessed. That is,

there are few random accesses, and a linked list allows

extremely cheap insertion.

However, in subsequent experiments it became ap-

parent that linked lists lead to inefficiencies in the

traversal phase. In particular, sorting a bucket re-

quires that the list be traversed and the string point-

ers copied to an array (a fragment of the original ar-

ray of pointers can be used). With a bucket capacity

of 10,000—a figure that gave the greatest overall ef-

ficiency in preliminary experiments—around 75% of

total time was spent in bucket sorting. Also, the “in-

sert at start of list” strategy means that burstsort is

not stable.

Alternatives to linked lists were considered in the

context of burst tries; for string management, it was

found that a binary tree is the most efficient option.

However, these options are not of value for sorting,

as searching is not a factor. (Burst tries are used

for management of distinct strings; for sorting, copies

must be kept, as additional data may be associated

with each string.)

Another alternative is to use arrays. In the sim-



plest implementation of this approach, when the first

string is to be placed in a bucket, an array of pointers

is dynamically created. Additional strings are placed

sequentially in the array. When it is full, it is burst as

before. However, such an approach has serious draw-

backs. If buckets are small, the size of the trie be-

comes unacceptable. If they are large, vast quantities

of space are consumed: most buckets never approach

the fixed capacity. A variation of this approach is

to grow the arrays dynamically, up to the capacity,

before bursting. These issues are discussed further

below.

Managing buckets in this way is more costly than

with linked lists: insertion into a bucket requires that

both the start and the last-used position in the ar-

ray must be accessed, or that counters be maintained

within trie nodes; and, as the bucket grows, realloca-

tion of memory and copying of pointers is required,

leading to possible memory fragmentation. However,

bucket sorting during the traversal phase is likely to

be significantly more efficient, and the sort is stable.

An issue with the array representation is how to

manage sets of identical strings, as there is no bound

on the number of such strings and reallocating arrays

is potentially an O(n2) costs. We chose to use linked

lists of arrays, with a tail pointer to avoid traversal.

The strings are only added at the end in each of the

arrays, so stability is maintained.

Size of root node

In adaptive radixsort, the size of nodes dynamically

switches between 28 and 216 pointers, depending on

the number of strings to be managed. With the larger

node, pairs of letters are consumed at once, saving

some operations, and the cost of inspecting null point-

ers can be avoided; the additional pointer at each

level is required when end-of-string is observed. In

our experiments we observed that this strategy was

only occasionally successful, as it could lead to costly

stack operations that had little benefit if the number

of observed pairs of letters was small.

However, the simple heuristic of allowing the root

node to be 216 pointers has the potential to yield some

benefit: this node can be maintained statically in the

sort routine, and at run time the number of nodes

allocated dynamically is somewhat reduced.

Bucket capacity

The bucket capacity is a parameter that balances the

size of the trie against the cost of bucket sorting. A

large trie—the consequence of small buckets—incurs

memory management costs and poor cache behaviour;

large buckets are expensive to sort. We test a range

of bucket capacities (from 16 to 8192 strings) in our

experiments.

The impact of the bucket capacity depends on the

data structure used to represent buckets. Varying the

capacity for a linked-list representation is straightfor-

ward. For an array representation, how the array

grows also needs to be considered. There are several

possibilities. One is to allocate all-at-once: all non-

empty buckets are the size of the threshold. This re-

sults in dramatic memory wastage for a large thresh-

old, though it may reduce dynamic memory manage-

ment. We found that this approach is not effective.

Another possibility is to grow buckets linearly: the

bucket size is increased by one, or a small constant

size, for each element placed in that bucket. This

scheme in principle minimises memory use, but in

practice leads to fragmentation and O(m2) realloca-

tion costs, due to copying, for a bucket of m slots.

A compromise option is to grow buckets exponen-

tially: initially the buckets are small, then are multi-

plied in size until the threshold size is reached. The

overhead per string is capped by the size multiplier,

and in practice should be much less than this theo-

retical limit. Only a small number of distinct bucket

sizes are created, reducing fragmentation, and dy-

namic memory management costs should not be ex-

cessive. Compared to the all-at-once approach, how-

ever, an extra check is required at each insertion.

In our experiments, we use the exponential ap-

proach. The memory requirements were no more than

10% greater than the memory requirements needed

for the list version, and, as can be seen in the ex-

perimental results reported below, the method is ex-

tremely efficient. In our implementation, a level

counter was added to each pointer in the trie struc-

ture to keep track of the bucket size. A static array

was maintained which had the amount of elements to

allocate at each level. Two exponential schemes were

tested: starting at 16 pointers and growing by a fac-

tor of 8; and starting at 8 and growing by a factor

of 4.

Bucket sorting mechanism

Once all the strings have been placed in the buck-

ets in the trie nodes, the buckets must be sorted. In

this phase, the strings in each bucket are copied back

to the original array and sorted using an algorithm

that is suited to small numbers of strings. We have

tested a range of sorting routines, including insertion-

sort, shellsort, MBM radixsort, and multikey quick-

sort. We found that multikey quicksort and MBM

radixsort were the most efficient. Multikey quick-

sort is used in all our experiments; the comparison

to MBM radixsort is reported below.



Other issues

Some implementation details have unpredictable im-

pact on performance. Consider the fact that a bucket

is burst when it reaches a certain size: this means

that it is necessary to know bucket size. If the size is

not stored, the bucket must be fully traversed at each

string, an unacceptable cost; thus a counter must be

held. If space is created for an array of counters in

each trie node, the nodes occupy more space, but if

they are stored in a header node in each bucket, as

would be required with the list representation of buck-

ets, an extra pointer access is required. It is not clear

which approach is likely to be more efficient, and in

practice it is likely to depend on the data set size and

the relative cost of a memory access. We do not be-

lieve that experiments on a single machine or even

single architecture can identify which approach is su-

perior.

5 Experiments

We have used two kinds of data in our experi-

ments: words and web URLs. The words are

drawn from the large web track in the TREC project

(Harman 1995, Hawking, Craswell, Thistlewaite &

Harman 1999), and are alphabetic strings delimited

by non-alphabetic characters in web pages (after re-

moval of tags, images, and other non-text informa-

tion). The web URLs have been drawn from the same

collection. For the word data, we created six subsets,

of approximately 105, 3.1623×105, 106, 3.1623×106,

107, and 3.1623 × 107 strings each. We call these

Set 1, Set 2, Set 3, Set 4, Set 5, and Set 6 re-

spectively. For the URL data, we created Set 1 to

Set 5. In each case, only Set 1 fits in cache. In detail,

the data sets are as follows.

Duplicates. Words in order of first occurrence, in-

cluding duplicates. The distribution of words

show similar characteristics to most natural lan-

guage documents, in that some words are much

more frequent than others. For example, Set 6

has just over thirty million word occurrences, of

which just over seven million are distinct words.

No duplicates. Unique strings in order of first oc-

currence in the web data.

URL. These were extracted from the TREC docu-

ments in order of occurrence. We have stripped

“http://” from the start of each URL, as it oc-

curs in all of them. There are large numbers of

duplicates, and strings are long, with an average

length of 32 characters.

The methods tested are as discussed above: vari-

ations of burstsort, as implemented by us; and, for
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Figure 3: Duplicates, relative sorting time for each

method. The vertical scale is time in milliseconds di-

vided by n log n.

comparison other sorting methods, with high-quality

implementations from the web, in most cases by the

inventors of the algorithms. All of the programs are

written in C. The aim of the experiments is to eval-

uate the impact of the implementation options on

burstsort, using the other methods as benchmarks. In

our earlier work we evaluated a wide range of sorting

algorithms, but we found that they were not compet-

itive and do not report on them here.

The reported times are to sort an array of point-

ers to strings. Time used for parsing and retrieval of

data from disk are not included, as these are the same

for all algorithms. We have used the GNU gcc com-

piler and the Linux operating system on a 700 MHz

Pentium computer with 2 Gb of fast internal mem-

ory. The total number of milliseconds of CPU time

consumed by the kernel on behalf of the program has

been measured, but for sorting only; I/O times are

not included. The machine was under light load, that

is, no other significant I/O or CPU tasks were run-

ning. For small datasets, times are averaged over a

large number of runs, to give sufficient precision.

We have also compared burstsort to Judy, a suite

of string management tools recently released under a

public license.1 The principles of Judy are similar to

those of burst tries; probably the most crucial differ-

ence is that in Judy a compact representation is used

for sparse nodes. The Judy source is a high-quality

production implementation of an efficient data struc-

ture, and includes a sorting tool, which for sets of

distinct strings is about half the speed of burstsort.

However, it is not formally comparable, because for

duplicate strings only one copy is maintained, with a

frequency count; while this is acceptable for the task

of sorting strings, it cannot be applied if the strings

are associated with other data, such as records.
1Judy is available at www.sourcejudy.com and sourceforge.net/

projects/judy/.



Table 1: Statistics of the data collections used in the experiments.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Duplicates

Size Mb 1.013 3.136 7.954 27.951 93.087 304.279

Distinct Words (×105) 0.599 1.549 3.281 9.315 25.456 70.246

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

No duplicates

Size Mb 1.1 3.212 10.796 35.640 117.068 381.967

Distinct Words (×105) 1 3.162 10 31.623 100 316.230

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

URL

Size Mb 3.03 9.607 30.386 96.156 304.118 —

Distinct Words (×105) 0.361 0.92354 2.355 5.769 12.898 —

Word Occurrences (×105) 1 3.162 10 31.623 100 —

Table 2: Duplicates. Running time (milliseconds) to sort with each method.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Splaysort 234 1,135 3,660 15,530 65,670 256,420

Quicksort 121 527 1,770 7,620 29,890 113,190

Multikey quicksort 62 272 920 3,820 14,800 55,980

MBM radixsort 58 238 820 3,630 15,370 60,460

Adaptive radixsort 73 287 900 3,230 14,460 50,950

Burstsort-List 68 275 830 2,910 10,190 36,860

Burstsort-Array 64 221 630 2,250 8,000 29,710

6 Results

Bucket representation

The time required to sort the duplicates, from Set 1

to Set 6, is shown in Table 2. Times are shown in

milliseconds. In these results, the size of the root node

is 28 slots, buckets grow exponentially by a factor of 8,

and capacity is 8192 strings. As these results show,

for the larger sets, both the array and list versions of

burstsort are faster than any other sorting method.

The array version is much faster than the list version,

and, compared to all the other sorting methods, the

gain in performance grows with data set size.

The second line is a conventional quicksort, opti-

mised for strings; as can be seen, it is around half

the speed of multikey quicksort at all data sizes. The

radixsorts and multikey quicksort are of similar effi-

ciency, but the relative performance varies with data

set size: of these methods, MBM radixsort is the

fastest for Set 1, while adaptive radixsort is the fastest

for Set 6.

An alternative view of these results is shown in

Figure 3, where the time to sort the data is normalised

for data set size by dividing by n log n. The burstsorts

show much the best asymptotic behaviour, with rel-

ative time barely growing with data set size.
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Figure 4: URL, relative sorting time for each method.

The vertical scale is time in milliseconds divided by

n logn.

Similar results are shown in Tables 3 and 4, for no

duplicates and URLs respectively. (Splaysort is omit-

ted from these tables because of its poor performance

on the duplicates.) For the no-duplicates data, rela-

tive performance is almost identical to the duplicates.

However, the results on the URLs are startlingly dif-

ferent. Conventional and multikey quicksort have

both outperformed MBM radixsort, which was in

many cases the most efficient of the existing methods

on the other data. The burstsorts have shown even

better performance for the small data sets than pre-



Table 3: No duplicates. Running time (milliseconds) to sort with each method.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Quicksort 141 561 2,380 9,600 35,890 138,790

Multikey quicksort 67 267 1,090 4,240 15,790 60,260

MBM radixsort 61 230 940 4,080 15,680 61,340

Adaptive radixsort 77 275 1,060 3,850 14,590 59,630

Burstsort-List 71 272 1,000 3,360 11,340 43,080

Burstsort-Array 61 221 790 2,670 9,280 35,210

Table 4: URL. Running time (milliseconds) to sort with each method.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5

Quicksort 202 802 3,090 11,160 39,760

Multikey quicksort 134 504 1,970 8,100 32,540

MBM radixsort 206 808 3,140 13,450 53,650

Adaptive radixsort 151 544 2,280 8,290 33,580

Burstsort-List 121 452 1,730 5,580 21,190

Burstsort-Array 110 395 1,530 5,070 17,950

viously, and again have good asymptotic behaviour,

as illustrated in Figure 4.

Most significantly, the results clearly separate the

two versions of burstsort. Using arrays for buckets

is more efficient than using lists, despite the space

wastage implicit in the latter.

Size of root node

We tested the effect of using either one byte or two

bytes to index the root node, that is, the node could

consist of either 28 or 216 pointers. The latter was

consistently the most efficient, with improvements ob-

served across all the collections of about 5%–10%.

These experiments were for burstsort with lists; ex-

periments with array-based burstsort are continuing,

but we expect to see further improvements.

Bucket capacity

In our first experiment with capacity, we tested the

efficiency of four bucket sizes: 16, 128, 1024, and

8192 pointers; for the array implementation, we used

factor-of-8 bucket growth. Results are shown in Ta-

bles 5 and 6. Note that Set 6 is omitted in some cases,

and Set 5 in one case, because for small capacities

the total space requirements (due to growth in the

trie) exceed physical memory. Note also that these

results are based on smaller numbers of runs than in

the other tables, hence the reduced precision. As the

results show, the largest of the capacities tested gives

the greatest efficiency, with the gain increasing with

data set size. These results suggest that there may

be further improvement available by adapting the ca-

pacity to the size of the set of strings; doing so in a

principled way is a subject for further research.

In our second experiment with capacity, we var-

ied the way in which the buckets grew in the array

version. In one case, the buckets grew over 4 levels

and the size of each successive level differed by pow-

ers of 8, whereas in the other case, the buckets grew

over 6 levels and the size of each successive level dif-

fered by powers of 4. As can be seen in Table 7 we

did not observe any significant difference between the

two approaches.

Bucket sorting mechanism

Using the array implementation, we tested a range

of methods for sorting bucket, including insertion-

sort, quicksort, MBM radixsort, multikey quicksort,

and adaptive radixsort. MBM radixsort and multi-

key quicksort were significantly more efficient than

the others for all data sets. The timings are reported

in Table 8. In contrast to MBM radixsort, multikey

quicksort is not a stable sorting algorithm. As can be

seen, however, multikey quicksort is by a significant

margin the more efficient approach—despite the fact

that it is slightly less efficient, for small data sets, in

our other experiments.

7 Conclusions

We have developed a new trie-based algorithm for

sorting strings, burstsort, which proceeds by inserting

each string into a dynamic trie, then traversing the

trie in sort order. To contain the volume of dynamic



Table 5: Bucket capacities: impact on running time (milliseconds), list implementation.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Duplicates

16 190 660 1,560 5,970 23,050 —

128 70 300 860 3,440 12,560 51,340

1024 70 260 770 2,900 10,540 40,660

8192 68 275 830 2,910 10,190 36,860

No duplicates

16 180 570 1,920 6,680 24,930 —

128 70 280 1,120 4,100 14,410 53,950

1024 70 260 950 3,410 12,280 46,440

8192 71 272 1,000 3,360 11,340 43,080

URL

16 610 1,970 5,890 19,410 —- —

128 170 780 3,600 12,770 43,820 —

1024 140 480 1,710 7,720 35,590 —

8192 121 452 1,730 5,580 21,190 —

Table 6: Bucket capacities: impact on running time (milliseconds), array implementation.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Duplicates

16 248 882 2,290 13,560 167,880 —

128 78 292 820 3,690 20,970 214,800

1024 63 223 630 2,430 9,840 45,840

8192 64 221 630 2,250 8,000 29,710

No duplicates

16 243 818 3,610 33,520 507,960 —

128 79 284 1,160 5,280 37,430 476,550

1024 66 225 800 2,970 12,190 64,110

8192 61 221 790 2,670 9,280 35,210

URL

16 779 2,219 6,880 30,900 — —

128 173 705 2,960 11,160 41,710 —

1024 139 456 1,580 6,430 27,580 —

8192 110 395 1,530 5,070 17,950 —

memory used, the strings are held in large buckets,

which are indexed by their leading characters; in the

traversal phase, these buckets are sorted with an al-

gorithm that is suitable for small sets of strings. The

costs of burstsort are in theory identical to those of

MSD radixsort, but in previous work (Sinha 2002)

we showed that burstsort is faster than all existing

algorithms once the volume of data significantly ex-

ceeds cache size, and that it has excellent asymptotic

characteristics.

In this paper we have shown that further sub-

stantial improvements in performance are available,

through careful investigation of a range of implemen-

tation details. Most important of these is the data

structure used for the buckets. In our experiments

with using arrays to represent buckets, where the

arrays grow exponentially in size up to a fixed ca-

pacity, large improvements in performance were ob-

served. We also tested a range of other implemen-

tation options. Of these, the most significant was to

change the size of the root node from 28 to 216 point-

ers. Other options, such as alternative bucket sorting

mechanisms, had little effect.

Overall, we have shown that for large sets of

strings burstsort is nearly twice as fast as any previous

sorting method. This is a dramatic improvement over

our original list-based implementation. While our al-

gorithm is not in-place, the overheads are a linear

increase over the size of the data to be sorted. Where

such memory is available, our array-based burstsort is

by far the most efficient algorithm for sorting strings.



Table 7: Bucket growth strategies: impact on running time (milliseconds). For “powers of 4”, the stages are

8, 32, 128, 512, 2048, and 8192. For “powers of 8”, the stages are 16, 128, 1024, and 8192.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

No duplicates

powers of 8 61 221 790 2,670 9,280 35,210

powers of 4 61 222 790 2,680 9,300 35,320

Duplicates

powers of 8 64 221 630 2,250 8,000 29,710

powers of 4 59 219 630 2,250 8,030 29,780

URL

powers of 8 110 395 1,530 5,070 17,950 —

powers of 4 110 396 1,530 5,030 17,760 —

Table 8: Bucket sorting methods: impact on running time (milliseconds) of different algorithms for sorting

buckets, in array-based burstsort.

Data set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

No duplicates

MBM radixsort 64 240 930 3,290 11,590 43,360

Multikey quicksort 61 221 790 2,670 9,280 35,210

Duplicates

MBM radixsort 63 249 760 2,860 10,420 38,620

Multikey quicksort 64 221 630 2,250 8,000 29,710
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