
Performance of Data Structures for Small Sets of Strings

Steffen Heinz Justin Zobel

School of Computer Science and Information Technology, RMIT University
GPO Box 2476V, Melbourne 3001, Australia

{sheinz,jz}@cs.rmit.edu.au

Abstract

Fundamental structures such as trees and hash tables are used

for managing data in a huge variety of circumstances. Making

the right choice of structure is essential to efficiency. In previ-

ous work we have explored the performance of a range of data

structures—different forms of trees, tries, and hash tables—for

the task of managing sets of millions of strings, and have devel-

oped new variants of each that are more efficient for this task

than previous alternatives. In this paper we test the perfor-

mance of the same data structures on small sets of strings, in

the context of document processing for index construction. Our

results show that the new structures, in particular our burst

trie, are the most efficient choice for this task, thus demon-

strating that they are suitable for managing sets of hundreds

to millions of distinct strings, and for input of hundreds to

billions of occurrences.

Keywords: data structures, binary search tree, splay
tree, trie, burst trie, inverted index

1 Introduction

Data structures such as trees, tries, and hash tables
are used in a vast variety of applications for managing
sets of distinct strings. Which of these structures is
chosen for a particular application depends on factors
such as how well they scale, memory requirements,
speed, and whether it is required that the strings be
kept in sort order.

In previous work we have evaluated these struc-
tures on large sets of strings, comparing them on tasks
associated with index construction for large text col-
lections [11, 12, 20, 23]. Text collections used in prac-
tice range from news and law archives, business re-
ports, and collections of email, to repositories of doc-
uments garnered from the world wide web. Such text
collections can easily contain many millions of distinct
Copyright c©2001, Australian Computer Society, Inc. This pa-

per appeared at the Twenty-Fifth Australasian Computer Sci-

ence Conference (ACSC2002), Melbourne, Australia. Confer-

ences in Research and Practice in Information Technology, Vol.

4. Michael Oudshoorn, Ed. Reproduction for academic, not-for

profit purposes permitted provided this text is included.

words, and the number grows more or less linearly
with collection size [19]. The collections themselves
range from gigabytes to terabytes, consisting of mil-
lions of documents or more; at the upper extreme,
the popular search engine Google indexes over a bil-
lion web pages. Practical management and querying
of text collections relies on the use of efficient string
data structures that offer fast insertion, search, and
deletion of string keys.

Testing the structures on such large-scale data
sets led to interesting discoveries. Surprisingly, on
text collections from 100 Mb to 45 Gb, the rela-
tive speeds of the various structures were almost con-
stant. Hash tables (assuming an efficient string hash-
ing function [15]) are the fastest of the structures,
and we found that performance can be significantly
improved through the simple strategy of using chains
to manage collisions and move-to-front within chains.
Trees are several times slower and, surprisingly, ex-
isting adaptive and balanced tree structures were no
faster than standard binary trees. However, our novel
variant of adaptive tree, the fab-tree, yielded signifi-
cant improvements in performance. Tries require in-
ordinate volumes of memory, but are fast. We devel-
oped a novel trie structure, the burst trie, that is as
fast as a conventional trie and as compact as a tree—a
dramatic increase in efficiency compared to previous
trie structures. The underlying principle of the burst
trie is that it stores, not individual strings, but small
sets of strings that share a common prefix.

A question that naturally arose from this work is:
which structures are best for small data sets? It
might be argued that performance on a small data
set is unimportant, but there are many applications
in which the time taken to manage small sets of data
is a major component of processing costs. One such
example is, again, indexing of text collections. During
the index construction process, it is necessary to iden-
tify the set of distinct words that occurs in each docu-
ment [22], that is, undertake the task of per-document
vocabulary accumulation. Most of the individual doc-
uments are small—a few hundred words or so—but
nonetheless the task of collating these words in a dy-



namic structure is an important cost overall. More
generally, in any application in which a small data
structure is frequently consulted, inefficiency can sig-
nificantly degrade performance of the application as
a whole.

In this paper we experimentally explore perfor-
mance of the data structures discussed above for
the task of per-document vocabulary accumulation.
Compared to the task of managing large sets of
strings, different relative performance is to be ex-
pected: for example, over only a small number of
words adaptive and balanced structures are unlikely
to have the time to reach the equilibrium that in prin-
ciple might give them an efficiency advantage. We
present the results of experiments on a variety of sets
of documents. Overall, burst tries are faster than
trees, but by a smaller margin than was observed for
larger data sets. Hash tables can be faster again, if
sort order is not required, but—particularly in com-
parison to the results for large data sets—speed is
critically dependent on hash table size. The slowest
structure of all is the trie, a striking contrast to the
efficiency of this structure on large data sets.

The focus of this work is on comparison of the
speed of the structures and not their memory usage;
none use significant volumes of memory for this appli-
cation, and their memory requirements for large data
sets are known from our previous work [12]. How-
ever, memory usage is measured indirectly: excessive
use of memory leads to increased running time, since
high memory usage requires large memory manage-
ment costs when processing of a document is com-
plete. These costs, for traversing and freeing a data
structure, are not relevant if a large text collection
is processed as a whole. In per-document processing,
however, these costs are significant.

2 Candidate data structures

There is a range of data structures that are suitable
for tasks such as per-document vocabulary accumula-
tion that involve management of small sets of strings.
We discuss several choices including trees, tries, and
hash tables. Those structures share one property:
they store a record containing a string key and addi-
tional associated information depending on the task.
For the task of per-document vocabulary accumula-
tion, a record consists of a unique string representing
a word, together with a counter for its frequency in
the document.

There are several features of the input that af-
fect the relative performance of different data struc-
tures for such applications. The first, and arguably
the most important, is skew : the degree to which
the commonest words are prevalent in the input. If

a single word accounts for, say, half of all word oc-
currences, then a data structure that provides rapid
access to this word—even at the cost of slower ac-
cess to other words—will have an advantage. It is
this characteristic that potentially benefits adaptive
structures such as splay trees. On the other hand, if
the distribution is more uniform, time spent modify-
ing the structure may be wasted.

Skew in text is sometimes explained by reference
to Zipf’s distribution, which, while highly inaccurate
as a description of real text collections, does suc-
cinctly describe the phenomenon of common words
dominating as a proportion of word occurrences [21].
For example, in the Wall Street Journal component
of the first TREC disk [10], the word “the” accounts
for around one word occurrence in 17, and the com-
monest five words (“the”, “of”, “to”, “a”, and “and”
respectively) account for around one word occurrence
in six.

A related characteristic is locality: the degree to
which a recently-observed word is likely to occur
again, independent of its overall frequency. For ex-
ample, in a collection containing a chronological se-
quence of newspaper articles, a word such as “Locker-
bie”, although rare overall, is common for a period of
days or weeks. Within a document, locality of topic
often means that a word is used several times within a
paragraph, then never used again. Three other char-
acteristics are also important: whether the input is
sorted, how many distinct strings there are, and how
long the strings tend to be (consider ordinary text
versus legislation, for example). These characteris-
tics are not directly explored in our experiments, but
are responsible for some of the differences observed
between data collections.

Theoretical analysis of a data structure can be
used to suggest likely average and worst-case asymp-
totic costs, but, as these issues suggest, such analy-
sis can only be indicative of performance in practice.
Skew can be readily modelled, but assumptions must
be made on the degree of skew. Locality is more diffi-
cult analytically. As the examples of common words
show, there is a relationship between word length and
word frequency—an important factor in performance
given that string comparisons are usually the domi-
nant computational cost for string data structures.

In our experiments, the theoretical behaviour of
a structure was not generally a good indicator of
relative performance. For example, structures such
as randomised search trees [1] and splay trees [16]
achieve their logarithmic cost bounds by using node
rotations to restructure the tree on each access. Ro-
tations are computationally expensive, a cost that
more than offsets the saving of lower average search



lengths, and moreover have the disadvantage of oc-
casionally introducing gross imbalance. While a sim-
ple binary search tree has a linear worst case, it is
rarely observed in practice; Sleator and Tarjan [16]
expected splay trees to be superior to binary search
trees for skew data, but we have not observed this
behaviour in practice, for any scale or data set. As
another example, the relative speed of string com-
parisons and string hashing has a drastic effect on
the relative speed of trees and hash tables; with the
string hash functions described in textbooks, trees are
vastly superior, whereas with our fast hash function
the reverse is observed.

Search trees

A standard binary search tree (BST) stores in each
of its nodes a key together with a pointer to each of
the node’s two children. A query for a key q starts
at the root; if q is not found in a node, a compari-
son between q and the node’s key determines which
branch downwards the tree is to follow. An unsuc-
cessful search ends at a leaf, where depending on the
purpose of the query, a new node may be inserted.

The performance of a BST depends on the inser-
tion order of keys. The worst case is of O(n) for a
BST with n nodes and occurs if the keys are inserted
in sort order yielding to long sticks. In our large-
scale practical experiments [12, 20, 23] on string data
sets drawn from the Web with billions of string oc-
currences and millions of distinct strings, the perfor-
mance of a BST was surprisingly good, although a
small number of strings in sort order at the start of
the data led to dramatic degeneration in performance.
A BST should not be used in practice for this task.

Considering per-document processing of a text
collection, we can reasonably assume that the vast
majority of documents will not consist of strings in
sort order, therefore average logarithmic search cost
should dominate. The performance of a BST in this
case depends much more on the characteristics of the
input. If the collection is skew, as in text where a
small percentage of the distinct strings account for
a large proportion of the text [21], common keys are
likely to be observed early in a document. They would
then be stored in the upper tree levels, where only a
few comparisons are needed to access them. The com-
mon strings tend to be short, further reducing total
processing costs. Hence, a BST should be well-suited
to the task of per-document vocabulary accumula-
tion.

The cost of string comparisons during a tree
traversal can be reduced as the search is narrowed:
if the query string is known to be lexicographically
greater than “international” but less than “internet”

the first six characters can be ignored in subsequent
comparisons. However, we have found in a range of
experiments on large data sets that the additional
tests and operations needed to identify how many
characters to ignore cost significantly more than the
savings, and we do not use this technique in any tree
structure used in our experiments.

AVL trees [13] and red-black trees [6, 13] are vari-
ants of BSTs that reorganise the tree on insertion to
maintain approximate balance. They achieve the log-
arithmic worst case bound by storing some additional
information in each node, a single bit in a red-black
tree and two bits in an AVL tree. AVL trees and red-
black trees guarantee the absence of long sticks but
due to the reorganisation commonly-accessed keys are
not necessarily clustered at the top tree levels. On the
other hand, for a skew input—where most accesses are
not insertions—the cost of balancing is kept low. The
benefits of having a balanced tree structure in con-
trast to a BST could therefore offset the additional
costs that incur at insertion time.

Splay trees are another adaptive variant of BST.
They have an amortised average cost of O(m log n)
over a sequence of m searches and insertions in a n-
node tree [2, 16]. The tree is modified at each access,
by rotating the accessed node to the root through
a series of double rotations. A double rotation re-
places a node with its grandparent and is efficiently
implemented by storing an additional parent pointer
in each node. We use non-recursive bottom-up splay-
ing instead of the top-down splaying used in other
work [2, 18], since we found that bottom-up splaying
is more efficient [20]. Splaying leads to clustering of
commonly-accessed nodes towards the root, a benefi-
cial feature for skew input. However, we have found
in other work [11, 20] that the potential low expected
search costs are offset by the costly rotations. We
evaluated a variant of the splay tree, the intermittent
splay tree, which is splayed only on every k-th tree
access [20]. We achieved with k = 11 time savings of
more than 15% compared to the original splay tree.

Randomised search trees, like splay trees, are re-
organised at each access [1]. The main difference is
that each node has in addition to the search key a
randomly-generated integer heap key, the heap key
has a random chance of being increased on access,
and the accessed node is rotated upward to maintain
the heap property on the heap key. Based on the poor
results in our earlier experiments [11], we do not test
randomised search trees here.

Fab-trees

In our earlier work, we identified limitations in all
the tree structures we tested. Using this analysis we



65535

26

32

611

1028

15

5

8 1

virgo

pisces

scorpio

jive

gorgon

jordan

buzz taurus

krebs

aries

611

15

5

1

32767

16

13 514

pisces

krebs virgo

gorgon

jive

jordan

taurus

scorpio

buzz

8

aries

Figure 1: A fab-tree with b = 65, 535, t = 16, and s = 1. Each node contains a counter. The gray nodes
contain the current hot set—the nodes whose counts exceed t. On the left, the tree prior to reset. On the right,
after reset caused by access to “pisces”.

proposed a new form of tree, the frequency-adaptive
binary search tree (fab-tree) [11]. A node in a fab-tree
includes left and right child pointers, a parent pointer
(for efficient rotation), and additionally a counter.
The counter is initialized to one when the node is
created. When a node is accessed, the counter is in-
cremented, then single rotations are used to maintain
the heap property on the counter. That is, the series
of rotations ends once a parent node with a higher
frequency count is encountered.

Such an approach—the strategy used in the a
monotonic tree [4]—has two drawbacks. First, the
counters will eventually overflow, and second, the tree
will become increasingly static, with no adaptation to
locality. To address these issues, we occasionally re-
set the counters, in a strategy we called “hot set”.
Whenever the root-node exceeds a threshold of b ac-
cesses, a tree traversal is used to visit all nodes with
a counter of at least t, terminating at nodes whose
counter value is smaller than t, and resets counters
whose value is at least t by a right-shift of s bits. We
observed the best performance for a hot-set fab-tree
with b = 65, 535, t = 16, and s = 1. The additional
storage space needed for a frequency counter is then
only two bytes, independent of the size of the input.

Figure 1 shows an example of a fab-tree before and
after a reset caused by an access to “pisces”. The re-
set has not preserved the heap property; “krebs” has
a smaller counter than “gorgon”. With subsequent
accesses, the heap property is gradually restored. If
“krebs” is not searched for again, it will be gradually
demoted.

On a broad range of medium to large data sets
that are skew we observed that, compared to the other
tree structures, fab-trees are more effective at cluster-
ing commonly-accessed keys in the upper tree levels
and have lower average search lengths. Compared to
intermittent splay trees, we achieved time savings of
about 11% and in comparison to randomised search

trees we achieved time savings of up to 35% [11].

Tries

Tries [7, 8, 13] can be used for fast management of
strings. A node in a standard trie can be represented
by an array of pointers, where each pointer corre-
sponds to a letter in the alphabet including an ad-
ditional end of string character. A leaf of a trie is
a record that corresponds to a particular string. A
query for a string c1 . . . ck of length k starts at the
root of the trie. At each node on level l we follow the
array pointer that corresponds to the lth character of
the query string. Search in a trie is fast, since it re-
quires only a single character comparison and pointer
traversal for each letter in the query string. In a com-
pact trie, nodes that lead to a single leaf are omitted,
as suggested by Sussman [17].

Compact tries, and variants such as Patricia
tries [9, 14], are fast but space-intensive. For this
reason, alternatives have been developed, such as the
ternary tree [3, 5], where trees rather than arrays are
used to represent nodes. However, we have found that
ternary trees are neither as fast nor as compact as the
structure described below [12], and we do not report
them in this paper.

Burst tries

In recent work [12] we have proposed a new and ef-
ficient trie variant, the burst trie, that dramatically
outperforms other tree and trie structures for the task
of accumulating the vocabulary of a large text collec-
tion. A burst trie consists of a standard trie, called
the access trie, which is used to organise accesses to
leaf nodes, and the leaf nodes themselves. In contrast
to a compact trie, where a leaf node contains only
one record, a leaf node in a burst trie is a container
or data structure that is able to store up to c records.

Searches for a query key q involve trie traversal



A B C W X Y

ZY

TS W X Y Z

E
NT

S

Z

A B C D EA B C W X Y Z

A B C
T

LL

ND

R

SH

ZY

A B C W X Y

TS W X Y ZA B C

NTTS

D

DS

L H E

Z

A B C D EA B C W X Y Z

T
A

S

L NM ZR

Figure 2: Above, a burst-trie storing nine strings in five containers: “ball”, “band”, “bar”, “bash”, “by”, “byte”,
“want”, “was”, and “wet”. Below, inserting “bands” led to a burst of the left-most container Its strings are
distributed among the containers of a new access trie node.

starting from the rootnode through the access trie
until a container is reached. At that stage, the prefix
characters of q are matched by the access trie nodes
on the traversal path. Then, the inherent search rou-
tine of the container structure is used to search for
the remaining characters of q. Hence, a container
stores strings that share the same prefix; the prefix
need not be stored, yielding space savings. If a con-
tainer reaches the threshold of c records, a new trie
node is allocated and replaces the container, which is
said to be burst. The contents of the container are
distributed among the empty containers of the new
trie node. A burst trie with c = 4 is illustrated in
Figure 2, before and after a burst triggered by the
insertion of “bands”.

In our earlier work [12] we achieved the best results
with c = 35 and BSTs as containers. A burst trie
is often faster than a compact trie, but has memory
requirements close to that of trees and hash tables.

Hash tables

In previous work, we found that a chained hash ta-
ble using a bit-wise hash function is the most efficient
data structure for the task of accumulating the vocab-

ulary of large text collections, assuming that strings
do not need to be maintained in sort order [12, 23].
In such a hash table, an array is used to index a set
of linked lists of nodes, each of which is said to be
a slot of the hash table. For a search for string q, a
hash value is computed for it, to determine which slot
is to be searched. A feature that influences the per-
formance of our hash tables is the use of a fast string
hashing function based on bit-wise operations [15];
this function is 10 to 30 times faster than the uni-
form string hashing functions in earlier literature.

To further improve the performance of hash ta-
bles we proposed use of a move-to-front policy in the
linked lists [23], bringing the most recently accessed
node in a list to the front. For a skew distribution of
strings keys, commonly-accessed strings accumulate
at the front of the linked lists, and the vast majority
of searches require only one string comparison, even if
there are on average dozens of records stored at each
slot. The size of the hash table can be significantly
reduced without affecting speed, a property that does
not hold for chained hashing without a move-to-front
policy [23]. We note that the bit-wise hash function
was designed for strings drawn from ordinary text col-
lections and not other data, for example fixed-length



substrings of genome data. For such data, the set of
possible strings is fixed and a perfect hash function
can be used.

In contrast to the data structures discussed so
far, strings in a hash table are usually not kept in
sort order. This is potentially disadvantageous for
per-document processing during index construction,
where it is necessary to merge the per-document data
with collection-wide data. With sorting, the access
path is stable and cached, yielding lower access costs.
To make a full comparison between the data struc-
tures, we report results on hash tables with a table
size of 1024, 4096, and 16,384 slots respectively, show-
ing times with and without sorting after accumulation
of per-document data. The sort involves copying ref-
erences to all list nodes into an array and sorting with
a standard quicksort package.

3 Test data and methodology

Several text collections taken from the large Web
track in the TREC project [10] are used in our ex-
periments. The file TREC1 contains the data on the
first TREC CD-ROM; the three files Web S, Web M,
and Web L contain collections of web pages extracted
from the Internet Archive used in the TREC exper-
iments. We also included the file Gen of n-grams
of genome data, which, in contrast to the text data,
shows little skew. The statistics of these collections
are shown in Table 1.

A document in Gen contains a nucleotide string,
typically thousands of nucleotides in length. Parsing
involves extracting n-grams of length 9 and substi-
tuting wildcards with nucleotides, reduces the alpha-
bet size of the collection to four. Parsing the other
collections involves extracting alphanumeric strings
that contain no more than two digits and do not be-
gin with a digit. Case-folding is not applied. XML
and HTML markup, special characters, and punctu-
ation are skipped. The fanout of the trie nodes in the
compact trie and in the burst trie is 76 for the exper-
iments on web data. However, not all of the slots are
used due to our parsing restrictions. For the genome
data, the fanout is 5, since there are four different
nucleotides symbols and the end of string symbol to
accommodate.

In Table 2 we show results for the task of overall
vocabulary accumulation on these data sets, where
for each distinct word its frequency and the num-
ber of documents it occurs in is determined. These
experiments essentially repeat those reported in our
earlier work [11, 12, 20, 23], but consolidate our find-
ings and are on the same hardware as the new results
discussed below. As this table shows, for text data
burst tries use only a little more memory than trees,

while running more than twice as fast, and are faster
and much smaller than than a compact trie. Hash
tables are more efficient, but do not maintain strings
in sort order. Of the tree structures, the fab-tree is
the fastest. In contrast to our earlier experiments, in
which we used case-folding, in these runs case-folding
was not applied during parsing, leading to slightly dif-
ferent relativities in speed. Genomic data is in many
respects a worst case for an adaptive or unbalanced
structure, and thus reveals very different relative be-
haviour. In particular, the compact trie is very effi-
cient, due to the occupancy of the space of the pos-
sible strings—every single possible 9-gram occurs in
our data, so every node is fully utilised.

In all our experiments we report CPU times only,
not elapsed times. We exclude the parsing time, since
it is the same for all structures. Prior to each exper-
imental run the internal buffers of our machine, an
AMD Athlon 1.2 GHz with 512 Mb of main memory,
were flushed to ensure a non-biased test environment.
The results are over single runs; we have observed al-
most no variance between times over multiple runs,
so reporting the average times is not necessary.

The task in each experiment is per-document vo-
cabulary accumulation and involves determining for
each document its unique set of strings and for each
string the frequency. Prior to processing a new doc-
ument, the data structure is traversed, emptied and
freed. In the case of hash tables, the hash table itself
is not freed but reset, that is, the slots are marked as
empty.

To compare the performance of the structure on
larger sets, we made additional runs where every 100
documents the structures are emptied. Hence, we
treat every sequence of 100 documents in our collec-
tions as one logical document.

We allocate space for the strings block-wise and
maintain the blocks with a size of 5 Kb in a linked list,
to reduce the cost of invoking the system call used for
memory allocation. Hence, the freeing of strings be-
tween documents is simplified; only one call is needed
to free each allocated memory block, an improvement
that assists all structures. We noticed that the stan-
dard strcmp function in C is highly inefficient. In
our earlier work, by replacing the standard strcmp
function with our own code we achieved speed gains
of 20% or more in total processing time including all
data structure maintenance and traversal.

4 Experimental results

Table 3 shows results for the string data structures
earlier on the standard text collections. We dis-
cuss the results on the Web and TREC collections
first. Among the tree structures that are variants



Table 1: Statistics of text collections and a collection of genome data.

Web S Web M Web L TREC1 Gen

Size (Mb) 100 2,048 10,240 1,206 300
Distinct words 147,278 1,516,782 4,484,223 627,669 262,144
Word occurrences (×106) 6 131 631 179 283
Documents 18,726 347,075 1,780,983 510,634 447,780
Avg. word occs. per doc 332 377 354 350 631
Avg. distinct words per doc 151 160 153 167 519
Longest doc (word occs.) 31,933 71,781 253,426 384,627 378,977
Shortest doc (word occs.) 16 10 9 1 6
Longest doc (distinct words) 4,858 18,129 18,129 14,881 164,839
Shortest doc (distinct words) 14 8 7 1 1
Parsing time (sec) 1.48 28.05 132.55 36.91 58.94

Table 2: Running time in seconds for each data structure on the data sets, for the task of overall vocabulary
accumulation. In parentheses, memory usage in Mb. One experiment could not be run on our hardware due to
large memory requirements and is marked with “—”.

Web S Web M Web L TREC1 Gen
BST 5.7 (4.5) 162.2 (48.5) 838.7 (145.0) 159.5 (19.9) 1,123.4 (8.5)
Red-black tree 7.0 (5.7) 229.1 (60.1) 1,279.5 (179.2) 246.8 (24.7) 1,066.7 (10.5)
Splay-tree 6.9 (5.1) 222.5 (54.3) 1,159.4 (162.1) 236.6 (22.3) 1,926.5 (9.5)
Splay-tree, intermittent 6.1 (5.1) 188.3 (54.3) 977.7 (162.1) 182.5 (22.3) 1,657.2 (9.5)
Fab-tree 4.9 (5.7) 148.7 (60.1) 769.7 (179.2) 144.4 (24.7) 1,484.5 (10.5)
Compact trie 3.2 (57.1) 89.7 (586.0) — 105.8 (255.0) 338.8 (7.7)
Burst trie 3.1 (5.7) 88.2 (62.8) 477.2 (185.0) 93.2 (25.2) 651.2 (7.3)
Hashing 220 slots, sorted 2.6 (8.0) 59.2 (46.7) 290.8 (131.9) 61.5 (21.5) 246.1 (11.5)

of the BST, the intermittent splay tree outperforms
the other structures. The intermittent splay tree im-
proves on the original splay tree by up to 30%, indi-
cating that splaying on each access is too expensive.
Performing no rotations at all yields a similar per-
formance: a BST is as fast as an intermittent splay
tree, despite the fact that some of the individual doc-
uments present a poor case for the BST. Balancing
a tree on insertion, as is done by the red-black tree,
does not give significant gains compared to a BST.

The fab-tree outperforms the original splay tree,
but is around 6% slower than the intermittent splay
tree or the BST. The overhead of rotations and main-
taining the counters is not an advantage for small sets
of strings, in contrast to the results for large sets of
strings shown above and in our previous work [11].
The strengths of this structure are the ordering of
the nodes by frequency and the adaptivity to changes
in distribution; in a single document, insufficient data
is observed to allow accumulation of good statistics,
and adaptivity gives no advantage.

Compared to the performance on large sets of
strings, the trie is surprisingly inefficient, at more
than 40% slower than a BST on the text collections.

The reasons are the more complex memory manage-
ment and the nature of the trie itself. Even a small
number of strings share common prefixes and require
the introduction of trie levels that are only sparsely
populated. Initialisation of a trie node requires loop-
ing over all slots and, at the end of processing a doc-
ument, it is necessary to check every one of the 76
array slots in each trie node. That makes the traver-
sal of a compact trie more expensive than a traversal
of a tree and greatly influences overall running time.

The burst trie was clearly the best of the tree and
trie structures. Compared to a BST, we observed a
decrease in running time of around 20% on all text
collections. The burst trie does not suffer from the
introduction of a large number of access trie nodes,
in contrast to the compact trie, but provides fast ac-
cesses to strings stored in containers; the BST con-
tainers, each storing at most 35 strings, can be rapidly
emptied or traversed. The gain in performance for
the burst trie is not nearly as great as for large sets
of strings, but is still significant, and shows that on
all scales it is the fastest structure for this task.

The performance of hash tables is highly depen-
dent on table size and on whether at the end of pro-



Table 3: Running time in ms × 10−1 per document for each data structure on the data sets, for the task of
per-document vocabulary accumulation.

Web S Web M Web L TREC1 Gen
BST 1.330 1.528 1.447 1.421 6.116
Red-black tree 1.282 1.578 1.469 1.437 6.372
Splay-tree 1.677 2.022 1.880 1.919 7.996
Splay-tree, intermittent 1.287 1.535 1.437 1.418 6.748
Fab-tree 1.298 1.584 1.504 1.506 8.014
Compact Trie 2.088 2.603 2.480 2.328 4.697
Burst Trie 1.004 1.199 1.163 1.132 6.162
Hashing 1,024 slots 0.748 0.902 0.857 0.914 9.950
Hashing 4,096 slots 0.908 1.044 1.007 1.034 4.768
Hashing 16,384 slots 1.538 1.755 1.737 1.760 4.128
Hashing 1,024 slots, sorted 1.586 1.754 1.695 1.766 15.693
Hashing 4,096 slots, sorted 1.938 2.183 2.107 2.154 10.746
Hashing 16,384 slots, sorted 3.861 4.072 3.977 4.065 11.332

cessing a document the strings should be in sort order.
We showed in earlier work that a move-to-front policy
makes the performance of a hash table more resilient
when table size is too small [23]. However, the re-
sults for hashing small set of strings show that only
the smaller table sizes (1,024 or 4,096 slots) yield run-
ning times that are faster than a burst trie, and this
only under the condition that no sorting of the vo-
cabulary is required. With sorting, running times are
considerably slower than most of the other structures.
Even for applications where sorting is not required,
selecting the right table size is a matter of guesswork.

For collection Gen, where the distribution of n-
grams is not as skew as in web text documents, the
alphabet contains only four characters plus an addi-
tional end-of-string character, and the strings are of
fixed length, the compact trie shows the best per-
formance of the sorted structures. For genomic data
the trie nodes are small and access to strings is fast.
Compared to a BST, the best tree structure on the
genomic data, the running time of a compact trie is
around 24% faster. The burst trie shows similar per-
formance to the BST, while the fab-tree is particu-
larly disappointing. Hashing with the larger table
size of 16,384 slots gave the fastest running time, but
as before sorting the hash table greatly degrades per-
formance.

The results discussed above are potentially sensi-
tive to average document length. To experiment with
the impact of document length we re-ran the exper-
iments after coalescing each sequence of 100 docu-
ments into a single document, thus creating collec-
tions in which the number of documents is reduced
by a factor of 100 but the documents are 100 times as
long. Results are shown in Table 4. There are marked

changes in relative performance. Fab-trees are in this
case the fastest of the tree structures, the burst trie is
now over 30% faster than a BST, while the compact
trie has gotten considerably worse. The average time
per document has increased for all tree and trie struc-
tures, presumably due to the increased depths. The
average time for unsorted hashing has decreased, due
to reduced memory management costs, and is much
faster than the alternatives; however, the larger table
gave better performance than the smaller. Sorting
at end-of-document still degrades performance, but
in this case only the burst trie is faster than hashing
with sorting. On the genomic data, only the compact
trie has outperformed the burst trie.

The relationship between the results in Tables 3
and 4 is illustrated in Table 5, which shows for each
data structure and data set the ratio between the
times in the two tables. These ratios indicate how
average costs change for the different data structures
as the data size increases. For the tree structures, the
averages rise because the trees become deeper; the rise
in cost for the burst trie is markedly less than for the
other structures. For the hash tables, the averages
fall because the costs of post-document traversal of
the table and of memory management are amortised,
while access costs do not change.

5 Conclusions

We have investigated the efficiency of a wide range of
simple data structures for the task of managing small
sets of strings. Our focus has been on text data, which
is typically skew, but we have also reported results for
genomic data, which has very different characteristics:
it is not skew, there is little locality, and the strings



Table 4: Running times in ms×10−1 per original document for each data structure on the data sets, for the task
of per-document vocabulary accumulation, with artificial documents consisting of 100 consecutive documents
each.

Web S Web M Web L TREC1 Gen
BST 1.602 2.099 1.990 1.818 17.161
Red-black tree 1.415 2.607 2.033 1.802 17.893
Splay-tree 1.880 2.584 2.428 2.328 23.371
Splay-tree, intermittent 1.463 2.018 1.937 1.791 21.693
Fab-tree 1.474 2.089 1.942 1.721 22.941
Compact trie 2.318 3.505 3.325 3.163 9.028
Burst trie 0.977 1.377 1.308 1.176 13.424
Hashing 1,024 slots 0.635 1.074 1.020 0.881 75.900
Hashing 4,096 slots 0.603 0.920 0.863 0.767 23.587
Hashing 16,384 slots 0.507 0.891 0.843 0.763 10.147
Hashing 1,024 slots, sorted 0.988 1.815 1.701 1.383 89.549
Hashing 4,096 slots, sorted 0.988 1.635 1.558 1.284 37.084
Hashing 16,384 slots, sorted 1.089 1.700 1.602 1.315 23.618

Table 5: Ratio of the corresponding values given in Table 4 and Table 3 showing the change in average running
time per document. Values greater than one indicate slower average processing time per document.

Web S Web M Web L TREC1 Gen
BST 1.20 1.37 1.38 1.28 2.81
Red-black tree 1.10 1.65 1.38 1.25 2.81
Splay-tree 1.12 1.28 1.29 1.21 2.92
Splay-tree, intermittent 1.14 1.31 1.35 1.26 3.21
Fab-tree 1.14 1.32 1.29 1.14 2.86
Compact trie 1.11 1.35 1.34 1.36 1.92
Burst trie 0.97 1.15 1.12 1.04 2.18
Hashing 1,024 slots 0.85 1.19 1.19 0.96 7.63
Hashing 4,096 slots 0.66 0.88 0.86 0.74 4.95
Hashing 16,384 slots 0.33 0.51 0.49 0.43 2.46
Hashing 1,024 slots, sorted 0.62 1.03 1.00 0.78 5.71
Hashing 4,096 slots, sorted 0.51 0.75 0.74 0.60 3.45
Hashing 16,384 slots, sorted 0.28 0.42 0.40 0.32 2.08

are of fixed length.
Our current work complements our earlier explo-

ration of data structure performance for management
of large sets of strings, in which we identified inad-
equacies in all three of the major approaches. For
hashing, the previous string hash functions were ei-
ther too slow, non-uniform, or could only be used
for a very limited range of table sizes, and table size
must be chosen carefully; we therefore developed new
hashing functions and a chaining strategy that ad-
dressed these issues [15, 23]. For trees, BSTs have
an unacceptable worst case, but adaptive structures
are hampered by the cost of rotations and occasional
excessive search lengths; in our fab-tree, these short-
comings are mitigated [11, 20]. For tries, which are
fast but space-intensive, the memory requirements are

impractical; our burst trie provides greater speed at
a small fraction of the memory cost [12]

The results in this paper are further evidence of
the efficiency of our new data structures. Of the
sorted structures, burst tries are the most efficient.
They require a little more memory than do trees, but
are faster at all scales. Of the trees, fab-trees are
faster for all but the smallest data sets, where they
are still competitive. Across all the structures, hash
tables with move-to-front chaining and efficient hash
functions are the fastest and most compact.

Another result is the poor performance of struc-
tures that have been specifically proposed for such
applications. Splay trees are less efficient than the
more primitive alternative of a simple BST. A com-
pact trie is not useful at any scale: for large sets of



strings it is too space-intensive and for small sets of
strings it is much the slowest structure; only for the
genomic data does the trie show acceptable perfor-
mance. These observations are in contrast to common
wisdom as to the relative merits of such data struc-
tures. In contrast, our new data structures are the
most efficient for many aspects of text processing, for
which they should now be regarded as the preferred
method for managing string data.

Acknowledgements

This work was supported by the Australian Research
Council. We thank Hugh Williams.

References

[1] C. R. Aragon and A. Seidel. Randomized search
trees. Algorithmica, 16:464–497, 1996.

[2] J. Bell and G.K. Gupta. An evaluation of
self-adjusting binary search tree techniques.
Software—Practice and Experience, 23(4):369–
382, 1993.

[3] J. Bentley and R. Sedgewick. Fast algorithms
for sorting and searching strings. In Proc. An-
nual ACM-SIAM Symp. on Discrete Algorithms,
pages 360–369, New Orleans, Louisiana, 1997.
ACM/SIAM.

[4] J. R. Bitner. Heuristics that dynamically orga-
nize data structures. SIAM Jour. of Computing,
8(1):82–110, 1979.

[5] J. Clement, P. Flajolet, and B. Vallee. The
analysis of hybrid trie structures. In Proc. An-
nual ACM-SIAM Symp. on Discrete Algorithms,
pages 531–539, San Francisco, California, 1998.
ACM/SIAM.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT Press,
Massachusetts, 1990.

[7] R. de la Briandais. File searching using variable
length keys. In Proc. Western Joint Computer
Conference, volume 15, Montvale, NJ, USA,
1959. AFIPS Press.

[8] Edward Fredkin. Trie memory. Communications
of the ACM, 3(9):490–499, September 1960.

[9] G. Gonnet. Handbook of Algorithms and Data
structures. Addison-Wesley, Reading, Mas-
sachusetts, 1984.

[10] D. Harman. Overview of the second text retrieval
conference (TREC-2). Information Processing &
Management, 31(3):271–289, 1995.

[11] S. Heinz and J. Zobel. Frequency-adaptive bi-
nary search trees. In submission, 2001.

[12] S. Heinz, J. Zobel, and H. E. Williams. Burst
tries: a fast, efficient data structure for string
keys. In submission, 2001.

[13] D. E. Knuth. The Art of Computer Program-
ming, Volume 3: Sorting and Searching, Second
Edition. Addison-Wesley, Massachusetts, 1973.

[14] D. R. Morrison. Patricia: a practical algorithm
to retrieve information coded in alphanumeric.
Jour. of the ACM, 15(4):514–534, 1968.

[15] M. V. Ramakrishna and J. Zobel. Perfor-
mance in practice of string hashing functions.
In R. Topor and K. Tanaka, editors, Proc. Int.
Conf. on Database Systems for Advanced Appli-
cations, pages 215–223, Melbourne, Australia,
April 1997.

[16] D.D. Sleator and R.E. Tarjan. Self-adjusting bi-
nary search trees. Jour. of the ACM, 32:652–686,
1985.

[17] E. Sussenguth. Use of tree structures for process-
ing files. Communications of the ACM, 6(5):272–
279, 1963.

[18] M.A. Weiss. Data Structures and Algorithm
Analysis in C. Addison-Wesley, New York, 1997.

[19] H. E. Williams and J. Zobel. Searchable words
on the web. In submission, 2001.

[20] H. E. Williams, J. Zobel, and S. Heinz. Splay
trees in practice for large text collections.
Software—Practice and Experience. To appear.

[21] I. H. Witten and T. C. Bell. Source models for
natural language text. Int. Jour. on Man Ma-
chine Studies, 32:545–579, 1990.

[22] I. H. Witten, A. Moffat, and T. C. Bell. Manag-
ing Gigabytes: Compressing and Indexing Doc-
uments and Images. Morgan Kaufmann, San
Francisco, California, second edition, 1999.

[23] J. Zobel, S. Heinz, and H. E. Williams. In-
memory hash tables for accumulating text vo-
cabularies. Information Processing Letters. To
appear.


