
Trends in Retrieval System Performance

Justin Zobel Hugh E. Williams Sam Kimberley
Department of Computer Science, RMIT University

GPO Box 2476V, Melbourne 3001, Australia
{jz, hugh}@cs.rmit.edu.au, sam@mds.rmit.edu.au

Abstract

Computer technology is continually developing, with on-
going rapid improvements in processor speed and and disk
capacity. At the same time, demands on retrieval systems
are increasing, with, in applications such as World-Wide
Web search engines, growth in data volumes outstripping
gains in hardware performance. In this paper we exper-
imentally explore the relationship between hardware and
data volumes using a new framework designed for retrieval
systems. We show that changes in performance depend en-
tirely on the application: in some cases, even with large in-
creases in data volume, the faster hardware allows improve-
ments in response time; but in other cases, performance
degrades far more than either raw hardware statistics or
speed on processor-bound tasks would suggest. Overall, it
appears that seek times rather than processor limitations
are a crucial bottleneck and there is little likelihood of re-
ductions in retrieval system response time without improve-
ments in disk performance.

1 Introduction

The rate of improvement in computer technology is re-
markable. Each year processors are faster, caches larger
and more complex, and the capacity of disks and memory
larger. These developments in hardware have allowed stan-
dard desktop workstations to be used, with little modifica-
tion, for high-performanceapplications such as file systems,
web serving, and—of particular interest to us—retrieval
systems, including database systems and text retrieval en-
gines.

A decade ago, database systems were largely confined to
mainframe computers, and the idea of a text retrieval system
on a personal computer was simply implausible: for exam-
ple, indexing 800 Mb of text required 23 days on a mini-
computer, while resolution of a query on the same machine
required 4 seconds [7], a result so good that it merited pub-
lication. In contrast, a standard desktop machine could now

index a gigabyte in under an hour and resolve a query in
well under a second [14]. These improvements are due to
advances in both algorithms and technology—as we show
below, the hardware alone gives an improvement in query
resolution time of about a factor of 5.

It is well-known that any improvement in hardware is
quickly matched by new software requirements. In 1999,
just as in 1991, approximately $2000 buys a desktop ma-
chine minimally configured for running the latest releases
of popular operating systems and word processors [10].
While such trends have little impact on the performance of
a well-implemented retrieval system, another related trend
is of importance: the explosive growth in the volume of
data available for storage and retrieval. The most conspic-
uous source of this data is the web, but it also arises in
commercial applications such as data warehousing and the
computerisation of paper-based processing, and in scientific
projects such as the Human Genome project, satellite tele-
scopy, and interplanetary missions. Advances in hardware
have yielded substantial performance gains for retrieval sys-
tems. In combination with the growth in stored data, how-
ever, not only is the performance of retrieval systems af-
fected in unpredictable ways, but choices of algorithms can
change.

In this paper we experimentally investigate how retrieval
system performance is affected by changes in hardware and
in data volume. We had expected to observe that the net ef-
fect was approximately neutral—that is, that response times
would not have changed. However, taking a series of basic
Sun SPARC systems from over the last decade we show
that increasing data volumes are, for some applications,
greatly outpacing improvements in hardware performance,
and, even when the data is constant, in some cases im-
provements in hardware performance have made little dif-
ference to response time. In other cases, assuming data
growth roughly equals processor improvements and with
the low improvement in factors such as disk access rates,
there are slight overall gains. We use these experiments to
identify current bottlenecks, that is, the aspects of system
performance where improvements to algorithms are most



required. Our experiments also demonstrate that retrieval
systems need their own benchmarks for hardware.

We first examine trends in hardware performance and
data volumes, then consider in abstract the likely impact
of these trends on text retrieval systems. We then describe
our experimental testbed, and give results for a variety of
kinds of retrieval: in-memory algorithms, queries where
most costs scale linearly with increasing data size, and typ-
ical information retrieval queries, where some significant
costs are independent of data volume.

2 Trends in hardware and data

Hardware performance continues to improve. Proces-
sor speeds are doubling every 18 months or so. The cost
of memory continues to fall: the volume of memory in-
stalled in a typical machine doubles about every two years.
The rise in disk capacity is perhaps the most dramatic of
these improvements, with, for example, the size of a typical
disk in a notebook computer growing by a factor of 100 be-
tween 1992 and 1999—that is, doubling in size every year,
and well exceeding the historial rate of annual increase of
27% [3].

Other improvements in hardware have, however, been
more modest. Disk latency and seek times have only im-
proved slowly, estimated at about 8% a year up to 1994 [3]
and, arguably, more slowly since then: for cheaper drives,
the rapidly increasing density of data storage has forced
manufacturers to slow disks down, lest the rate of data flow
off disk exceed bus capacity. The rate of data flow off disk
can be further increased through RAID arrays and striping,
which however only highlights the delays imposed by la-
tency and seek times. Busses have become faster and wider,
but have not quite kept pace with disk and processor de-
velopments. Likewise, memory access times have dropped,
but not as rapidly as processor speeds have grown: the num-
ber of cycles spent waiting for a byte to return from mem-
ory has gradually increased, motivating the use of large in-
processor caches in even modest machines. Overall,

technology changes unevenly . . . [Over the last
30 years] memory costs decreased by 10,000 as
densities increased more than a million times. For
disks, advances in magnetic storage have reduced
cost per byte by a factor of a million, yet disk
access [speed] has probably changed by less than
a factor of 10. [5]

Quantifying the trends for data volume is not straight-
forward. While CPU speed lends itself to easy analysis,
by for example plotting clock rate against release date, col-
lection size is more problematic. Arguably the best-known
large collection, the documents that comprise the Web, is

growing extremely rapidly [8]. A related collection, Inter-
net news items, is growing more slowly, but the number and
volume of mailing lists (which supplement Internet news
and greatly exceed news in volume) is unknown. The vol-
ume of text data held by newspapers grows only linearly—a
typical newspaper might add 100 Mb a year—but the vol-
ume of image and video data held by news organisations
is dramatically increasing. Current legislation, another ap-
plication of text retrieval, changes little in size from year
to year, but the volume of court records continues to grow
(and in Australia is now stored as digital audio recordings
as well as text transcripts). The data generated by the Hu-
man Genome project has roughly doubled in volume every
12 to 15 months since the early 1990s, and over the next
few years is projected to grow much more rapidly as new
gene sequencing technology becomes available. It is likely
that this growth will continue or accelerate over the next five
years [4].

Data growth is as much due to the appearance of new ap-
plications as to growth in old ones. The World-Wide Web
barely existed five years ago, while data warehouses are an-
other technology that has led to a leap in data volumes; only
the uses of the technology will dictate how rapidly data vol-
umes will continue to grow. Business data collection, for
example through the widespread use of credit and fly-buy
cards, is another new area. Many businesses are in the pro-
cess of introducing computer technology for applications
that were previously paper-based or manual, such as docu-
ment production [12]. In other cases, the increasing avail-
ability of mass storage technology is changing the kinds of
data that is gathered. In stock markets, for example, it was
until recently customary to record only the closing value
of each stock; some markets now record stock values at
intervals of a few minutes, or even at each purchase, and
the number of purchases has greatly increased in the last
decade.

Overall, it is clear that much more data is being held on-
line than was the case a few years ago, and the volumes are
continuing to grow. It would be brave to predict that this
growth will soon cease: that would be tantamount to pre-
dicting that no new applications will appear. After all, it is
not many years since Internet news was a significant pro-
portion of net traffic; today it is insignificant. Quantifying
the growth in data volumes would require averaging over
a selection of collections, an exercise requiring significant
effort and with unclear outcomes. It does appear, however,
that in some applications it is the availability of storage that
is helping drive the volume of data collected. From another
perspective, the volume of data stored cannot exceed stor-
age device capacity; in most applications there is little in-
centive to store data unless it will be readily available.

In this paper we make the approximation that collection
size grows with disk capacity, that is, we take disk capac-

2



ity as an indicator of typical collection size. While this as-
sumption may only hold for only some collections, there are
certainly collections for which this approximation is conser-
vative, and we believe that it provides a reasonable basis for
experimentation.

3 Text retrieval systems

Conventional database systems are used to resolve
queries, expressed in a formal language such as SQL,
against a repository of structured records. An answer might
be a single record, a subset of records or an aggregate across
a subset, or a restructuring or analysis of the whole repos-
itory. Some costs, such as key-based access, are approxi-
mately constant; others are linear in collection size; others,
in particular some kinds of join, are quadratic.

Information or text retrieval systems are used to resolve
informal queries, typically a list of words, by locating the
documents in a text repository that have the highest esti-
mated statistical likelihood of being perceived as relevant
to the query [11, 14]. An answer to such a ranked query
is always a list of documents. Typically the list is of fixed
length, that is, is independent of collection size. In such in-
formation retrieval systems, query evaluation proceeds as
follows [2]. First each of the query terms is found in a
lexicon, requiring approximately one disk access per term.
(Even if the vocabulary is organised as a B-tree, the high
branching factor and system disk caching ensure that all but
the leaves are permanently held in memory.)

For each term, it is then necessary to fetch its inverted
list, an array containing the identifiers of the documents
in which the term occurs and, optionally, information such
as the frequency with which the term occurs in each doc-
ument. List length is roughly linear in collection size.
For efficiency each list should be stored contiguously on
disk, to allow fetching with a single disk access. Under-
lying file structuring with blocks may cause some lists to
be split across cylinders, increasing access costs, but given
that track capacity is currently of the order of a megabyte—
thousands of times greater than a typical list in an efficient
representation—this is not likely to be a significant factor in
practice. Thus the cost of fetching a list is a sublinear factor,
seek time (which increases slowly as collection size grows),
plus a linear factor, transfer time. In modern machines effi-
ciency can be improved by storing lists compressed, which
reduces transfer time and average seek time (more lists fit
into each cylinder) and effectively increases the capacity of
system caches, but increases CPU costs; the net effect on
current machines is roughly neutral, so that storage capac-
ity is increased without impact on overall response time.

The information in the lists is then used to identify the
most likely documents, an operation that requires memory
and time linear in collection size. The top documents are

then fetched, an operation that increases slowly with collec-
tion size due to increases in seek costs. The documents can
also be stored compressed, which in this case—because of
the high efficiency of text compression algorithms—leads
to a net saving in response time.

Thus for ranked queries, the number of seeks is about
constant. As collection size grows longer inverted lists must
be fetched and decoded, a cost that should be roughly bal-
anced by increasing throughput and processing power. For
another mode of retrieval, Boolean querying, the trend costs
are as for ranking, except that the number of answers is pro-
portional to collection size, necessitating more seeks. From
abstract considerations alone, then, the impact on response
time of faster processor and bus and of larger disks and col-
lections is not at all obvious. We explore these relationships
in the experiments described below.

4 Experimental design

To measure performance on hardware over the last
decade we have developed a new testing framework for re-
trieval systems and chosen a series of Sun machines as hard-
ware platforms. Each machine was worth within a few thou-
sand dollars of $30,000 at time of purchase. The machines,
which we call Alpha, Beta, Gamma, Delta, and Epsilon,
were purchased in 1990, 1993, 1995, 1997, and (a better
configured machine) 1999 respectively. Their clock speeds
and model names are shown in Table 1. Other differences
between the machines include, not just bus speed, but bus
design, which has been considerably improved between Al-
pha and Epsilon. Alpha runs the SunOS operating system;
the others run recent versions of Solaris. The capacities of
individual disks that came with these machines are shown
in Table 1. The disk drives are all typical of their era, and
vary in seek and latency times only a little; the newer disks
are less than two times faster than the old. Experiments on
Epsilon used a striped RAID array.

The data we use is drawn from the TREC text retrieval
experiment sponsored by NIST [6]. This data is distributed
as a series of CD-ROMs, and consists of text documents
such as newspaper articles, journal articles, and patent ap-
plications. We have used disks 2 and 4. For each ma-
chine we have extracted from the TREC data a collection
that is exactly one-tenth the size of the typical disk, that is,
55.2 Mb, 176.3 Mb, 375.4 Mb, 437.3 Mb, and 1,757.8 Mb
respectively. The queries are numbers 251 to 300. Each
original TREC query consists of a title of a few words, a
single-sentence description that expands on the title, and a
detailed narrative. From the queries we automatically con-
structed three sets of ranked queries, that is, three sets of
lists of words: title queries that are similar to the kinds of
queries presented to Internet search engines, of around 3
words each;descriptivequeries, of around 12 words each;

3



Table 1. Characteristics of machines used in experiments.
Alpha Beta Gamma Delta Epsilon

Year of purchase 1990 1993 1995 1997 1999
Clock speed (MHz) 40 50 150 168 336
Model SUNW 4/75 SuperSPARC HyperSPARC UltraSPARC UltraSPARC II
Per-disk capacity (Mb) 552 1763 3754 4373 17,578

andfull queries, of around 40 words each.
The retrieval system used is the publicly-available MG

prototype text database system, which incorporates com-
pression for indexes and text [1, 9, 14], developed by staff
at RMIT and the University of Melbourne. MG is designed
to test algorithms for efficient text retrieval in different envi-
ronments. Before running each query set, all system caches
were flushed, so that the times reported below include re-
trieval from disk. MG release 1.21 compiles on all the ma-
chines without modification, and thus provides an excellent
benchmark for cross-system comparison.

As another cross-system benchmark, we used an in-
memory retrieval task: search for strings in a large hash
table. The hash table was first populated with strings, then
the strings were reordered and searched for in the table in
turn. Only the searching component of the task was timed.
Two collections of strings were used: a lexicon of 104,406
distinct words (drawn from 925 Kb of text) and a lexicon
of 764,439 distinct words (drawn from 7234 Kb of text).
This task shows the relative efficiency of the systems when
memory accesses and processor cycles are the main costs,
that is, disk is not involved. By comparison with the re-
sults with MG, the relative cost of having to use disk is
illustrated. We used another experiment to measure disk
throughput, by fetching a 176 Mb file after flushing system
caches, a task whose cost will typically be dominated by
bus and disk reading (but not seeking) parameters.

In all experiments and machines there was ample mem-
ory for the software to run without paging. Memory sizes
are increasing, and more memory means more caching of
inverted lists and answer documents; while larger collec-
tions mean that there is more data to be cached. Exper-
iments that factor the effect of memory, to be realistic,
must consider numbers of users and rates at which sim-
ilar queries or queries with similar answers re-enter the
system—parameters that are guesses at best. However,
given that disk volumes are growing at least as rapidly as
memory volumes, we believe that omitting memory as a
factor does not unnecessarily penalise the newer machines.
We therefore do not consider memory in our experiments.

1MG is available athttp://www.cs.mu.oz.au/mg/

5 Results

We first used the in-memory lexicon searching task on
collections of constant size to compare the systems. Results
are shown in Table 2. Epsilon is about 14 times faster than
Alpha and 3 times faster than Gamma. The difference be-
tween Alpha and Beta, which are of similar CPU speed,
is partly attributable to Beta’s faster bus. Delta is about
7 times faster than Alpha, both in Table 2 and in Table 3
below. Given that Delta’s data set is larger than Alpha’s
by a similar factor—almost exactly 8 times—these two ma-
chines provide an interesting contrast in the experiments de-
scribed below. The disk-testing throughput task shows that
throughput from disk increases only slightly more slowly.
Standard SPEC benchmarks suggest that Epsilon is 23 to
40 times faster than Alpha,2 a marked contrast to all results
we report and strong evidence for the need for a framework
such as ours for measuring retrieval experiments.

Somewhat different trends to our in-memory lexicon
searching task can be observed for tasks that involve disk
seeks. Table 3 shows elapsed and CPU time when each ma-
chine is used to resolve ranked queries against the Alpha
data set and fetch the 50 most highly ranked documents. In
CPU time, Epsilon is for this task around 9 times faster than
Alpha and not quite twice as fast as Gamma. These results
show that the CPU is increasingly idle, with disk costs dom-
inating elapsed time for the newer machines; this idle time
offers an increasingly wide window for the use of CPU for
compression and caching to improve response time, as we
have explored in other work [13].

Similar results are observed in Table 4, but the contrast
with Table 2 is even more marked: there is almost no im-
provement in elapsed time between Gamma and Epsilon,
which is only 5 times faster than Alpha. This result was
perhaps the most surprising one observed:even on the same
data setspeed improvements over the last few years have
been small. However, Epsilon would show somewhat bet-
ter relative performance on a larger data set, in which seek

2We did not determine SPEC benchmarks ourselves, but took them
from a variety of websites including

http://performance.netlib.org/performance/
html/spec.html

http://www.spec.org/osg/
http://www.netspace.net.au/ ∼kmk/spec.html

4



Table 2. Total elapsed time for the “in-memory lexicon searching task”, and the “throughput task”, to fetch a large
file (seconds).

Alpha Beta Gamma Delta Epsilon
Search small lexicon 2.10 0.73 0.41 0.31 0.15
Search large lexicon 18.97 7.61 4.13 2.45 1.40
Fetch file 126.5 67.9 35.3 19.7 12.9

costs would be less significant. (The number of seeks for
the results in Tables 3 and 4 is shown in the first column of
Tables 5 and 7.)

Table 5 shows the costs of a typical use of ranking, where
a query is resolved against a collection and the top 50 an-
swers are returned. As collection size increases the number
of seeks grows very slightly and is not a significant factor in
relative costs. The two major differences across the collec-
tion sizes are that the larger collections have longer inverted
lists to fetch and decode, and, less significantly, more mem-
ory is required to represent document scores during query
evaluation. The other aspects of the task are constant. The
net effect is more or less neutral. Alpha is slower than the
other machines, but otherwise there is no strong trend ex-
cept for a slight decline in CPU time as a proportion of
total cost. For this task, collection growth and hardware
improvements are in balance, but note that the number of
seeks has not grown significantly.

Results for a similar task are shown in Table 6, where
only a single document is fetched for each query. This elim-
inates part of the processing that is constant in costs, so that
costs that scale with collection size are more dominant, as
indeed they will be with each new generation of machines.
In this application, Epsilon is no faster than Beta, Gamma,
and Delta, although it is a more highly configured machine.
In CPU time, Epsilon is slower than all of its predecessors.

(These results incidentally confirm the design decision
in MG to store inverted lists contiguously. Had lists been
broken into small blocks, as is sometimes recommended in
the file systems literature, the fetch cost—which is signif-
icant even with contiguous lists—would have been much
greater.)

Conjunctive Boolean querying presents a quite different
test environment, because most of the costs scale with col-
lection size. Results for Boolean querying are shown in Ta-
ble 7. (No results are given for the full queries because few
documents are answers to conjunctive queries of 30 terms.)
Alpha and Beta are the fastest machines, and Epsilon is the
slowest. Delta has less than three times Beta’s data, has
three times the clock speed, but responds more slowly. In
the presence of scaling data, machines are becoming slower.

For the descriptive queries, there are often no answers in
the smaller collections, allowing query processing to termi-
nate early, in some cases before all query terms are consid-

ered. Part (a) of Table 7 includes these queries, for many
of which the evaluation time is negligible, in particular on
the smaller collections; on the other hand, even when, in the
larger collections, these queries do have answers, they are
not numerous. Part (b) shows results for only the queries
with answers in the Alpha collection, which is a subset
of the others. Considering clock speeds and data volumes
alone, one would expect Epsilon to be two or three times
slower in response time than Alpha. However, it is up to
19 times slower. Interestingly, the bottleneck for this task
is increasing CPU costs—due to the need to decompress
lists and answers—which is the converse of what we had
expected to observe. Epsilon is remarkably slow, requiring
up to 60 times as much CPU time as Alpha.

The Boolean retrieval task is similar to common non-
key queries to conventional database systems, and therefore
such systems too could be expected to become slower as
data volume grows, even with newer hardware.

Some of the results tabulated above are plotted together
in Figure 1. Together they show that the trend costs can
vary considerably depending on the precise mix of use of
disk and CPU; for example, on the Alpha collection, ranked
querying is consistently faster from machine to machine,
whereas Boolean querying is not. Several years of hard-
ware development have had little effect on Boolean re-
sponse time. Ranking is slightly faster with each new gen-
eration of machine and data set, while Boolean querying
is much slower. The graph also shows how well systems
cope with scaling data. The Epsilon collection is around 32
times as large as the Alpha collection. For the ranked task,
response time increases by a factor of only 2.5 when resolv-
ing descriptive queries against the larger collection; for the
Boolean task, the factor is over 80.

5



Table 3. Average per-query elapsed and CPU time for the “static collection ranking task”, to resolve ranked queries
with 50 answers against the Alpha 55.2 Mb data collection (seconds).

Alpha Beta Gamma Delta Epsilon
Title CPU 1.25 0.64 0.25 0.20 0.15
queries Elapsed 3.91 2.44 1.52 1.00 0.84
Descriptive CPU 1.40 0.70 0.27 0.21 0.16
queries Elapsed 4.45 2.41 1.68 1.16 0.94
Full CPU 1.82 0.89 0.34 0.27 0.21
queries Elapsed 5.81 3.51 2.28 1.46 1.16

Table 4. Average per-query elapsed and CPU time for the “static collection Boolean task”, to resolve Boolean queries
against the Alpha 55.2 Mb data collection (seconds).

Alpha Beta Gamma Delta Epsilon
Title CPU 1.93 1.06 0.38 0.34 0.21
queries Elapsed 4.23 2.66 1.47 0.99 0.71
Descriptive CPU 0.25 0.11 0.06 0.04 0.03
queries Elapsed 1.11 0.53 0.28 0.29 0.25

6 Conclusions

We have explored how the performance of a text retrieval
system varies with changing hardware and data volume.
Even with constant-sized data, new hardware does not im-
prove on old as much as hardware specifications would sug-
gest, with for example a 1999 Sun machine no faster than a
1995 machine for Boolean retrieval. With growing data vol-
ume, changes in performance are unpredictable, with small
improvements in some cases and massive declines in others.

In contrast to conclusions that could be drawn from re-
ports of hardware improvements—for example, that com-
pression algorithms are of declining interest because of the
abundance of disk—it is clear that in the context of retrieval
systems the study of algorithms and efficiency remains im-
portant with increasing machine capacity. For retrieval sys-
tems, the number of disk seeks required to resolve a query
is clearly a crucial bottleneck. Doubling clock speed and
doubling data size is not cost neutral, unless the number of
seeks is held constant. The cost of accessing disk must be
a focus in development of new query evaluation algorithms.
Indeed, comparing machines by processor time—even ma-
chines of similar architecture—is not helpful, despite being
common practice (see for example Post [10]).

In addition to growth in data volumes, the numbers of
users are increasing, as more households and businesses
conduct business and recreation online. Internet search en-
gines must not only index more pages, but must service
more users. We have not explored the impact of growth
in user numbers, but it is a further factor to consider in the
light of our results. It is not surprising that the collections

indexed by the Internet search engines are increasingly out-
of-date, or that drastic heuristics must be employed to en-
sure rapid response to queries. We can only conclude that
improvements in hardware will not meet the demands being
made of retrieval systems, and that the emphasis on making
improvements to processors may be misplaced.

Acknowledgements

We thank Michael Fuller and Neil Sharman. This work
was supported by the Australian Research Council.

References

[1] T. Bell, A. Moffat, I. Witten, and J. Zobel. The MG retrieval
system: Compressing for space and speed.Communications
of the ACM, 38(4):41–42, Apr. 1995.

[2] E. Bertino, B. Ooi, R. Sacks-Davis, K.-L. Tan, J. Zobel,
B. Shidlovsky, and B. Catania.Indexing Techniques for Ad-
vanced Database Systems. Kluwer Academic Press, Boston,
Massachusetts, 1997.

[3] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson.
RAID: High-performance, reliable secondary storage.Com-
puting Surveys, 26(2):145–185, 1994.

[4] F. Collins, A. Patrinos, E. Jordan, A. Chakravarti, R. Geste-
land, and L. Walters. New goals for the U.S. human genome
project: 1998–2003.Science, 282(5389):682–689, 1998.

[5] M. Flynn. Computer engineering 30 years after the IBM
model 91.IEEE Computer, 31(4):27–31, 1998.

[6] D. Harman. Overview of the second text retrieval confer-
ence (TREC-2). Information Processing & Management,
31(3):271–289, 1995.

6



Table 5. Average per-query CPU time (seconds), elapsed time (seconds), and number of seeks for the “fifty-answer
dynamic collection ranking task”, to resolve ranked queries with 50 answers against data collections proportional to
machine disk size.

Alpha Beta Gamma Delta Epsilon
Title CPU 1.25 0.78 0.38 0.31 0.42
queries Elapsed 3.91 2.89 2.20 1.48 1.86

Seeks 103.6 109.2 113.0 112.8 124.8
Descriptive CPU 1.40 0.92 0.49 0.42 0.61
queries Elapsed 4.45 3.29 2.58 1.75 2.20

Seeks 114.6 120.6 123.9 124.6 135.8
Full CPU 1.82 1.30 0.83 0.72 1.20
queries Elapsed 5.81 4.50 3.60 2.52 3.42

Seeks 157.9 164.8 167.4 168.6 180.0

Table 6. Average per-query CPU time (seconds), elapsed time (seconds), and number of seeks for the “one-answer
dynamic collection ranking task”, to resolve ranked queries with one answer against data collections proportional to
machine disk size.

Alpha Beta Gamma Delta Epsilon
Title CPU 0.13 0.16 0.13 0.11 0.20
queries Elapsed 0.53 0.44 0.18 0.25 0.38

Seeks 8.5 8.6 8.6 8.7 9.6
Descriptive CPU 0.24 0.29 0.25 0.21 0.40
queries Elapsed 1.06 0.85 0.60 0.51 0.77

Seeks 19.6 19.8 19.9 19.8 20.7
Full CPU 0.59 0.67 0.56 0.71 0.97
queries Elapsed 2.39 2.05 1.74 1.29 1.94

Seeks 62.8 62.9 63.0 63.0 64.0

[7] D. Harman and G. Candela. Retrieving records from a gi-
gabyte of text on a minicomputer using statistical ranking.
Journal of the American Society for Information Science,
41(8):581–589, 1990.

[8] S. Lawrence and C. Giles. Searching the World Wide Web.
Science, 280(5360):98–100, 1998.

[9] A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval. ACM Transactions on Information Systems,
14(4):349–379, Oct. 1996.

[10] G. Post. How often should a firm buy new PCs?Communi-
cations of the ACM, 42(5):17–21, 1999.

[11] G. Salton. Automatic Text Processing: The Transforma-
tion, Analysis, and Retrieval of Information by Computer.
Addison-Wesley, Reading, MA, 1989.

[12] R. Wilkinson, T. Arnold-Moore, M. Fuller, R. Sacks-Davis,
J. Thom, and J. Zobel.Document Computing: Technologies
for Managing Electronic Document Collections. Kluwer
Academic Press, Boston, Massachusetts, 1998.

[13] H. Williams and J. Zobel. Compressing integers for fast file
access.Computer Journal, 42(3):193–201, 1999.

[14] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Mor-
gan Kaufmann, San Francisco, California, second edition,
1999.

7



Table 7. Average per-query number of answers, CPU time (seconds), elapsed time (seconds), and number of seeks for
the “dynamic collection Boolean task”, to resolve Boolean queries against data collections proportional to machine
disk size.

Alpha Beta Gamma Delta Epsilon
Answers 47.8 155.0 424.4 512.1 2009.8

Title CPU 1.25 2.23 2.67 3.10 14.85
queries Elapsed 2.85 5.63 8.40 7.46 22.93

Seeks 59.0 178.9 469.1 563.2 2158.7
Answers 0.3 1.0 8.3 11.9 66.0

Descriptive CPU 0.08 0.08 0.15 0.18 3.73
queries Elapsed 0.60 0.48 0.58 0.56 4.93

Seeks 13.7 15.3 25.0 29.4 101.3
(a) Using all 50 queries

Answers 74.7 242.0 662.3 799.3 3135.4
Title CPU 1.93 3.46 4.51 4.82 22.69
queries Elapsed 4.23 8.63 12.97 11.53 35.07

Seeks 88.4 275.1 727.3 874.1 3359.3
Answers 4.0 11.3 94.8 135.8 640.3

Descriptive CPU 0.25 0.33 1.10 1.44 15.18
queries Elapsed 1.11 1.13 3.50 3.46 21.53

Seeks 19.3 31.0 127.3 173.3 766.8
(b) Using only those queries that have answers in the Alpha collection

1990 1992 1994 1996 1998

Year

0.1

1.0

10.0

R
at

io

CPU speed
Disk capacity
Time on CPU task (large lexicon)
Time on throughput task
Time, constant data (Boolean descriptive)
Time, constant data (Ranked descriptive)
Time, scaled data (Boolean descriptive)
Time, scaled data (Ranked descriptive)

Figure 1. Relative data size, CPU speed, and elapsed times across machines Alpha (1990) to Epsilon. All numbers
are relative to Alpha.

8


