
Self-Indexing Inverted Files for Fast Text Retrieval∗

Alistair Moffat† Justin Zobel‡

February 1994

Abstract

Query processing costs on large text databases are dominated by the need to retrieve

and scan the inverted list of each query term. Here we show that query response time

for conjunctive Boolean queries and for informal ranked queries can be dramatically

reduced, at little cost in terms of storage, by the inclusion of an internal index in

each inverted list. This method has been applied in a retrieval system for a collection

of nearly two million short documents. Our experimental results show that the self-

indexing strategy adds less than 20% to the size of the inverted file, but, for Boolean

queries of 5–10 terms, can reduce processing time to under one fifth of the previous

cost. Similarly, ranked queries of 40–50 terms can be evaluated in as little as 25% of

the previous time, with little or no loss of retrieval effectiveness.

CR Categories: E.4 [Coding and Information Theory]: data compaction and com-

pression; H.3.1 [Information Storage and Retrieval] Content Analysis and Indexing—

indexing methods; H.3.2 [Information Storage and Retrieval] Information Storage—

file organisation; H.3.3 [Information Storage and Retrieval] Information Search and

retrieval—search process;

Keywords: full-text retrieval, information retrieval, index compression, inverted file,

query processing.

1 Introduction

Text databases are widely used as information repositories and can contain vast quantities

of data. Two main mechanisms for retrieving documents from these databases are in general

use: Boolean queries and informal ranked queries. A Boolean query—a set of query terms

connected by the logical operators and, or, and not—can be used to identify the documents

containing a given combination of terms, and is similar to the kind of query used on relational

tables [30]. Ranking, on the other hand, is a process of matching an informal query to the
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documents and allocating scores to documents according to their degree of similarity to the

query [29, 30].

A standard mechanism for supporting Boolean queries is an inverted file [7, 11]. An

inverted file contains, for each term that appears anywhere in the database, a list of the

numbers of the documents containing that term. To process a query, a vocabulary is used

to map each query term to the address of its inverted list; the inverted lists are read from

disk; and the lists are merged, taking the intersection of the sets of document numbers for

and operations, the union for or, and the complement for not. For example, if the inverted

lists for the three terms “index”, “compression”, and “algorithm” are

I“index” = 〈5, 8, 12, 13, 15, 18, 23, 28, 29, 40, 60〉
I“compression” = 〈10, 11, 12, 13, 28, 29, 30, 36, 60, 62, 70〉

I“algorithm” = 〈13, 44, 48, 51, 55, 60, 93〉 ,

then the answers to their conjunction are documents 13 and 60. Note that conjunctive

queries—those in which the terms are connected by and operators—are, in general, much

more useful than disjunctive or queries. This is a natural consequence of the fact that the

database is large: a typical term occurs in thousands of documents, and conjunction means

that the set of answers is smaller than any of the inverted lists for the query terms whereas

disjunction means that documents containing any of the query terms are answers.

Ranking techniques can also be supported by inverted files. When the documents are

stored in a database that is indexed by an inverted file several additional structures must

be used if evaluation is to be fast [3, 18, 31]. These include a weight for each word in the

vocabulary; a weight for each document; and a set of accumulators, usually one for each

document in the collection.

Compared with Boolean query evaluation, the principal costs of ranking are the space

in random access memory, and the time required to process inverted lists. More memory is

required because in a ranked query there are usually many candidates—that is, documents

about which information must be kept because they are potential answers. In a conjunctive

Boolean query, the number of candidates need never be greater than the frequency of the

least common query term; whereas, in a ranked query, every document in which any of the

query terms appears is normally regarded as a candidate, and is allocated an accumulator

in which its score is accrued. More time is required because conjunctive Boolean queries

typically have a small number of terms, perhaps 3–10, whereas ranked queries usually have

far more. In a conjunctive Boolean query the answers lie in the intersection of the inverted

lists, but in a ranked query, they lie in the union, and so adding more terms to a ranked

query broadens the search rather than narrowing it. Adding terms also means that more

disk accesses into the inverted file are required, and more time must be spent merging.

Moreover, the larger number of terms in a ranked query, and the fact that ranked queries

are often English text, means that long inverted lists must be scanned, since it is likely that

at least some of the terms in a ranked query occur in many of the documents.
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The high cost of processing inverted lists is exacerbated if, for space efficiency, the in-

verted lists are stored compressed. Without compression, an inverted file can easily be as

large or larger than the text it indexes. Compression results in a net space reduction of

as much as 80% of the inverted file size [1], but even with fast decompression—decoding

at approximately 400,000 numbers per second on a Sun Sparc 10—it involves a substantial

overhead on processing time.

Here we consider how to reduce these space and time costs, with particular emphasis

on environments in which index compression has been used. We describe a mechanism for

adding a small amount of information into each inverted list so that merging operations can,

in most cases, be performed in time sublinear in the length of the lists being processed. This

self-indexing strategy has been tested on a database containing almost two million “pages”

of text totalling 2 Gb. For typical conjunctive Boolean queries of five to ten terms the query

processing time is reduced by a factor of about five. Furthermore, the overhead in terms

of storage space is small, typically under 25% of the inverted file, or less than 5% of the

complete stored retrieval system.

For ranked queries, we show that by effectively switching from a disjunctive query to a

conjunctive query at some predetermined point in the processing of terms, the number of

candidates can be dramatically cut without adversely affecting retrieval effectiveness. We

then show that self-indexing inverted files allow the time required to process ranked queries

to be reduced by a factor of between two and four.

Section 2 describes the structures used by document databases, and describes the Boolean

and ranked retrieval paradigms examined here. Our test data is described in Section 3.

Section 4 introduces the notion of a self-indexing inverted file, and analyses the performance

improvement produced. Experiments are given that show the efficacy of the method on

Boolean queries. Section 5 discusses methods by which the space required for accumulators

can be restricted, and shows how this restriction can, together with internal indexing in

each inverted list, be used to improve query evaluation time for ranked queries. Conclusions

are presented in Section 6. A table of mathematical symbols is provided at the end of the

paper.

2 Document Databases

In an inverted file document database, each distinct word in the database is held in a

vocabulary [3, 11, 18, 24, 25, 31]. The vocabulary entry for each word contains an address

pointer to an inverted list (also known as a postings list), a contiguous list of the documents

containing the word. Each document is known by a unique identifier , which we assume

to be its ordinal number. To support efficient query processing the vocabulary should also

hold for each term t the value ft, the number of documents that contain t. Knowledge of

the value ft allows inverted lists to be processed in order of increasing frequency, which is

crucial for the algorithms below.
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The inverted list for each word stores a list of the documents d that contain that word, and

this is sufficient to allow evaluation of Boolean queries. To support ranking, the “within-

document frequency” fd,t is also stored with each document number d in each inverted

list [18]. This allows the weight of each word in each document to be computed. In the

absence of compression four bytes and two bytes respectively might be allocated for the d

and fd,t values, that is, six bytes for each 〈d, fd,t〉 pair. Using compression the space required

can be reduced to about one byte per pair [1]. On the 2 Gb TREC collection, described

below, these methods compress the inverted file from 1100 Mb to 184 Mb, an irresistible

saving.

2.1 Compressing inverted files

Techniques for compressing inverted lists, or equivalently bitmaps, have been described by

many authors, including Bell et al . [1], Bookstein, Klein, and Raita [2], Choueka, Fraenkel,

and Klein [4], Fraenkel and Klein [12], Klein, Bookstein, and Deerwester [21], and Linoff and

Stanfill [22]. Faloutsos described the application of similar techniques to the compression of

sparse signatures [8, 9].

Our presentation is based on that of Moffat and Zobel [26], who compare a variety of

index compression methods. To represent each inverted list, the series of differences between

successive numbers is stored as a list of run-lengths or d-gaps . For example, the list

5, 8, 12, 13, 15, 18, 23, 28, 29, 40, 60

of document numbers d can be equally well stored as a list of d-gaps:

5, 3, 4, 1, 2, 3, 5, 5, 1, 11, 20.

One consequence of this representation is that small gaps are common, since frequent words

must of necessity give rise to many small gaps. Hence, a variable-length encoding of the

integers in which small values are stored more succinctly than long values can achieve a

more economical overall representation than the more usual flat binary encoding.

Elias [6] described a family of “universal” codes for the positive integers that are at

most a constant factor inefficient for any non-increasing probability distribution. His γ code

represents integer x as blog2 xc + 1 in unary (that is, blog2 xc 1-bits followed by a 0-bit)

followed by x− 2blog2 xc in binary (that is, x less its most significant bit); the δ code uses γ

to code blog2 xc + 1, followed by the same suffix. Some sample values of codes γ and δ are

shown in Table 1; both codes use short codewords for small integers, and longer codewords

for large numbers. In Table 1, commas have been used to separate the suffixes and prefixes;

these are are indicative only, and are not part of the compressed string. The δ code is longer

than the γ code for most values of x smaller than 15, but thereafter δ is never worse, and for

integer x requires blog2 xc+ O(log log x) bits. The codes are both prefix-free—no codeword

is a prefix of another—and so unambiguous decoding without backtracking is possible.
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Coding method
x Elias, γ Elias, δ Golomb,

b = 3

1 0, 0, 0,0
2 10,0 100,0 0,10
3 10,1 100,1 0,11
4 110,00 101,00 10,0
5 110,01 101,01 10,10
6 110,10 101,10 10,11
7 110,11 101,11 110,0
8 1110,000 11000,000 110,10

Table 1: Examples of Codes

The γ and δ codes are instances of a more general coding paradigm as follows [12, 26].

Let V be a (possibly infinite) vector of positive integers vi, where
∑

vi ≥ N , the number of

documents in the collection. To code integer x ≥ 1 relative to V , find k ≥ 1 such that

k−1∑
j=1

vj < x ≤
k∑

j=1

vj

and code k in some representation followed by the difference

d = x−
k−1∑
j=1

vj − 1

in binary, using either blog2 vkc bits if d < 2dlog2 vke − vk or dlog2 vke bits otherwise. In this

framework the γ code is an encoding relative to the vector (1, 2, 4, 8, 16, . . .), with k coded

in unary.

Consider another example. Suppose that the coding vector is (for some reason) chosen

to be (9, 27, 81, . . .). Then if k is coded in unary, the values 1 through to 7 would have codes

“0,000” through to “0,110”, with 8 and 9 as “0,1110” and “0,1111” respectively, where again

the comma is purely indicative. Similarly, run-lengths of 10 through to 36 would be assigned

codes with a “10” prefix and either a 4-bit or a 5-bit suffix: “0000” for 10 through to “0100”

for 14, then “01010” for 15 through to “11111” for 36.

Golomb [15] and Gallager and Van Voorhis [14] also considered prefix-free encodings of

the integers. They showed that coding relative to the vector

VG = (b, b, b, b, . . .)

for

b =
⌈

log(2 − p)
− log(1− p)

⌉
,

generates an optimal set of prefix-free codes for the geometric distribution with parameter p.

That is, if a term appears in each document independently with probability p, the probability

5



of a d-gap of length x is given by (1 − p)x−1p, and the Golomb code with parameter b is,

in effect, a Huffman code for this infinite distribution. The final column of Table 1 shows

a subset of the Golomb codes generated when b = 3. This is an optimal assignment of

codewords when 0.1809 < p < 0.2451 (approximately).

The effectiveness of compression for an inverted list varies with the choice of coding

vector, and depends upon the extent to which the probability distribution implied by the

vector differs from the “actual” distribution. In practice, term distribution is not random

amongst documents, and so the Golomb code can be improved upon. Details of some

alternative methods and experimental results may be found elsewhere [1, 26]. In most cases

the improvement is relatively small, and in the remainder of this paper we assume that

d-gaps in inverted lists are represented using a Golomb code, with the parameter b chosen

appropriately for each inverted list.

The within-document frequencies fd,t stored in the inverted lists must also be coded;

and Elias’s γ code is a suitable method [1, 26].

2.2 Boolean query evaluation

Suppose that a conjunctive Boolean query is being processed. Each query term is located

in the vocabulary, which might be resident in memory, if space is available, or might be on

disk. In the latter case, one disk access per term is required. The next step is to sort the

terms by increasing frequency, and all subsequent processing is carried out in this order.

The inverted list for the least frequent term is then read into memory. This list establishes

a set of candidates , documents that have not yet been eliminated and might be answers to

the query.

The other terms are then processed. As each inverted list is read, each candidate remain-

ing is checked off against that list. Unless a candidate appears in all lists it cannot be an

answer, and so any candidate absent from any list can be eliminated. The set of candidates

is thus non-increasing. When all inverted lists have been processed, the set of remaining

candidates (if any) are the desired answers. This strategy is summarised in Figure 1.

There are two points to note about this evaluation method. The first point concerns the

selection of the least frequent term at step 2. This is for efficiency. Suppose that term l is

the least frequent, and that it appears in fl documents. Then for a conjunctive query the

set of candidates will never contain more than fl entries and space usage can be minimised.

Processing the remaining terms in increasing frequency order is a heuristic intended to

quickly reduce the number of candidates to zero, at which point no further terms at all

need be considered. A query for which the set of candidates reaches zero is not particularly

informative; nevertheless, a surprising fraction of actual queries have exactly this result.

The second point concerns the process carried out at step 4b. In this step, each of a

relatively small set of candidates is tested for membership in a comparatively long inverted

list. Suppose at first that the inverted list is uncompressed. When |C| ≈ |It|, the most

efficient strategy is a linear merge, taking O(|C|+ |It|) = O(|It|) time. This is, however, the
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1. For each query term t,

(a) Search the vocabulary for t.

(b) Record ft and the address of It, the inverted list for t.

2. Identify the query term t with the smallest ft.

3. Read the corresponding inverted list.
Use it to initialise C, the list of candidates.

4. For each remaining term t,

(a) Read the inverted list, It.

(b) For each d ∈ C,
if d 6∈ It then

C ← C − {d}.
(c) If |C| = 0,

return, since there are no answers.

5. For each d ∈ C,

(a) Look up the address of document d.

(b) Retrieve document d and present it to the user.

Figure 1: Evaluation of conjunctive Boolean queries

exceptional case. More normally, |C| � |It|, and it is far more efficient to perform a sequence

of binary searches taking O(|C| log |It|) time, or even a sequence of fingered exponential and

binary searches [19] taking time O(|C| log(|It|/|C|)). Each inverted list must still be read

from disk, and so the overall time to process term t is O(|It|+ |C| log(|It|/|C|)) = O(|It|) and

the cost of processing the entire query is O(
∑

t |It|); nevertheless, substantial CPU savings

can be achieved.

Binary search is only possible if the document numbers are in sorted order within list It,

and if they can be accessed in an array-like manner. Unfortunately, the use of compression

destroys random access capabilities, since the resulting non-uniform lengths in bits make it

impossible to jump into the middle of a compressed inverted list and decode a document

number. This means that if the inverted file is compressed, not only must a linear merge

be used irrespective of the length of the inverted list, but each inverted list must be fully

decompressed in order to do so. The cost is still O(
∑

t |It|), but the constant factor is large.

At face value, then, the use of compression saves a great deal of space in the inverted file,

but imposes a substantial time penalty during conjunctive query processing. Reducing this

overhead is the problem addressed in this paper.

2.3 The cosine measure

Another important retrieval paradigm is ranking, in which each document is assigned a

numeric score indicating similarity with the query, and then the documents that score the

highest are displayed as answers. The ranking technique we use in this paper is the cosine
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measure [29, 30]. It estimates the relevance of a document to a query via the function

cosine(q, d) =
∑

t wq,t · wd,t√∑
t w2

q,t ·
√∑

t w2
d,t

,

where q is the query, d is the document, and wx,t is the weight (or “importance”) of word t

in document or query x. The expression

Wx =
√∑

t

w2
x,t

is a measure of the total weight or length of document or query x in terms of the weight

and number of words in x. The answers to a ranked query q are the r documents with the

highest Cd = cosine(q, d) values, for some predetermined bound r.

One commonly used function for assigning weights to words in document or query x is

the frequency-modified inverse document frequency, described by

wx,t = fx,t · log(N/ft) ,

where fx,t is the number of occurrences of word t in x, N is the number of documents in

the collection, and ft is the number of documents containing t. This function allots high

weights to rare words, on the assumption that these words are more discriminating than

common words; that is, the presence of a rare word in both document and query is assumed

to be a good indicator of relevance.

The cosine measure is just one method that can be used to perform ranking, and there are

many others—see, for example, Harman [17] or Salton [29] for descriptions of alternatives.

The cosine measure suits our purposes because, if anything, it is one of the more demanding

similarity measures, in that the similarity value assigned to each document depends not just

upon that document, but also upon all of the other documents in the collection.

2.4 Ranked query evaluation

The usual method for determining which of the documents in a collection have a high cosine

measure with respect to a query is to compute cosine from the inverted file structure and

document lengths [3, 17, 18, 24]. In this method, an accumulator variable Ad is created

for each document d containing any of the words in the query, in which the result of the

expression
∑

t wq,t · wd,t is accrued as inverted lists are processed. A simple form of this

query evaluation algorithm is shown in Figure 2. Note that the partial ordering required by

step 4 can be performed efficiently using a priority queue data structure such as a heap [5],

and there is no need for the set of Cd values to be completely ordered.

The evaluation technique in Figure 2 supposes that the document lengths—the values

Wd—have been precalculated. They are query invariant, and so for efficiency should be

computed at database creation time. The effect of applying them is to reorder the ranking,

sometimes significantly. Moreover, there are usually many documents for which Ad > 0 at
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1. For each document d in the collection, set accumulator Ad to zero.

2. For each term t in the query,

(a) Retrieve It, the inverted list for t.

(b) For each 〈document number d, word frequency fd,t〉 pair in It, set
Ad ← Ad + wq,t · wd,t.

3. For each document d, calculate Cd ← Ad/Wd, where Wd is the length of
document d and Cd the final value of cosine(q, d).

4. Identify the r highest values of Cd, where r is the number of records to be
presented to the user.

5. For each document d so selected,

(a) Look up the address of document d.

(b) Retrieve document d and present it to the user.

Figure 2: Algorithm for computing cosine and returning r answers

the completion of step 2, since any documents listed in any of the inverted lists have this

property. This means that the number of accesses to the document lengths is usually many

times greater than the number of answers; and if the document lengths are stored on disk,

these accesses could become the dominant cost of answering queries.

One technique that has been suggested for avoiding this bottleneck is to store, in the

inverted lists, not the raw fd,t values described above, but instead scaled values fd,t/Wd [3,

24]. Such scaling is, however, incompatible with index compression: it does reduce memory

requirements, but this reduction comes at the cost of a substantial growth in the size of the

inverted file.

A better method is to use low-precision approximations to the document weights, which

can reduce each document length to around six bits without significantly affecting retrieval

effectiveness or retrieval time [27]. Furthermore, in a multi-user environment the cost of

storing the weights can be amortised over all active processes, since the weights are static

and can be stored in shared memory.

Use of these techniques leaves the accumulators Ad as the dominant demand on main

memory. They cannot be moved to disk, since they are built up in a random-access man-

ner; they cannot conveniently be compacted into fewer bits, because of the processor time

required by the necessary transformations and the large number of times the transformation

must be carried out; and they cannot be shared, since they are query specific. We shall

return to this problem—how best to represent the accumulators—in Section 5 below.

3 Test Data

The database used for the experiments reported in this paper is TREC, a large collection of

articles on finance, science, and technology that were selected as test data for an ongoing

international experiment on information retrieval techniques for large text collections [16].
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These articles vary in length from around a hundred bytes to over two megabytes; as part

of other current research, we have broken the longer documents into pages of around 1,000

bytes, to ensure that retrieved text is always of a size that can be digested by the user.

It is the problems encountered with the large number of resulting records that prompted

the research in this paper. In the paged form of TREC there are 1,743,848 records totalling

2054.5 Mb; an average of 191.4 words per record; and 538,244 distinct words, after folding all

letters to lowercase and removal of variant endings using Lovin’s stemming algorithm [23].

The index comprises 195,935,531 stored 〈d, fd,t〉 pairs.

3.1 Boolean queries

To measure the time taken by Boolean operations, a set of 25 lists of terms was constructed,

each list containing 50 words. To construct each list, a page of the collection was selected at

random. The words of the page were then case-folded and duplicates were removed, as were

a set of 601 frequently occurring stopwords—that is, words such as “also” and “because”,

which can in most contexts be ignored because they have low information content. The

remaining list of words was then counted, and lists containing fewer than 50 terms were

replaced.

embattled systems vendor prime computer natick mass purchase debts wholly
owned subsidiary cad cam vision bedford principal amount debentures 110
million presently convertible 333 33 bonds officials made time open market
represents attractive investment current prices fending hostile takeover bid mai
basic tustin calif week lost battle district court boston

expanded memory equipment suppose computer 640k ram runs finish building
worksheet solve problem install board lets work data fit dos limit ideal solution
boards expensive intel corp 800 538 3373 oreg 503 629 7369 2 megabytes costs 1
445 configured software buy 3 releases 01 growing number programs release os

Figure 3: Sample Boolean queries

This mechanism generated queries with at least one guaranteed answer each—namely,

the document from which the text was selected—and ensured that query processing could

not terminate before all terms in any particular list had been inspected. Figure 3 shows the

50 words comprising the first two lists, in the order in which they appeared in the text. We

wanted 50-term lists, not because we believe that 50-term queries are typical, but because

any subset of these lists would have at least one answer; that is, they allowed us to test

performance on queries with any number of terms from 1 to 50. For example, the 4-term

queries corresponding to Figure 3 were “embattled and systems and vendor and prime”,

and “expanded and memory and equipment and suppose”.

Table 2 shows the number of answers and the number of inverted file pointers considered

during the processing of the queries, for some of the query sizes used in the experiments.

Queries of perhaps 3–10 terms are the norm for general purpose retrieval systems. Note
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that we regarded an answer to be a document rather than a page of the document and

that any particular document might have more than one matching page; this is the reason,

for example, why the 72,000 pointers considered in the single term queries resulted in only

51,000 answers.

Number of Average Average
terms answers

∑
t |It|

1 51,450 72,323
2 4,780 168,257
4 58.7 293,256
8 1.16 510,361
16 1.00 942,837
32 1.00 1,857,513

Table 2: Processing of sample Boolean queries

On average each term used in these queries appeared in about 60,000 pages of the collec-

tion. Thus, by the time four terms of any query have been considered, on average |C| ≈ 60

and |It| ≈ 60,000 at each execution of step 4b in Figure 1. These typical values will be used

in the time estimates made in Section 4 below.

3.2 Ranked queries

Ranking techniques are tested by applying them to standard databases and query sets, in

which the queries have been manually compared to the documents to determine relevance.

The TREC data is suitable for experiments with ranking both because of its size and because

test queries and relevance judgements are available. The test queries are 50 “topics”, or

statements of interest. For each of these topics, some thousands of likely documents have

been manually inspected to yield relevance judgements. A sample topic is shown in Figure 4.

Retrieval effectiveness, or measurement of ranking performance, is usually based on recall

(the proportion of relevant documents that have been retrieved) and precision (the propor-

tion of retrieved documents that are relevant) [30]. For example, if for some query there are

known to be 76 relevant documents, and some query evaluation mechanism has retrieved

100 documents of which 26 are relevant, the precision is 26/100 = 26% and the recall is

26/76 = 34%. In this paper we have calculated retrieval effectiveness as an eleven point

average, in which the precision is averaged at 0%, 10%, . . . , 100% recall; because of the size

of the TREC collection, the recall-precision is based upon the top 200 retrieved documents

rather than on a total ranking. This was the methodology employed during the initial TREC

experiment [16], and we have chosen to continue with this convention.

From each of the TREC topics we extracted two sets of query terms. To create the first

set we removed all non-alphabetic characters, and case-folded and stemmed the resulting

words. This gave a set of 50 queries containing, on average, 124.2 terms, 64.6 distinct terms,
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Domain: International Economics

Topic: Rail Strikes

Description: Document will predict or anticipate a rail strike or report an
ongoing rail strike.

Narrative: A relevant document will either report an impending rail strike,
describing the conditions which may lead to a strike, or will provide an
update on an ongoing strike. To be relevant, the document will identify
the location of the strike or potential strike. For an impending strike, the
document will report the status of negotiations, contract talks, etc. to
enable an assessment of the probability of a strike. For an ongoing strike,
the document will report the length of the strike to the current date and
the status of negotiations or mediation.

Concept(s):
1. rail strike, picket, stoppage, lockout, walkout, wildcat
2. rail union, negotiator, railroad, federal conciliator, brotherhood
3. union proposal, talks, settlement, featherbedding, cost cutting
4. working without a contract, expired contract, cooling off period

Figure 4: Sample test topic

and involving, on average, 21,600,000 of the 〈d, fd,t〉 pointer pairs, or 330,000 pairs per term

per query.

The second set of query terms was constructed from the first by eliminating stopwords.

This query set had, on average, 42.4 distinct terms per query; 3,221,000 pointer pairs pro-

cessed per query; and 76,000 pairs per term per query. The “stopped” query generated from

the topic shown in Figure 4 is shown in Figure 5. The superscripts indicate multiplicity;

because the queries are small documents in themselves, we allowed multiple appearances of

terms to influence the weighting given to that term.

document5 predict1 anticipate1 rail5 strike12 report4 ongoing3 relevant2

impending2 describing1 conditions1 lead1 provide1 update1 identify1 location1

potential1 status2 negotiations2 contract3 talks2 enable1 assessment1

probability1 length1 current1 date1 mediation1 picket1 stoppage1 lockout1

walkout1 wildcat1 union2 negotiator1 railroad1 federal1 conciliator1

brotherhood1 proposal1 settlement1 featherbedding1 cost1 cutting1 working1

expired1 cooling1 period1

Figure 5: Sample ranked query

As is demonstrated below, the two query sets yield similar retrieval performance, and

for the bulk of the results presented here we chose to use the second query set, because a

stoplist would normally be applied to queries in production systems to minimise processing

costs.

However we also experimented with the unstopped queries. There were two reasons for

this. First, we have been interested in mechanisms for a smooth transition from words that

are included to words that are excluded, rather than the abrupt transition given by stopping.

For example, each of the words “american”, “computer”, “journal”, and “washington” occur
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in over 100,000 TREC pages; they could be stopped on the basis of frequency, but do provide

a little discrimination and may be the key to effective retrieval for some queries. Second,

using the unstopped queries to some extent mimics the performance of a database an order

of magnitude larger in which stopwords are applied—the most frequent unstopped term in

a twenty gigabyte collection would have about the same frequency as words such as “the”

in the two gigabyte TREC collection. That is, we seek to demonstrate that our techniques

are scalable.

For this reason we did not apply a stoplist while constructing the index; the sizes reported

below are for an index that records every word and every number. The decision as to whether

or not a stoplist is applied is made at query time, and in general should not be preempted

by decisions made when the index is created.

4 Fast Inverted File Processing

Let us now consider the cost of evaluating conjunctive Boolean queries. The strategy de-

scribed in Figure 1 is potentially slow because the inverted list of every query term is

completely decoded.

Suppose that k = |C| candidates are to be checked against an inverted list containing p

pairs 〈d, fd,t〉. Suppose further that it costs td seconds to decode one pair. Then, because

of the cost of the compression and because random access binary searching is not possible,

the total decoding cost Td in processing this one inverted list is approximated by

Td = td p,

assuming, pessimistically, that the pairs are randomly distributed in the list and that one

pair occurs close to the end. The whole list must be decoded to access this last pair because,

as described in Section 2, it is not possible to randomly access points in a compressed inverted

list. That is, the first bit of the compressed list is, conventionally, the only point at which

decoding can commence.

However, while every inverted list must be processed, not every 〈d, fd,t〉 pair is required—

in a conjunctive query all that is necessary is for each candidate to be checked for membership

in the current inverted list. This observation allows processing time to be reduced in the

following manner.

4.1 Skipping

When k � p, faster performance is possible if synchronisation points—additional locations

at which decoding can commence—are introduced into the compressed inverted list. For

example, suppose that p1 synchronisation points are allowed. Then the index into the

inverted list contains p1 “document number, bit address” pairs, and can itself be stored

as a compressed sequence of “difference in document number, difference in bit address”
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runlengths. If these compressed values are interleaved with the runlengths of the list as a

sequence of skips , a single self-indexing inverted list is created.

For example, consider the set of 〈d, fd,t〉 pairs

〈5, 1〉〈8, 1〉〈12, 2〉〈13, 3〉〈15, 1〉〈18, 1〉〈23, 2〉〈28, 1〉〈29, 1〉 . . . .

Stored as d-gaps, these are represented as

〈5, 1〉〈3, 1〉〈4, 2〉〈1, 3〉〈2, 1〉〈3, 1〉〈5, 2〉〈5, 1〉〈1, 1〉 . . . .

With skips over (say) every three pointers, the inverted list becomes a sequence of blocks of

three pairs each, with skips separating the blocks. The example list corresponds to

〈〈5, a2〉〉〈5, 1〉〈3, 1〉〈4, 2〉〈〈13, a3〉〉〈1, 3〉〈2, 1〉〈3, 1〉〈〈23, a4〉〉〈5, 2〉〈5, 1〉〈1, 1〉〈〈40, a5〉〉 . . . ,

where a2 is the address of the first bit of the second skip pair, a3 is the address of the first

bit of the third skip, and so on. This format still contains redundancy, in that both the list

of document numbers in the skips and the list of bit addresses can be coded as differences,

and the first document number in each set of three 〈d, fd,t〉 values is now unnecessary.

Incorporating these changes, the final inverted list becomes

〈〈5, a2〉〉〈1〉〈3, 1〉〈4, 2〉〈〈8, a3 − a2〉〉〈3〉〈2, 1〉〈3, 1〉〈〈10, a4 − a3〉〉〈2〉〈5, 1〉〈1, 1〉〈〈17, a5 − a4〉〉 . . . .

To access the compressed list to see if document d appears, the first skip is decoded to obtain

the address a2 of the second skip, which is also decoded. If the document numbers d1 and

d2 implied by these skips are such that d1 ≤ d < d2, then if d appears it is in this first block,

and only that block need be decoded. If d2 ≤ d, the second skip is traced to locate the

third, and enough information is on hand to decide whether d lies in the second block. In

this case the first block need never be decoded, and some processing time has been saved,

at the expense of increasing the size of inverted list.

Section 2 describes several methods by which the two values coded into each skip can

be represented. The Golomb code is particularly well suited for coding the skips, as all of

the blocks in the compressed inverted list are roughly the same length. In the results given

below, a Golomb code is used for both the inverted lists and the two components of the

skips inserted into each.

4.2 Analysis

The benefits of skipping are estimated as follows. If there are k = |C| document numbers

to be checked against an inverted list of p = ft = |It| pointers, then on average half of

each of k blocks will need to be decoded, one half-block for each candidate document d.

It is also likely that almost all of the skips will need to be decoded, since they themselves

constitute a file of variable length compressed records, a miniature of the original problem.

Allowing two units of decoding time for each skip processed (each of the two values stored
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in a skip occupies about the same number of bits as a 〈d, fd,t〉 pair), and using the notation

introduced above,

Td = td

(
2p1 +

kp

2p1

)
.

This is minimised when

p1 =
√

kp

2
,

resulting in

Td = 2td
√

kp = O
(√

|C| · |It|
)

.

Taking sample values of k = 60, p = 60,000, and td = 2.5× 10−6 seconds (the last being the

measured rate of decoding on a Sun Sparc 10 Model 512), the use of indexing is estimated

to reduce the decoding and searching time from 0.150 seconds without any skipping to

0.009 seconds with skipping.

The saving in processing time does not, however, come without cost. In the same exam-

ple, p/p1 ≈ 63, and so the inverted list grows by roughly two pointers for every 63 pairs, a

3% overhead. (If anything, this accounting is pessimistic, since one of the pointers is par-

tially compensated for by the document number that is saved in the block; it is, however,

a convenient approximation.) Before claiming the usefulness of the technique, we should

confirm that the cost of reading this extra data into memory does not outweigh the CPU

saving. Let tr denote the cost of reading one 〈d, fd,t〉 pair into memory as part of a bulk

read. Then the total elapsed time T required to search one inverted list is given by

T = td

(
2p1 +

kp

2p1

)
+ tr (p + 2p1) ,

which is minimised at

p1 =

√
kp/(1 + tr/td)

2
.

Assuming that tr = 0.5 × 10−6 seconds, which at one byte per pointer corresponds to a

transfer rate of about 2 Mb per second, and including the cost of reading the inverted list

into memory, the time taken to process the 60 candidates can be reduced from 0.180 seconds

to approximately 0.040 seconds.

The time to process a self-indexing compressed inverted list also compares well with the

time required to perform the same operations on an uncompressed inverted list. In this case

Td is effectively zero, since the inverted list can be binary searched very quickly for document

numbers. However, at six bytes per pointer pair (four for the document number d, and two

for fd,t, the within-document frequency), tr = 3 × 10−6 seconds, so that just reading an

inverted list with p = 60,000 entries requires Tr = 0.180 seconds. This can be reduced to

0.120 seconds if the within-document frequencies fd,t are dispensed with and only Boolean

queries supported, but even so is greater than the time calculated above. Inserting skips and

compressing inverted lists allows both disk space and query processing time to be reduced.

All of these times are exclusive of the cost of searching the lexicon for the term, and

of seeking in the inverted file to the location of the desired inverted list. At typical CPU
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and disk speeds these operations might add a further 0.020 seconds for each term in the

query. Here again compression serves to improve performance: the compressed inverted file

is about one sixth the size of an uncompressed equivalent, and so average seek times are

less.

Scaling these calculations to the average situation encountered in the Boolean TREC

queries, a query of 10 terms might be expected to require 0.6 seconds to identify a list of an-

swer documents using a skipped inverted file. On the other hand, an unskipped compressed

index might take as long as 2 seconds; and an uncompressed index would take a similar

length of time.

For comparison, it is also interesting to estimate the performance of another indexing

method advocated for conjunctive Boolean queries—the bitsliced signature file [10, 28]. In

this case at least 10 bitslices of 212 Kb each (one slice per query term, each of one bit per

document in the collection) must be fetched and conjoined. Transfer time alone accounts

for more than a second. The comparison becomes even more decisive on queries involving

fewer terms. The inverted file index becomes faster, because fewer terms and lists must

be fetched. But with a signature file index some minimal number of bitslices must always

be processed to reduce false match rates to an acceptable level, usually in the range 6–12.

Moreover, a signature file index is typically several times larger than a compressed inverted

file, even after the insertion of skips.

Multi-level signature file organisations reduce processing time by forming “super” sig-

natures for blocks of records, so that record signatures for a block are investigated only if

all query terms appear somewhere in the block [20, 28]. While they reduce the amount of

data transferred from disk during query evaluation, these methods do not reduce the size

of the index. Nor do they address the other drawbacks of signature files: the need to check

for false matches; the difficulties presented by long records that set a high proportion of the

bits in their signatures; and the lack of support for ranked queries.

4.3 Additional levels of skipping

Given that the insertion of skips reduces query processing time by up to 60–80%, an obvious

extension is to allow indexing into the list of skips—that is, to apply the same solution

recursively.

Consider a second level of skipping, where p2 synchronisation points are provided into

the list of p1 records. Making the same assumptions as above,

Td = td

(
2p2 +

kp1

p2
+

kp

2p1

)
,

which is minimised when

p2 = (1/2)k2/3p1/3

p1 = (1/2)k1/3p2/3
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yielding

Td = 3td k2/3p1/3,

which, when k = 60 and p = 60, 000, is 0.004 seconds, a further saving of 0.005 seconds. In

this case the index contains p + 2p1 + 2p2 pointers, which is a 25% overhead on the Tr time,

and makes the total time T = 0.037 seconds, a slight additional gain.

In the limit, with h levels of skipping and p1, p2, . . . , ph synchronisation points,

Td = td

(
2ph +

h−1∑
i=1

kpi

pi+1
+

kp

2p1

)

which is minimised by

pi = (1/2)ki/(h+1)p(h−i+1)/(h+1)

with minimal value

Td = td(h + 1)kh/(h+1)p1/(h+1).

This latter expression, when considered as a function of h, is itself minimised when

h =
(
loge

p

k

)
− 1.

Using this “minimal CPU” set of values, the total processing time is

T = td(h + 1)kh/(h+1)p1/(h+1) + tr

(
p + 2

h∑
i=1

pi

)
.

For the same example values of p and k, the CPU cost is minimised when h = 6 and there

are six levels of skips; the nominal CPU time decreases to Td = 0.003 seconds, but the total

number of skips at all levels is over 17,000, an overhead of nearly 60% on the inverted list.

The increase in reading time absorbs all of the CPU gain, and with h = 6 the total cost

climbs back up to 0.051 seconds.

Table 3 shows calculated costs of various levels of skipping using this model. The first

row shows the cost if neither compression nor skipping are employed.

h p + 2
∑h

i=1 pi Td Tr T

— 60,000 ≈ 0 0.180 0.180
0 60,000 0.150 0.030 0.180
1 61,898 0.009 0.031 0.040
2 66,600 0.004 0.033 0.037
3 72,906 0.003 0.036 0.039
4 80,046 0.003 0.040 0.043
5 87,662 0.003 0.044 0.047
6 95,560 0.003 0.048 0.051

Table 3: Predicted processing time in seconds, p = 60,000 and k = 60

Other overheads associated with multi-level skipped indexes mean that there is little

likelihood of improvement beyond that obtained with one level of skipping.
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4.4 Implementation

Since the exact value of k = |C| that will be used while processing any given inverted list

depends the terms in the query and is highly variable, it is appropriate to make a simple

approximation. With this in mind, several different inverted files were built with skips

inserted into each list assuming that k had some fixed value for all of the terms in the query.

Let L be the value of k for which the index is constructed. The assumed values of L, and

the resultant size of each index, are shown in Table 4. In all cases the d-gaps were coded

using a Golomb code; the fd,t values with a γ code; and both components of the skips with

a Golomb code, as described in Section 2. To ensure that inverted files did not become too

large, we imposed a minimum blocksize, requiring that that every skip span at least four

document numbers.

Parameter Size
Mb %

No skipping 184.36 100
L = 1 186.14 101
L = 10 188.95 102
L = 100 194.74 106
L = 1,000 205.38 111
L = 10,000 220.33 120
L = 100,000 230.21 125

Table 4: Size of skipped inverted files

Small values of k are likely to occur for terms processed late in a Boolean query, and so

the L = 1 inverted file should yield the best performance on queries with many terms. On

the other hand, short queries will have high values of k, and so the L = 10,000 index should

perform well for queries of just a few terms. There is, of course, no gain from skipping if

the query consists of a single term.

The most expensive regime—the use of variable skips of as little as four pointers with

L = 100,000—increases the inverted file size by about 25%. However, the original inverted

file without skipping is compressed to less than 10% of the actual text being indexed, and

in this context the space cost of skipping is still small.

4.5 Performance on Boolean queries

The time taken to process the sample Boolean queries, for unskipped indexes and skipped

indexes constructed with L equal to 1, 100, and 10,000, is shown in Figure 6. Each point

is the average of five runs on an otherwise idle Sun Sparc 10 Model 512 using local disks,

and is the CPU time taken from when the query is issued until the list of answer document

numbers is finalised. It does not include the time taken to retrieve and display answers. The

different curves show the time spent decoding inverted lists, for each of the skipped inverted
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files and for an unskipped index. For a 5-term query, for example, the L = 1,000 skipped

index requires the least processor time, at about 20% of the cost of the unskipped inverted

file. As expected, when more terms are added to the queries the smaller values of L become

more economical overall, and for 20-term queries the L = 1 index requires less than 10% of

the CPU effort of the original index.
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Figure 6: CPU time required to process Boolean queries

The elapsed time taken for queries shows the same trend, but with a common overhead.

Table 5 lists, for the same experiments, elapsed time from moment of query issue until a list

of answer documents has been calculated. Note the somewhat smaller savings, caused by

the fact that, irrespective of the skipping regime being used, all of every inverted list must

still be read into memory. Even so, for a wide range of query lengths skipping allows answers

to be located 4 to 6 times faster than if there is no skipping. Any value 100 ≤ L ≤ 10, 000

is appropriate for typical queries.

Number Unskipped Skipped
of terms L = 10,000 L = 100 L = 1

2 1.48 1.33 1.37 1.46
4 1.22 0.42 0.42 0.61
8 2.03 0.50 0.25 0.28
16 3.77 0.82 0.29 0.23
32 7.33 1.54 0.46 0.31

Table 5: Elapsed time required to process Boolean queries (seconds)

As can be seen from Figure 6, single-term queries are expensive because of computations

that must be done on a “per answer” basis, and which dominate the cost of inverted list
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processing when the number of answers is large. The most expensive of these operations in

our paged database is resolving a list of paragraph numbers into a list of unique document

numbers. For example, in the non-paged version of TREC just 0.2 seconds is required

to determine the list of 47,052 answer documents that contain the term “expanded”; but

4.7 seconds is required for the same query in the corresponding paged TREC. The difference

is the cost of resolving 60,610 page numbers into the same final list of 47,052 document

numbers. Queries with only a small number of answers are, of course, spared this cost, and

this is why the curves in Figure 6 initially decrease.

Another way to include skipping in an index is to vary the L parameter for each inverted

list, rather than use the same value for the entire inverted file. Because the terms in any

query are processed in increasing ft order, there might be some advantage to supposing that

the number of candidates is large when ft is small, and small when ft is large. There would,

however, still be guesswork in attempting to predict a best value of L for each inverted list.

Furthermore, Figure 6 and Table 5 show that, within a broad range of query sizes, the time

taken is relatively insensitive to the exact value of L used.

4.6 General Boolean queries

Conjunctive Boolean queries are by no means the only type of query supported by retrieval

systems. More generally, queries can be formed as a conjunction of disjunctions such as

(“data” or “text” or “index”) and

(“compression” or “compaction”) and

(“strategy” or “algorithm” or “process” or “method”).

Skipping can also be used to speed these queries. The inverted lists for all of the terms

in each disjunction must be simultaneously skipped through, and the candidate allowed to

remain if it appears in any of them. The initial set of candidates should be formed by fully

resolving one of the disjunctions; again, the one likely to result in the smallest result should

be chosen. One rule for doing this is to suppose that there is no overlap between the terms

in any disjunction, and so choose the disjunction containing the smallest total number of

term appearances. As subsequent conjuncts are considered, each term in the conjunct is

processed with the same value of k, and so savings similar to those demonstrated above can

be expected.

5 Ranked Queries

Ranked queries are more like disjunctive Boolean queries than conjunctive queries, in that

any document containing any of the terms is considered as a candidate. Nevertheless, it

is possible to exploit skipping to reduce the time taken by ranked queries. The crucial

observation is that it is possible to change from disjunctive to conjunctive mode for frequent

terms without impacting retrieval effectiveness. This change, the time savings that result,
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and the effect the change has on memory requirements of ranked query evaluation, are

considered in this section.

5.1 Reduced-memory ranking

Consider again the ranking process outlined in Figure 2. The dominant demand on memory

space is the set of accumulators A in which the cosine contributions are built up. They could

be stored in an array that has one element for each document in the database, and this is the

usual method described in the information retrieval literature [3, 17, 18]. Alternatively, if

the number of non-zero accumulators is small compared to the number of documents stored,

a dynamic data structure such as a balanced search tree or a hash table can be employed

to store the set of accumulators [5]. In this case the document identifier for each non-zero

accumulator must also be stored, so that the set can be searched, together with pointers

or other structural information. In total, as many as sixteen to twenty bytes of memory

might be consumed for each non-zero accumulator, compared with four if an array is used.

Nevertheless, provided that at most 20–25% of the documents have Ad > 0 there is a net

saving in space compared to storage in an array. For the TREC queries about 75% of the

documents have non-zero accumulators (even after the removal of stop words), and so this

change is not sensible. This means that memory space during query evaluation can be a

significant problem; for example, using an array the paged TREC consumes over 7 Mb of

random-access memory for accumulators. What is needed is some heuristic for limiting the

number of non-zero accumulators so that a dynamic accumulator structure can be employed.

One simple strategy for restricting the number of accumulators is to order query terms by

decreasing weight, and only process terms until some designated stopping condition is met.

Figure 7 shows a modified ranking process in which no more terms are processed after the

number of non-zero accumulators exceeds an a priori bound K. We designate this strategy

as quit . Other possible stopping conditions that could be used at step 3c of this algorithm

would be to place a limit on the number of terms considered or on the total number of

pointers decoded; or to place an upper bound on the term frequency ft, and only process

terms that appear in fewer than x% of the documents, for some predetermined value x.

Quitting has the advantage of providing a short-circuit to the processing of inverted

lists and hence faster ranking, but at the possible expense of poor retrieval performance,

depending upon how discriminating the low weighted terms are.

An alternative to the quit strategy is to continue processing inverted lists after the bound

on the number of accumulators is reached, but allow no new documents into the accumulator

set. This continue algorithm is illustrated in Figure 8. Both quit and continue generate the

same set of approximately K candidate documents, but in a different permutation, so when

the top r documents are extracted from this set and returned, different retrieval effectiveness

can be expected.

The continue algorithm has two distinct phases. In the first phase, accumulators are

added freely, as in the quit algorithm. This phase is similar to evaluation of an or query,
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1. Order the words in the query from highest weight to lowest.

2. Set A← ∅; A is the current set of accumulators.

3. For each term t in the query,

(a) Retrieve It, the inverted list for t.

(b) For each 〈d, fd,t〉 pair in It,

i. If Ad ∈ A, calculate Ad ← Ad + wq,t · wd,t.

ii. Otherwise, set A← A + {Ad}, calculate Ad ← wq,t · wd,t.

(c) If |A| > K, go to step 4.

4. For each document d such that Ad ∈ A, calculate Cd ← Ad/Wd.

5. Identify the r highest values of Cd.

Figure 7: Quit algorithm for computing cosine using approximately K accumulators

and the processing of each inverted list is a disjunctive merge of the list with the structure

of accumulators. In the second phase, existing accumulator values are updated but no new

accumulators are added. This phase is more akin to evaluation of an and query, as some

(perhaps most) of the identifiers in each inverted list are discarded. In this phase the set of

accumulators is static, and it is cheaper at step 4b to traverse the set in document number

order, comparing it against each inverted list, than it is to search the previous dynamic

structure looking for each inverted file pointer.

Figure 9 shows result of experiments with the quit and continue algorithms. It plots

retrieval effectiveness as a function of k, the number of accumulators actually used. In each

case k is slightly greater than the target value K, as an integral number of inverted lists

is processed for each query. The values shown against every third point in this graph are

the average number of terms processed to yield that volume of accumulators; for example,

only 8.2 terms are needed to generate an average of 27,000 accumulators. The difference

between quit and continue is marked, and, perhaps surprisingly, even the mid to low weight

terms appear to contribute to the effectiveness of the cosine rule—ignoring them leads to

significantly poorer retrieval.

Also surprising is that the continue strategy, with restricted numbers of accumulators,

is capable of better retrieval performance than the original method of Figure 2 in which

all documents are permitted accumulators. In fact, retrieval effectiveness peaks when the

number of accumulators is only 1% of the number of documents, at which point an average

of just eight terms per query have been processed and allowed to create accumulators. It

appears that the mid to low weight terms, while contributing to retrieval effectiveness, should

not be permitted to select documents that contain none of the more highly weighted terms.

Suppose that a small percentage of the documents in a collection are permitted accumula-

tors during ranked query evaluation. A few infrequent terms will be processed in disjunctive

mode, but then all remaining terms can be processed in conjunctive mode. Hence, skip-

ping can again be employed to improve response time. In the case of the TREC queries,

22



1. Order the words in the query from highest weight to lowest.

2. Set A← ∅.
3. For each term t in the query,

(a) Retrieve It.

(b) For each 〈d, fd,t〉 pair in It,

i. If Ad ∈ A, calculate Ad ← Ad + wq,t · wd,t.

ii. Otherwise, set A← A + {Ad}, calculate Ad ← wq,t · wd,t.

(c) If |A| > K, go to step 4.

4. For each remaining term t in the query,

(a) Retrieve It.

(b) For each d such that Ad ∈ A,
if 〈d, fd,t〉 ∈ It, calculate Ad ← Ad + wq,t · wd,t.

5. For each document d such that Ad ∈ A, calculate Cd ← Ad/Wd.

6. Identify the r highest values of Cd.

Figure 8: Continue algorithm for computing cosine using approximately K accumulators

p = ft = 75,000 was observed, and K = 10,000 might be chosen—in our experiments this

resulted in an average retrieval figure as good as the full cosine method. Using these values,

skipping is estimated to reduced the CPU time from 0.188 seconds per term to 0.137 seconds,

making the same assumptions as before. Hence, on a query of 42 terms, total CPU time

is predicted to decrease from 7.9 seconds to about 5.8 seconds. The saving is less dramatic

than for Boolean queries, but nevertheless of value.

5.2 Experimental results

The experiments illustrated in Figure 9 show that values K greater than about 0.2% of N

give good retrieval effectiveness, where N is the number of documents in the collection and

K is the accumulator target of Figure 8. Hence, we might assume for typical TREC queries

that an index constructed with L = 10,000 is appropriate for general use. The value of K

used to control the query can be set differently for each request processed, but the inverted

file must be built based upon some advance supposition about L. For Boolean queries the

value of k must be guessed in advance, but has no effect upon the correctness of the set of

answers. In contrast to this, for ranked queries it is possible to make an accurate estimate of

k—it is just a little greater than K—but the effect on retrieval accuracy cannot be exactly

predicted.

Table 4 in Section 4 shows the sizes of the inverted files that were generated for different

values of L. These indexes were also used with the continue algorithm of Figure 8, to answer

the 50 queries constructed from the TREC topics. Values of K both close to and widely

differing from the target value L for which each index was constructed were tested. The

results of these experiments are plotted in Figure 10. The times shown are CPU-seconds,
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Figure 9: Quit vs. continue: retrieval effectiveness

measured from the time the query is issued until a list of the top r = 200 documents has

been determined, and includes all components of the ranking process. As before, it does not

include the time required to locate, fetch, and present those documents.

As can be seen from Figure 10, the predictions as to running time were accurate. In

the best situation, when the number of accumulators is small and the inverted file has been

constructed for a small number of accumulators, the time has been reduced from about

9 seconds to a little over 2 seconds, a substantial saving. For more conservative values of

k the running time is halved. The analysis has also correctly predicted that time varies

with the blocksize, and that each skipping regime performs best when k ≈ L. For example,

the L = 1,000 inverted file gives the best performance when the number of accumulators is

small.

We also ran experiments on the same set of queries, but without excluding the stop-

words. Some representative performance figures comparing stopped and unstopped queries

are shown in Table 6. In both restricted accumulator cases the inverted file used was self-

indexing and constructed with L = 10,000, and a hash table was used for the set A. The

“unlimited” results followed the description of Figure 2, and used an array to maintain the

set of accumulators, with all terms selecting candidates and participating in the final ranking.

As can be seen, retrieval performance is largely unaffected by the stopping of high frequency

terms and limitations on the number of accumulators, but processing time improves with

both heuristics. The column headed “Pointers decoded” records the total number of com-

pressed numbers processed, where each 〈d, fd,t〉 pair is counted as 1, and each skip as 2.

These bear a close relationship to the CPU times listed in the final column. The column

“Terms processed” shows the average number of terms per query in the unlimited case, and
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Figure 10: CPU time required to process ranked queries

the average number of terms per query processed in conjunctive mode and disjunctive mode

for the continue method.

Query type Terms Eleven point Actual Pointers CPU
processed effectiveness accumulators decoded time

(%) k (sec)

Stopped
K = unlimited 42.4 17.3 1,304,115 3,131,050 12.5
K = 10,000 6.1+36.3 17.3 13,238 1,617,275 5.6

Unstopped
K = unlimited 64.6 17.4 1,733,517 19,955,961 45.9
K = 10,000 6.2+58.4 17.4 13,558 5,142,752 16.1

Table 6: Stopped vs. unstopped queries, index constructed with L = 10,000

As expected, the amount of processing time saved through the use of skipping is much

more when the query is not already stopped. This is because the stop words include those

that are the most frequent, and it is on frequent terms that the greatest savings can be

achieved. The unstopped TREC queries averaged 64.6 terms, and over 300,000 document

numbers per term per query. With k = 10,000 the analysis of Section 2 predicts that an

unskipped compressed index requires 0.750 seconds; and a skipped index 0.274 seconds. For

a 65-term query these estimates correspond to about 49 seconds and 18 seconds respectively.

The results of Table 6 validate these predictions. The slightly better than expected perfor-

mance improvement arises because of two factors. First, the model takes no account of the

amount of calculation required, and the restricted accumulators implementation performs
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only a fraction of the floating point operations of the full cosine method. Second, the in-

verted lists are of widely differing length, and the savings are disproportionately greater on

lists containing many pointers.

For ranked queries there is no advantage in using more than one level of skipping. Table 7

summarises the expected performance for ranked queries (in the same format as previously

used in Table 3) for the two situations already considered: when k = 10,000 and p = 75,000

(stopped queries), and when k = 10,000 and p = 300,000 (unstopped queries).

h p + 2
∑h

i=1 pi Td Tr T

0 75,000 0.188 0.038 0.226
1 102,386 0.137 0.057 0.188
2 132,890 0.147 0.066 0.213
3 164,254 0.165 0.082 0.247

(a) k = 10,000 and p = 75,000

0 300,000 0.750 0.150 0.900
1 354,772 0.274 0.177 0.451
2 427,620 0.233 0.214 0.447
3 506,362 0.234 0.253 0.487

(b) k = 10,000 and p = 300,000

Table 7: Predicted processing time in seconds for terms in a ranked query

If the same index is to be used for both Boolean and ranked queries then a compromise

parameter must be chosen at the time the index is constructed, since the value of k typical

of Boolean queries is much less than the usual range for ranked queries. For Boolean queries

of 5–10 terms and ranked queries of 40–50 terms, Figures 6 and 10 show that a value such

as L = 1,000 is a reasonable compromise. Alternatively, if speed on both types of query is

at a premium, two different indexes might be constructed. This is not as extravagant as it

may at first appear—recall that the indexes are compressed, and each occupies just 10% of

the space of the text being indexed. Two compressed skipped inverted files together still

consume less than half of the space required by a single uncompressed inverted index or

signature file.

6 Conclusions

We have shown that the memory and CPU time required for querying document collections

held on disk can be substantially reduced. Our techniques are of particular importance

when large, static, collections are being distributed on relatively slow read-only media such

as CD-ROM. In these situations, when database access is to be on a low-powered machine,

it is of paramount importance that the text and index be compressed; that the number of

disk accesses be kept low; and that only moderate demands be placed upon main memory

and processing time.
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The normal cost of the use of compression, which results in a massive saving of space,

is increased processing time. However, by introducing skipping into the inverted lists, in

effect making them self-indexing, substantial time savings also accrue. For Boolean queries

skipped and compressed inverted lists allow both space and time savings of the order of 80%

when compared with uncompressed indexes.

We have also shown that ranking can be effected in substantially less memory than

previous techniques. The saving in memory space derives from the observation that the

number of non-zero accumulators can be safely held at a small percentage of the number

of documents. Based on this observation we have described a simple rule that allows the

memory required by the document accumulators—the partial similarities—to be bounded.

This “restricted accumulators” method then opens the way for self-indexing inverted files to

be employed to speed ranked queries. Time savings of about 50% can be achieved without

measurable degradation in retrieval effectiveness.

In combination, the methods we have described allow three important resources—mem-

ory space, disk space, and processing time—to be simultaneously reduced.
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Symbols used

Symbol Meaning
ai bit address of ith skip
A set of accumulators
Ad accumulator for document d

C set of candidates
Cd cosine for document d

d document identifier
ft number of documents con-

taining term t

fx,t frequency of t in document or

query x

h number of skip levels
It inverted list for term t

k number of candidates or ac-

cumulators
K accumulator target

Symbol Meaning
L skipping parameter for index
N number of documents
p number of pointer pairs
pi number of pairs at ith skip

level
q query
r number of answers
t term
td time to decode 〈d, fd,t〉
tr time to transfer 〈d, fd,t〉
T total time
Td total decode time
Tr total transfer time

wd,t weight of t in document d

Wd weight of document d
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