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1. INTRODUCTION

Information retrieval systems compute, for each document in a collection, a
score that estimates the similarity between that document and a query. In typ-
ical systems, each score represents an estimated probability that the document
is relevant to the information need expressed by the query. Once the process
of scoring is complete, documents are presented to the user in decreasing score
order, in the expectation that the user considers them in sequence until their
information need has been satisfied.

A range of methods for measuring the effectiveness of information retrieval
systems has been proposed. A key element of many of these measures—and
certainly of those in the widest use—is the assumption of binary relevance, with
human assessors asked to determine, for a set of documents, which members
are relevant to the query and which are not. Given a ranking, each document is
marked as relevant or irrelevant (or unjudged), and the sequence of decisions is
then used as input to a quantitative measure of effectiveness. Two elementary
measures are recall and precision [van Rijsbergen 1979, Chapter 7]. These can
be combined to give a single value via mechanisms such as a 3-point or 11-point
recall-precision average [Buckley and Voorhees 2005].

One of the most commonly used measures in recent IR research is average
precision (AP), which does not directly use recall, but does require knowledge
of R, the total number of relevant documents for the query in question. Other
widely used measures are precision at d documents retrieved (P@d ), where typ-
ically d is 10; R-precision, or P@R; and reciprocal rank (RR). However, all of
these measures have failings. For example, it is not clear what user behavior
is modeled by AP, and it has properties that render it volatile in typical experi-
mental settings. In particular, using AP with incomplete relevance judgments
typically leads to inflated effectiveness estimates, and the discovery of further
relevant documents in a ranking usually reduces measured effectiveness. These
issues are not addressed by recent AP-based metrics such as those of Buckley
and Voorhees [2004] or Sakai [2004].

Underlying these issues are two problems with recall. One, which is widely
known, is that in current systems complete relevance judgments are imprac-
tical and thus recall tends to be overestimated. Figure 1 shows this problem
using the standard Venn diagram approach. The TREC methodology is dis-
cussed in more detail below. Another problem with recall, which has not re-
ceived such wide attention, is that it does not correspond to a likely model of user
behavior.

In this article, we introduce a new metric, rank-biased precision (RBP), that
avoids many of the failings of average precision. The basis of RBP is that it
measures the rate at which utility is gained by a user working at a given de-
gree of persistence; by adjusting persistence, a parameter that represents an
aspect of user behavior, RBP has the advantage of capturing the critical facets
of AP, RR, and P@d . An additional benefit of RBP compared to AP is that it
allows accurate quantification of experimental errors when only partial rele-
vance judgments are available, which is useful when large-scale experiments
are being carried out. Rank-biased precision also has some similarities with the
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Fig. 1. Recall and precision: (a) the Cranfield arrangement, with all documents in the collection
categorized for relevance, and in which precision is |A|/(|A| + |B|), and recall is |A|/(|A| + |C|); and
(b) the TREC arrangement, in which only a subset of the documents are categorized for relevance,
and the size of the sets A′ and C′ is not known, but for calculation purposes it is assumed that
|A′| = |C′| = 0 and that |A| + |B| + |B′| = d , the number of documents retrieved.

discounted cumulative gain (DCG) metric of Järvelin and Kekäläinen [2002],
and is compared to that measure below.

To understand some of the issues in existing measures, we first consider
recall and precision and the way in which relevance judgments are collected.
We next review the measures in common use in experimental work, as well as
other measures that have been proposed in the literature. We then describe
rank-biased precision, and experimentally examine its behavior.

2. RECALL AND PRECISION

Recall and precision have been in use for more than four decades [van
Rijsbergen 1979, Chapter 7]. Recall is the proportion of the relevant documents
that have been retrieved, while precision is the proportion of retrieved docu-
ments that are relevant. In the context of a ranked list of documents, recall
and precision can be measured at each document retrieved, at each relevant
document retrieved, or at recall percentiles in the ranking. Alternatively, if a
single value is required, recall and precision can be measured at any fixed point
in the ranking. Recall and precision tend to be in tension; when recall is high,
precision is usually low, and vice versa. Textbooks describe these two metrics
in detail, and the associated concept of recall-precision curves; see, for example,
van Rijsbergen [1979, Chapter 7] and Witten et al. [1999, Chapter 4].

Relevance is a human concept that requires human judgment, and a well-
known problem with current experiments is that exhaustive relevance judg-
ments stop being practical once collections exceed a few tens of megabytes.
“Trying to get an indication of which proportion of the existing relevant
information items was retrieved by a system . . . is a hopeless undertaking”
[Frei and Schäuble 1991, page 154]. Practical experiments such as TREC1

make use of an approximation to the true number of relevant documents.

1See trec.nist.gov.
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Participating TREC systems generate query rankings containing 1000 docu-
ments, from which a set of relevant documents is identified via a pooling ap-
proach [Harman 1995; Zobel 1998], with (typically) the top 100 documents from
each system for each query assessed for relevance. That is, in TREC the num-
ber R of relevant documents in a collection for some query is deemed to be the
number of relevant documents that appear in the top 100 in the ranking of
some participating system when executing that query. Figure 1(b) shows the
TREC arrangement of documents retrieved in a query’s result list by some sys-
tem; documents that have been judged, after a pool is derived based on prefix
rankings contributed by multiple systems; and documents that are relevant for
that query. For a particular query and system, all eight zones in Figure 1(b) can
be nonempty.

A key assumption of the pooling approach is that, by having a large enough
number of participants, the great majority of the relevant documents are iden-
tified and thus, for each query, that a good first-order approximation to the
number R of documents relevant to that query can be determined. Postexperi-
ment analysis has indeed shown that, for some queries, it is highly likely that
all the relevant documents have been discovered, but that, for others, there
are clearly many more that have not been identified [Zobel 1998]. For these,
and other reasons, Saracevic [1995] referred to recall as a “metaphysical mea-
sure: how does one know what is missed when one does not know that it is
missed?”

What is arguably a more profound problem relates to a very simple ques-
tion: what is it that recall is measuring? The purpose of a metric is to evaluate
whether a system is successful completing some task, or rather, a computable
abstraction of a task. We measure the CPU time consumed by an algorithm
because we claim that, to be an interesting property that has consequences for
how the algorithm will be used, we don’t usually measure (say) the number
of bytes in the compiled instruction sequence, because that tells us nothing of
great interest. In IR, we need “criteria representing the objectives of the sys-
tem,” and that they should be concerned with the question of “how to provide a
prospective user with useful information” [Saracevic 1995]. For example, mea-
suring precision to depth d is valid because a user who is given six answers
in the top 10 documents is probably better off than a user who is given three.
That is, precision can be interpreted as a measure of user satisfaction when the
user’s actions are modeled in a certain plausible way.

It might similarly be argued that a user who is given all the answers to a
query is better off than a user who is given only some, and thus that calculation
of recall is of value. However, in our view this line of reasoning does not stand
scrutiny, because unless a user has “perfect” knowledge of the documents in-
cluded in some retrieval system, they cannot know that they have seen all the
answers (or half the answers, or 27% of the answers). As an extreme example,
a system comparison based on recall asserts that, if a collection has only one
answer, the user is 100% satisfied once they have seen it, but, if there is an-
other relevant document that they neither know about nor view, they are only
half satisfied. Many authors have also written of similar concerns. For example,
Buckley and Voorhees [2005, page 61] indicated that “one of the current debates
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in IR is whether recall is important outside a few specific applications such as
patent searching.” Also worth noting is that, in these high-recall applications,
users typically pose multiple queries, and seek to address their information
need in a variety of ways, including via browsing and citation following. In
such cases, the recall arising from the whole sequence of interactions with the
collection is what is of interest, regardless of how satisfied (or not) the user
feels after each individual search. That is, while missing a legal precedent or a
medical experiment with every query in an information-seeking session might
be disastrous, the recall of one query considered in isolation is not particularly
informative.

Another perspective on this issue is that, crudely, queries can be said to be of
two kinds: “find a document” and “find a lot of documents.” For the first kind, any
relevant document is satisfactory, and the query is resolved when the answer is
found (and perhaps confirmed), no matter how many other relevant documents
there are—consider the query “boiling point of lead,” for example. In this kind
of search the concept of recall is not applicable. For the second kind of query,
for large and uncurated collections such as the Web, the user almost certainly
does not know whether all relevant documents have been found until they have
phrased a variety of queries and undertaken a multipronged exploration of the
data, meaning that recall is unrelated to their satisfaction level in regard to
any single query.

In a particularly pertinent comment, Cooper [1973, page 95] wrote the fol-
lowing:

The involvement of unexamined documents in a performance for-
mula has long been taken for granted as a perfectly natural thing,
but if one stops to ponder the situation, it begins to appear most
peculiar. . . . Surely a document which the system user has not been
shown in any form, to which he has not devoted the slightest particle
of time or attention during his use of the system output, and of whose
very existence he is unaware, does that user neither harm nor good
in his search.

On the next page, Cooper [1973] went on to say the following:

Instead of attempting to estimate recall in spite of all the difficulties,
what should have been done was to find a way to overcome the defi-
ciencies of the precision measure without bringing a second measure
into the picture.

Although written well over 30 years ago, Cooper’s words remain applicable
today.

Precision is a rather more straightforward metric than recall. It clearly does
provide a measure of user satisfaction, particularly when evaluated at a query-
independent value such as d = 10 or d = 20. On the other hand, if precision is
evaluated at a single point that is in some way determined by a numeric recall
level, then the criticisms above still apply.

Su [1994] observed and interviewed 40 users who had employed profes-
sional intermediaries to assist with Boolean querying in online library services.
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Su compared each user’s subjective judgment of overall search success against
a range of other measures, including precision, search time, search cost, the
user’s satisfaction with the completeness of search results, and the user’s con-
fidence in completeness of the search results. Su found that precision was not
a strong indicator of subjective success and that the two “completeness” indi-
cators were more closely aligned with overall success, concluding that “recall is
more important than precision to users” [Su 1994, page 213]. However, Su was
not able to directly assess recall, because, as she observed in her article, “recall
. . . requires the knowledge of all the relevant documents in the databases(s)
in relation to the users’ needs or problems” [Su 1994, page 208]. Moreover, the
experimental environment was of academic searchers who were given an un-
ranked set of Boolean-matching documents with considerable effort going into
the construction of each query—quite different in terms of both approach and
audience to typical current search environments.

Other issues in retrieval experiments include the reliability of relevance
assessment and the validity of binary relevance judgments; see, for example,
Harter [1996], Mizzaro [1997], Borlund and Ingwersen [1998], Järvelin and
Kekäläinen [2002], and Kekäläinen [2005]. These issues are significant, but
they are separate from the topic of this article, and binary relevance judg-
ments do provide a basis for assessing the utility of retrieval systems [Allan
et al. 2005]. Likewise, there are many different ways of evaluating an IR sys-
tem; see, for example, Kagolovsky and Moehr [2003]. These too are beyond the
scope of this article. More broadly, there are many separate elements and de-
cisions that must be considered in the design of a robust retrieval experiments
[Tague-Sutcliffe 1992]; our focus here is on the rather narrower problem of pro-
viding a score that represents retrieval effectiveness once a document ranking
has been obtained.

3. COMPOSITE MEASURES OF EFFECTIVENESS

To produce a statistic describing a retrieval system, many ways of combining
recall and precision into a single number have been described. This section
reviews some of those methods.

3.1 Average Precision

The measure of effectiveness most commonly used in experiments in recent
years has been average precision, AP. There has been little discussion of AP in
the literature; Buckley and Voorhees [2005] explained that AP, also known as
noninterpolated average precision, was introduced after the first year of TREC
to address deficiencies in previous measures. Like its predecessors such as 11-
point average precision, AP combines recall and precision to give a single-value
measure of a system.

Average precision is calculated by taking the set of ranks at which the rel-
evant documents occur, calculating the precision at those depths in the rank-
ing, and then averaging the set of precision values so obtained. For example,
consider the ranking

$$---$----$-----$---,
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in which (reading left to right) there are five relevant documents, indicated by
the $ characters, interspersed among a further 15 nonrelevant documents. If it
is assumed that there are a total of R = 5 documents that are relevant, then
AP at depth d = 20 is calculated as

1
5

×
(

1
1

+ 2
2

+ 3
6

+ 4
11

+ 5
17

)
= 0.6315.

If instead there were R = 6 relevant documents, the ranking would need to
be extended until that sixth document was located. If that was not possible—
for example, because it was a TREC-style pooled experiment and the rank-
ing had already been computed before the number of relevant documents was
known—the standard assumption is that the missing relevant documents have
corresponding precision scores of zero. In this case the leading factor on the
computation of AP would need to be 1/6, and the calculated value would be
0.5263. If there were R = 7 relevant documents, the AP score would be 0.4511,
and so on. The average precision across a series of queries can be averaged to
give mean average precision (usually referred to as MAP).

Formally, if we have a ranked relevance vector to depth d

R = 〈ri | i = 1, 2, . . . , d 〉,
where ri indicates the relevance of the ith ranked document scored as either 0
(not relevant) or 1 (relevant), and if R is the number of relevant documents for
this query, then AP is computed as

AP = 1
R

d∑
i=1

(
ri

i
·

i∑
j=1

r j

)
.

A consequence of this definition is that a system whose recall at the end of the
ranking (in TREC experiments, at depth d = 1000) is x can thus at best hope
to attain an AP of x. That is, recall bounds AP.

An alternative unnormalized formulation—useful if systems are to be com-
pared on just a single query—is to remove the division by R, and simply sum
the set of precision values:

SP =
d∑

i=1

(
ri

i
·

i∑
j=1

r j

)
.

However, if more than one query is involved, this variation introduces seri-
ous scaling problems—it makes little sense to compute a mean unnormalized
average precision when, taking two of the TREC-5 queries as a concrete ex-
ample, there are (at least) 433 documents relevant to “volcanic and seismic
activity levels,” and (possibly only) seven relevant to “DNA information about
human ancestry.” In recent work, Webber et al. [2008] explored this point,
and described a standardization approach that removes the bias caused by
query variation. Their “standardized SP” metric is identical to “standardized
AP,” but does not require knowledge of R, and has a range of other desirable
properties.
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Another tempting AP variant is to calculate the average over the relevant
documents that are actually retrieved within the answer ranking through to
depth d :

AP∗ = 1∑d
i=1 ri

d∑
i=1

(
ri

i
·

i∑
j=1

r j

)
.

But this leads to anomalous situations in which a ranking with an increased
number of relevant documents can have a lower AP∗ score. For example, the
ranking

$---$----$-----$---

was used above and gives rise to an AP∗ of 0.6315. Now consider the ranking

$$---$----$-----$$$$,

in which eight documents are relevant. One would intuitively expect average
precision to be greater, since certainly P@20 has increased. In fact, the altered
ranking has an AP∗ of 0.5324, with the decrease caused by the inclusion of three
additional terms, each of which is smaller than the previous average.

A related problem is that AP is unstable in the presence of uncertainty.
Consider the ranking

$--$------??????????,

in which question marks represent unjudged documents, and there are R = 2
relevant documents within the set of judged documents. Given these facts, AP is
computed to be (1/2) · (1.0+0.5) = 0.75. However, if any one of the 10 unjudged
documents is in fact relevant, then the AP cannot be greater than 0.5909. Nor
is the movement consistent: on the ranking

-------$--??????????

discovery of further relevant documents among the unjudged ones can cause
AP to increase rather than decrease. This is a serious concern—on addition of
more information AP can take any value at all between the limiting values of 0
and 1, irrespective of what mix of relevant and irrelevant documents appears
in any finite prefix of the ranking. There is thus a perceived risk that the scores
obtained in a retrieval experiment are a function as much of the resources spent
carrying out the evaluation and judgments as they are of the system itself, and
that “preliminary” results should be treated with caution.

The AP drift caused by unjudged documents is not merely an academic con-
cern. Consider the data gathered by TREC in 1996 (TREC-5), a year in which
61 systems contributed to the Ad Hoc Retrieval Track, and processed 50 queries
against 2 GB of newswire data.2 The depth used for forming the pool of judg-
ments was 100, and based on those judgments it is straightforward to also
investigate the alternative outcomes that would have been observed were the
judgments to be compiled over shallower pools. The performance of the 61 sys-
tems is plotted in Figure 2, comparing the calculated mean AP scores with

2See trec.nist.gov for details.
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Fig. 2. Mean average precision of 61 TREC-5 systems, using relevance judgments compiled using
two different pool depths. The dotted line is the identity relationship, with points below the line
showing systems for which average precision decreased when additional documents were judged.
The nonlinearity of the decrease shows that the ordering of systems is also affected.

pool depths of 10 and 100. Note how AP for an assessment pool of depth 10
is almost always an overestimate for the “correct” AP when calculated using
an assessment pool of depth 100. Note also that the ordering of the systems
changes as the pool depth is increased. We can only conclude that, were the
pools to be extended to depth (say) 1000, further decreases in mean AP would
be observed, and that there would be additional perturbations in the system
ordering.

In addition to these relatively technical issues, average precision, like recall,
is on uncertain foundations. Average precision can be said to represent an esti-
mate of user satisfaction, but based on a complex abstraction that does not fit
well with our usual understanding of how users interact with a retrieval sys-
tem. Consider the necessary scenario: the user issues a query, obtains a ranked
list of answers, and begins examining them. Every time a relevant document is
encountered, the user pauses, asks “Over the documents I have seen so far, on
average how satisfied am I?” and writes a number on a piece of paper. Finally,
when the user has examined every document in the collection—because this is
the only way to be sure that all of the relevant ones have been seen—the user
computes the average of the values they have written.

Buckley and Voorhees [2005, page 59] also criticized AP, on the grounds
that it “is an overall system evaluation measure, not an application measure,”
and that “there is no single user application that directly motivates MAP.”
We agree with this criticism, and posit that, in the absence of any task to
which the measurements correspond, abstract measurements of a system are
less interesting than those that are predicated on a plausible model of user
behavior.

Average precision does have strengths. Perhaps the best evidence in its favor
is its stability and robustness: AP-based differences between systems on one set
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of queries tend to be observed on other query sets, especially if the differences
are statistically significant [Voorhees 2002; Sanderson and Zobel 2005; Buckley
and Voorhees 2005].

3.2 Precision-at-Depth, R-Precision, and Reciprocal Rank

Several other measures are regularly employed by researchers. One of these
is precision-at-depth, or P@d . This measure is free of several of the failings
of AP, but it has the drawback of being insensitive to the rank positions of the
relevant documents—the rankings “$$$$$-----” and “-----$$$$$” are identical
in terms of precision at depth 10, but the first is almost certainly a better
ranking than the second. A second problem with P@d is that interpretation
of precision also needs to be tempered to a certain extent by knowledge of R
[Buckley and Voorhees 2005]. In particular, when the number R of relevant
documents in the collection is less than d , the number of documents retrieved,
precision is restricted to R/d < 1. That is, while precision can be calculated
at any depth d and knowledge of R is not required to do so, at depths d ≥ R
precision is hobbled and cannot fully range over the interval 0.0 to 1.0. Because
of this issue, P@10 tends to be a more reliable measurement than P@100, and
P@1000 is of little interest.

The real issue is that, to compute P@d , a value of d must be selected, and
because of the relationship between d and R it is hard to argue for any partic-
ular value of d . One way fixing d is to use R-precision, sometimes known as
missed-at equivalence—the precision score at depth d = R. Scores are guar-
anteed to be able to fully range from 0.0 to 1.0, but this metric again requires
that R, the number of relevant documents, be known for each query. And, as is
the case for average precision, R-precision presents anomalies, such as that an
increase in both R and the number of documents returned may lead to a reduc-
tion in measured effectiveness. In terms of user behavior, it seems implausible
to suppose that a user would choose in advance to inspect exactly R documents
for a given query, even if they could somehow be aware of what R was for their
query.

Finally, another common measure is the reciprocal rank (RR) of the first
relevant document. Reciprocal rank has the singular advantage of being com-
pletely independent of R, since only one relevant document needs to be located;
other relevant documents are not considered at all. Reciprocal rank also has
an attractive user model—a person who is only interested in the first relevant
answer. But, because of the fact that the score for the first position is double
that of the score for the second position, RR is not particularly stable when
systems are being compared via an average, because good performance on a
single query can compensate for poor performance on many others.

There are many variants of these simple measures, such as interpolated av-
erage precision, and 11-point and 3-point average precision. All of these metrics
tend to correlate with each other, average precision and R-precision particularly
so [Buckley and Voorhees 2005]. Nevertheless, we conclude that the standard
methods for comparing document rankings have shortcomings that make them
either difficult to interpret, or deficient in some other way. One simple problem
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is that these composite methods tend to be undefined if there are no relevant
documents in the ranking. In the absence of any answers, effectiveness can
easily be defined to be zero; nevertheless, it is irksome that an exception is
required.

3.3 Other Measures of Effectiveness

In the three decades prior to the commencement of TREC in 1992, a variety
of system evaluation measures had been in use. The TREC project not only
introduced standardized large-scale test collections, but also standardized eval-
uation of retrieval systems, embodied in the TREC EVAL evaluation software.3

In particular, the pre-1990 literature contains descriptions of several mea-
sures that since then have been largely neglected, or have been superseded by
the measures in TREC EVAL. Some of these were examined by van Rijsbergen
[1979, Chapter 7], who noted that they are for the most part ad hoc in nature
and “cannot be justified in any rational way” (p. 119). van Rijsbergen [1979]
examined in detail several methods with a mathematical foundation, includ-
ing measures and observations due to Swets, Brookes, Robertson, Teather, and
Cooper, and the measures incorporated into the SMART retrieval system. All of
these measures yield statistics that balance precision and recall.

A motivation in design of some of these measures is to explicitly weight for
“the relative importance a user attaches to precision and recall” Shaw, Jr. [1986,
346], leading to measures based on combinations such as

1
1/p + 1/r − 1

,

where p and r are point measures of precision and recall at some depth d in the
ranking [Shaw, Jr. 1986; Losee 2000]. We do not survey this early literature, but
note that the importance of recall appears to be a near-universal assumption. In
terms of practical experimentation, Keen [1992] described experience gleaned
from work with the Cranfield test collection; and Cooper [1968] and Raghavan
et al. [1989] defined a quantity they called the expected search length, being
the expected number of documents retrieved before i relevant ones have been
determined, including proper handling of cases in which there are ties in the
ranking.

There have also been recent proposals that are of relevance to our work. One
is the binary preference measure (BPref) proposed by Buckley and Voorhees
[2004]. In this approach, the binary vector R of relevance values is modified to
give a condensed vector R′ of length d ′ by removing the documents for which
there are no relevance judgments, and then computing

BPref-k = 1
R

·
d ′∑

i=1

{
r ′

i ·
(

1 − min
(
R + k, i − ∑i

j=1 r ′
j

)
min(R + k, N )

)}
,

where N is the number of documents known to be nonrelevant, and k is a tuning
constant designed to avoid volatility when R is small. Buckley and Voorhees

3Available from trec.nist.gov.
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[2004] showed that BPref is consistent with average precision when the judg-
ments are complete, and has better behavior when the judgments are partial.
However, it also shares some of the undesirable aspects of AP, including reliance
on a knowledge of the number of relevant documents; a tendency to prefer a
query with one answer over a query with many (that is, per-query scores are
incomparable); lack of an obvious user model; and the fact that the calculated
score can move upward or downward as more documents are judged. Sakai
[2007] considered several further issues in connection with BPref.

Sakai [2004] proposed a Q-measure, first used at NTCIR in 2004, which for
binary relevance can be expressed as

Q-measure = 1
R

·
d∑

i=1

{
ri ·

(
2

∑i
j=1 r j

i + min(i, R)

)}
.

This measure does not appear to have any advantages compared to AP or BPref.
Another recent proposal is the discounted cumulative gain (DCG) method of

Järvelin and Kekäläinen [2002]. Discounted cumulative gain is monotonic in
the number of relevant documents found, meaning that the score for a ranking
which is a proper prefix of another serves as a lower bound on the score assigned
to the longer ranking. However, DCG suffers from the problem of having no
upper limit on the scores that can be assigned.

In a similar vein, Meng and Chen [2004] explored a metric they called
RankPower, which also factors rank position into a precision-based score, but
does so in a manner that is at odds with other metrics, in that strongly useful
rankings generate low scores. There are a number of other anomalies with this
metric that put it at odds with both DCG and RBP, including its treatment of
rankings in which there are no relevant documents at all.

With a sufficient number of queries, binary relevance provides an accurate
method of distinguishing between systems [Voorhees 2002]; but this does not
mean that all relevant documents are in fact equal. There are many articles
exploring graded relevance, which was used as early as the 1967 Cranfield-2
experiments [Voorhees 2002] and continues to be investigated; see, for exam-
ple, the approaches of Borlund and Ingwersen [1998], Järvelin and Kekäläinen
[2002], Della Mea and Mizzaro [2004], and [Kekäläinen 2005]. Our new mech-
anism can easily be applied to nonbinary judgments.

Finally in this section, note that all of the approaches to measurement dis-
cussed here relate to what Saracevic [1995] called batch mode evaluation, an
abstraction that does not capture the richness of the ways in which users
interact with practical search systems. However, the underlying similarity-
measuring components of even complex systems are clearly worth measuring
of themselves, and it is that measurement with which we are concerned in this
article.

4. RANK-BIASED PRECISION

We now introduce the new metric for scoring rankings; describe some its
properties, and compare it to the discounted cumulative gain mechanism of
Järvelin and Kekäläinen [2002]. To motivate the discussion, Table I shows the
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Table I.
Contribution made by each of five relevant documents toward
the final AP for the ranking “$$---$----$-----$---”. The AP of
0.6316 is the sum of the component contributions shown in the second
to last row. The last row shows the component contributions expressed
as a percentage. For example, the first document in the ranking
contributes 0.3633/0.6316 = 58% of the final AP.

Precision Relevant documents

1 2 6 11 17
d = 1 1/1
d = 2 1/2 1/2
d = 6 1/6 1/6 1/6
d = 11 1/11 1/11 1/11 1/11
d = 17 1/17 1/17 1/17 1/17 1/17
Total 1.8164 0.8164 0.3164 0.1497 0.0588
×1/5 0.3633 0.1633 0.0633 0.0299 0.0118
% 58 26 10 5 2

computation of average precision for the same ranking as was used as an ex-
ample earlier, but with the final AP score attributed individually to the five
relevant documents. For example, document number one contributes to all five
of the precision scores that are averaged, and in doing so generates 0.3633 of
the final AP of 0.6316. More than half of the final score is contributed by the
first document in the ranking. Buckley and Voorhees [2005] noted the same
issue of items dominating the scoring, and comment that this aspect of AP has
been criticized by statisticians. Observing that each document in the ranking
can be assigned a weight is one of the starting points of our proposed metric;
the other is a model of user behavior.

4.1 Patient and Impatient Users

Consider the user of some retrieval system, sitting at a computer and issuing
queries. Each query results in a ranked list of pretty much arbitrary length
being returned to them. In our model of user behavior, we assume that a user
always starts by examining the top-ranked document, then the second-ranked,
then the third-ranked, and so on, until they stop looking. We further assume
that, as the user looks at suggested answers, they are willing to pay $1 for each
relevant answer provided by the system, but nothing for irrelevant answers.
The $1 can be thought of as income to the search provider, in exchange for utility
gained by the searcher. As the user progress down the ranked list, they are thus
running up an account with the search provider, or, equivalently, increasing
their total utility.

The user has no desire to examine every answer. Instead, our suggestion
is that they progress from one document in the ranked list to the next with
persistence (or probability) p, and, conversely, end their examination of the
ranking at that point with probability 1 − p. We assume that each termination
decision is made independently of the current depth reached in the ranking,
independently of previous decisions, and independently of whether or not the
document just examined was relevant or not. (The implications of relaxing these
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View first item
in ranked list

View next item
in ranked list

Finish searching,
pay search cost

p

Fig. 3. The user model assumed by rank-biased precision.

assumptions are discussed below.) That is, we assume that the user always looks
at the first document, looks at the second with probability p, at the third with
probability p2, and at the ith with probability pi−1. Figure 3 shows this model
as a state machine, where the labels on the edges represent the probability of
changing state.

These assumptions imply that, on average,
∞∑

i=1

i · pi−1 · (1 − p) = 1
1 − p

documents are examined during each search. If some query q has a relevance
vector R = 〈ri | i = 1, 2, . . . , d 〉 as described earlier, then the total known ex-
pected utility derived by the user, and the income payable to the search service,
are given by

d∑
i=1

ri · pi−1.

Dividing by the average number of items inspected yields an expected rate at
which utility is transferred from the search provider to the user, and is the basis
of our rank-biased precision metric:

RBP = (1 − p) ·
d∑

i=1

ri · pi−1.

This definition ensures that RBP takes on values greater than or equal to 0.0
and less than 1.0, since

∑∞
i=1 pi−1 = 1/(1 − p).

The user model we propose is, we believe, a reasonable approximation of
how people use answer lists, and similar behavior has been observed in user
experiments. For example, Joachims et al. [2005] studied users in eye-tracking
experiments while they were examining answer pages, and found that several
suggested links would be scanned from the top of the page before a decision
was made to click on one of the links to explore it, and that roughly half of
users scanned only the first three suggested answers. Similarly, Hosanagar
[2005] considerd the utility of returned documents relative to a cost model, and
considerd how best to model the number of documents a user examines after
executing a query. Järvelin and Kekäläinen [2002] also employed the notion
of patient and impatient users, and proposed that an evaluation tuning knob
be introduced that allows users’ differing expectations and experiences to be
quantified.
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Table II.
Contribution made by each of five relevant docu-
ments toward the RBP score using three different
p values, on the ranking “$$---$----$-----$---”.
Document p = 0.50 p = 0.80 p = 0.95

1 1.0000 1.0000 1.0000
2 0.5000 0.8000 0.9500
6 0.0313 0.3277 0.7738
11 0.0010 0.1074 0.5987
17 0.0000 0.0281 0.4401

Total 1.5322 2.2632 3.7626
×(1 − p) 0.7661 0.4526 0.1881

Nor is the notion of allowing for different types of user a new one. Nearly
four decades ago, while discussing his expected search length measure and how
to evaluate document rankings, Cooper [1968], page 37, described a range of
possible user behaviors and information needs, and noted the following:

This [discussion] suggests that the parameter of greatest interest in
evaluating a system is . . . expected search length per desired relevant
document—that is, the expected number of irrelevant documents to
be screened out for each relevant document found.

By measuring the expected rate at which relevant documents are found, the
RBP metric described here also captures elements of Cooper’s intentions in this
regard.

4.2 Rank-Biased Precision

As an example of the RBP computation, let us return to the same ranked list
as was considered in Table I, in which relevant documents appear at ranks
1, 2, 6, 11, and 17. Table II shows the RBP computation, for three different
values of p. For this particular ranking the p = 0.5 score gives the largest RBP
value, a consequence of the fact that the first two documents are both relevant.
If the top-ranked document was not relevant, all of the scores would be lower
than shown in the table, but the p = 0.50 scores would decrease by the greatest
margin.

The use of different values of p reflects different ways in which ranked lists
can be used. Values close to 1.0 are indicative of highly persistent users, who
scrutinize many answers before ceasing their search. For example, at p = 0.95,
there is a roughly 60% likelihood that a user will enter a second page of 10
results, and a 35% chance that they will go to a third page. Such users obtain
a relatively low per-document utility from a search unless a high number of
relevant documents are encountered, scattered through a long prefix of the
ranking.
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Fig. 4. Rank-biased precision of 61 TREC-5 systems, for three different values of p, using relevance
judgments compiled using two different pool depths. Rank-biased precision at p = 0.5 and p = 0.8
is stable when the pool depth is increased from 10 documents per system to 100 documents. At
p = 0.95 the RBP scores increase (and never decrease) when the pool depth is increased.

Compare the behavior of a persistent user to the one-in-a-thousand chance of
a p = 0.5 user entering even the second page of 10 results. Users in the p = 0.5
category are highly impatient, but obtain high average per-document utility
(that is, high RBP) whenever there is a relevant document in the first one or
two rank positions. In the limit, use of p = 0.0 implies a user who is “feeling
lucky” and is either satisfied or dissatisfied with the top-ranked document, and
never looks any further. This latter mode corresponds exactly to evaluating the
system using P@1.

Figure 4 shows the effect of calculating average RBP scores over the 61
systems that participated in TREC-5 in 1996, calculated using two different pool
depths for the relevance assessments. Three different values of the parameter
p were used, covering a range from relatively impatient users (p = 0.5) through
to relatively patient users (p = 0.95). When p = 0.5 and p = 0.8, the system
average scores calculated based on judgments extracted from a pool depth of
10 documents per run are almost identical to the scores generated when a pool
depth of 100 is used. When p = 0.95, a pool depth of 10 is insufficient to give
accurate RBP scores, and the correlation is weaker. Note, however, that adding
further relevance judgments into the computation increases the system score,
rather than decreasing it. That is, unlike the situation with AP that is depicted
in Figure 2, system scores using rank-biased precision can always be regarded
as lower bounds on the score that would be obtained were perfect relevance
information to be available.

It was noted above that the interpretation of precision scores needs to be
tempered by knowledge of R, the number of relevant documents. The same is
also true of RBP, since a persistent user (with say p = 0.95) is guaranteed to
obtain a low expected utility from a search with only a few relevant documents.
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For example, when there are only five relevant documents and p = 0.95, it must
be that RBP < 0.23. However, we resist the temptation to normalize the scores
based on the maximum attainable score for each query, since to do so would
defeat the purpose of introducing RBP. Instead, we observe that, however low
the RBP score is for a particular query and p value, it still reflects the average
rate at which utility is gained by that particular user. Impatient users will also
obtain low RBP scores if none of the top few documents are relevant.

4.3 User Models

A key part of the RBP proposal is the user model, and the notion of scoring a
ranking according to the average utility gained by the person using the rank-
ing. Other user models also give rise to possible scoring regimes. For example,
consider a simple user model in which documents are examined starting with
the first, until a relevant one is found. The total utility gained from a ranking by
such a user will always be $1, and they will have examined documents until the
first relevant one. The average utility per document examined is thus exactly
the score assigned by the reciprocal rank (RR) metric. That is, RR can also be
thought of as a scoring regime with a tractable user model.

An obvious extension is then to consider other models. For example, a scep-
tical user might not stop when they see the first relevant document in the
ranking, and instead continue until they have seen corroboration from a sec-
ond relevant one. Such a user can score rankings by a RR2 metric, in which
the reciprocal rank of the second relevant document is what matters. Another
variation on RR is to use a “damping” factor, computing 1/(k + mini{ri = 1})
instead of 1/(mini{ri = 1}), where k is a constant. This metric corresponds to a
cautious user, who stops examining documents only after they have looked at
k past the first relevant one.

A further variant is to relax the assumption that p, the probability that the
user advances to the next document in the ranking, is independent of whether
or not the document just considered is relevant. An arrangement in which the
conditional probability of advancing given a relevant document is p1, and the
conditional probability of advancing given an irrelevant document is p2, would
still allow the average utility per document inspected to be calculated, and
would lead to another mechanism for scoring runs and thus comparing retrieval
systems.

4.4 Bounding the Residual Error

A useful consequence of the proposed RBP metric is that it is possible to compute
upper and lower bounds on effectiveness, even when the ranking and relevance
judgments are partial rather than comprehensive. For example, consider the
TREC environment, in which the top (say) 100 documents from multiple runs
for each query are combined into a single pool and then judged, but systems
are compared on the basis of 1000 answers for each query. By construction, all
of the top 100 documents in each run of 1000 have been judged, and perhaps
others beyond the top 100 too, because of the pooling. But the great majority of
documents further down the rankings will be unjudged.
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As noted earlier, the convention in TREC evaluation is that any unjudged
documents are taken to be not relevant, and that only “lower bounds” on effec-
tiveness should be computed. With this assumption, quoted effectiveness rates
might be expected to be pessimistic, meaning that with a greater volume of
judgments, measured effectiveness should increase. But Figure 2 clearly shows
that, when average precision is used as the effectiveness metric, the default
assumptions do not lead to a lower bound being calculated. That is, assuming
that unjudged documents are irrelevant is not necessarily pessimistic in the
context of AP.

In the RBP measure it is straightforward to accumulate an uncertainty value,
or residual, that captures the unknown component of the effectiveness metric.
The simplest case is when the ranking is calculated to a depth of d answers per
query, and the contributions from depth d + 1 on are not available. Then the
uncertainty in the RBP score is given by

(1 − p) ·
∑

i=d+1

pi−1 = (1 − p) · pd ·
∑
i=1

pi−1 = pd.

When the judgments are nonexhaustive, missing items should be added to
the residual on an item-by-item basis, using the weight they would have had if
they were relevant. For example, consider the ranking “$$---$----$-??--?---,”
where a “?” represents a missing judgment. The documents ranked in positions
13, 14, and 17 are unjudged, so the properties of the geometric distribution
mean that the uncertainty is given by p20 + (1− p)(p12 + p13 + p16). For p = 0.5,
the RBP is bounded by 0.7661 and 0.7663; for p = 0.8, the RBP is bounded by
0.447 and 0.489; for p = 0.95, the RBP is bounded by 0.17 and 0.60. Each of
these ranges encompasses the values given in Table II.

The residual calculation can be done in advance of any experimentation.
For example, with p = 0.8 and a pooling depth of d = 20, the residual from
all remaining terms in the geometric series is 0.820 = 0.012, which implies
that calculated RBP figures should be quoted to at most two decimal places.
Conversely, when four decimal digits of accuracy are required, the residual
should be less than 0.0001, and the required depth to attain this is a function
of the value of p being used:

pd < 0.0001 ⇒ d >
ln 0.0001

ln p
≈ 9.21

1 − p
.

When p = 0.5, p = 0.8, and p = 0.95, this expression suggests minimum
evaluation depths of d = 14, d = 42, and d = 180, respectively. Another way
of looking at this analysis is that, in a TREC-style pooled evaluation, a depth
of d = 100 of guaranteed exhaustive judgments is sufficient to support four
digits of accuracy in the computation of RBP only when p ≤ 0.91. Use of larger
values of p will require a greater pool depth if four digits of accuracy are to be
presented.

The behavior of the lower and upper bounds on RBP for one TREC-5 run for
three different values of p and two different judgment pool depths is illustrated
in Figure 5. Within each of the two graphs in the figure, increasing the amount of
information taken into account by increasing the depth d of the ranking allows
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Fig. 5. Upper and lower bounds for RBP as p is varied and increasing numbers of documents are
considered in the ranking for one of the submitted TREC-5 runs, for (a) a pool depth of 10; and (b) a
pool depth of 100. Note how the upper and lower bounds stabilize as the depth d of the evaluation
is increased, but, for larger values of p, do not converge if the pool depth on which the relevance
judgments are based is too small.

increased accuracy in the estimated effectiveness values. Comparing the left-
hand and right-hand graphs in Figure 5 shows that increasing the depth of the
pool of relevance judgments allows convergence toward accurate scores, with
(in the right-hand graph) the upper bound closing on the lower bound even
when p = 0.95. The balance between p, the accuracy of the score, and the
cost of relevance evaluations, is something that can be designed into retrieval
experiments in a manner that is simply not possible with AP.

4.5 Choosing a Value for p

An obvious question is that of choosing a value for p. Ideally that choice would
be made during the design phase of any experiment, as an estimate of the
type of user characteristic being tested in the experiment, and as a parameter
that helps determine how much the experiment will cost if it is to yield data
of a specified accuracy. Alternatively, the choice of p can be made after the
experiment has been carried out, in which case the accuracy of the resulting
scores can be computed. A third option, for systems claimed to be “broad spec-
trum” and suitable for all types of users, would be to design the experiment
using a high value of p, and then report RBP results for several different value
of p.

Small values of p, less than around 0.5, place the bulk of their emphasis
on the first few positions in the ranking, and provide less balance across the
whole of a ranked list. However, this bias means that small values of p also
allow cheaper evaluation, because fewer documents need to be judged to obtain
a given level of accuracy in the scoring. As p gets larger, the emphasis on early
rank positions is reduced, and an increasing fraction of the total weighting is
available to later rank positions, modeling users who are more persistent, and
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Fig. 6. Rank-biased precision scores for two of the TREC-5 runs, averaged across 50 queries. Upper
and lower bounds for RBP at pool depth 10 are plotted as a function of p, together with the RBP
value computed for that value of p when the pool depth is 100. When p is large, the error tolerance
between the upper and the lower bounds is large for depth 10 evaluations. Increasing the pool
depth to 100 gives convergence even at high values of p. The line denoted System A is the same
system as illustrated in Figure 5.

likely to look at (in the Web search environment) the second or third page of Web
results. The weightings are still monotonic, and, even with p = 0.95, the docu-
ment in rank position 100 gets a weighting of just 0.6% of the document in rank
position 1. But increasing p toward 1 also implies that an increasing amount
of effort must be spent on relevance judgments, as otherwise the accumulated
imprecision is too large.

Figure 6 shows this balance for two TREC-5 runs, with RBP averaged over
the set of 50 applicable queries. As was also done for Figures 2, 4, and 5, the
relevance judgments at a pool depth of 100 performed for TREC-5 were used
to extract the set of relevance judgments that would have been formed if the
pool depth was only 10. Three lines are plotted in the graph for each of the
two systems: the upper and lower bounds on RBP with a pool depth of 10, and
the (indistinguishable at the scale of the graph) upper and lower bounds on
RBP when the pool depth is increased to 100. The pattern of the three curves
shows typical behavior: with an assessment pool depth of only 10, values of p
greater than around 0.7 lead to noticeable imprecision in the scores; but when
the assessment pool depth is increased to 100, values of p as large as 0.95 can
be handled with only small residual errors.

In summary, if reliable experiments with large p are required, the pool depth
used to form the relevance judgments must be high. On the other hand, reliable
scores can be generated using relatively shallow assessment pool depths when
p ≤ 0.8. Searching processes that are intended to be “high recall” should thus
be assessed with a relatively high value for p, whereas Web-user search tasks
can be assessed using a smaller value of p, and cheaper experiments.
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4.6 Discounted Cumulative Gain

In work first presented at SIGIR in 2000, Järvelin and Kekäläinen [2002] de-
scribed a metric they called discounted cumulative gain (DCG) that shares some
of the features of RBP. For a relevance vector R of length d , DCG is defined as

DCG-b =
b∑

i=1

ri +
d∑

i=b+1

ri

logb i
,

where b is a persistence parameter akin to our p parameter, and relevance
contributions are weighted more highly earlier in the ranking than they are
in the later rank positions. Järvelin and Kekäläinen [2002] suggested the use
of b = 2, and employed that value in their examples and experiments. The
intention of DCG is that high-ranking relevant documents give more satisfac-
tion than do low-ranking ones, the same notion as is built into RBP. However,
where RBP discounts relevance via a geometric sequence, DCG does so using a
log-harmonic one.

The change in discounting regime we propose in RBP is a critical one. Con-
sider what happens with a relevance vector R = 〈1, 1, 1, . . . , 1〉, representing a
ranking in which every retrieved item is relevant. With RBP, a score of close to
1.0 will be assigned, regardless of p, and regardless of the ranking depth, with
the discrepancy between the actual score and 1.0 completely accounted for by
the residual uncertainty. On the other hand, with DCG the maximum score
grows without limit as the answer ranking is deepened. To limit the value
of DCG to 1.0 for a given ranking depth, a scaling factor would be required,
and would depend on d . For example, a scaled DCG score calculated for a
ranking depth of d = 100 (for which the scaling constant would need to be
21.79 when b = 2) might decrease by a factor of almost 5 if the ranking depth
d was increased to 1000 (for which the corresponding scaling constant would
be 123.99).

Järvelin and Kekäläinen [2002] recognized the need for a normalized form
of DCG, and took a different approach to the scaling problem. Rather than com-
pute the normalization constant based on an “all relevant” ranking as hypoth-
esized in the previous paragraph, they suggested that it should be computed
relative to the DCG score of a “perfect” ranking at that depth, where a perfect
ranking lists all (known) relevant documents first, followed by all nonrelevant
documents. From our point of view, this approach is unsatisfactory, since, to
calculate a normalized discounted cumulative gain (NDCG) score in this way,
all relevant documents (and thus the value of R) must be identified. That is,
NDCG has the same issues as AP and P@R. A similar assumption weakens the
Q-measure of Sakai [2004], which was also proposed in both unnormalized and
normalized forms.

4.7 Other Extensions

A further part of the rationale for DCG and NDCG (see also Sakai [2004] and
Kekäläinen [2005]) is to provide for nonbinary relevance judgments, where
documents are considered to be relevant to varying degrees, and the vector
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R is constructed over a richer domain. In the experiments of Järvelin and
Kekäläinen [2002], ri ∈ {0, 1, 2, 3}, and the relevance judgments were four-way.

The same flexibility is readily accommodated in our framework, by scaling
the ri values to the unit range, and working with ri ∈ {0.00, 0.33, 0.67, 1.00} (or
any other desired subset of the real numbers 0 ≤ ri ≤ 1). Rank-biased precision
can then be used unchanged, with the RBP score reflecting the average per-
answer rate at which the user gains utility from the ranking, assuming that a
fractional relevance score reflects the fractional utility gained by the user when
that document is presented to them.

Also worth noting is that the definition of RBP is readily modified to handle
document rankings containing ties. For example, if the j documents in positions
k to k+ j −1 of the ranking are all deemed to be tied, then the score contribution
of each is given by (

∑k+ j−1
i=k pi−1)/j , so that the total score weight attached to

the group of documents is shared equally between them. Cooper [1968] and
Raghavan et al. [1989] considered a similar solution in connection with the
expected search length metric.

5. RBP VERSUS AP IN RETRIEVAL EXPERIMENTS

Rank-biased precision addresses many of the concerns that have been raised
in connection with average precision. However, AP is widely regarded as a re-
liable way of comparing system retrieval performance, and has accumulated
more than a decade of experimental confidence. It is thus natural to turn to ex-
periment, to compare the usefulness of rank-biased precision and other metrics.
We do this in two ways.

The first of these experiments makes direct use of the TREC evaluation
methodology, which has as one of its objectives a desire to order retrieval
systems, so that lessons can be inferred concerning techniques that work well
and other techniques that do not. The question we ask is this: how different is
the system ordering generated by RBP compared to the system orderings that
result when other effectiveness metrics are used? Table III shows the results.

To build Table III, system orderings were generated using the submitted
TREC-5 runs for each of a range of effectiveness metric computations and rel-
evance assessment pool depths. Each system ordering contained 61 system
run names, based on numeric average effectiveness scores, without regard to
whether or not the ordering of adjacent items could be defended via a signifi-
cance test. That is, each overall average system score was taken at face value,
and used to assign that system a rank in a “performance league table.”

The different system orderings were then pairwise compared using Kendall’s
τ , which calculates a numeric similarity score for a pair of ordered lists over
a common domain. A subset of those results appears in Table III. A score of
1.0 indicates that the two lists of system names are in exactly the same order,
while a score of −1.0 would indicate that one list is the reverse of the other.
Four reference orderings, all calculated using an assessment pool depth of 100,
are shown as the columns.

The preponderance of numbers greater than 0.8 in Table III shows that all
of the listed effectiveness metrics are generating similar system orderings, and
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Table III.
Kendall’s τ correlation coefficients calculated from the system order-
ings generated by pairs of metrics using the 61 TREC-5 runs. A value of
1.0 indicates perfect agreement between the two metrics, in terms of the
system ordering that they produce. The largest (nonself) value in each row
is highlighted in boldface, with the top part of the table showing that RR is
most like P@10; that P@10 is most like P@R; and that P@R is most like AP.
The bottom group of rows shows the same correlation coefficients for RBP.
When p = 0.5, RBP behaves most like RR. When RBP uses p = 0.8, the best
agreement is with P@10. When RBP uses p = 0.95, there is good agreement
with all of P@10, P@R, and AP.

Kendall’s τ , pool depth 100
Metric Pool

depth RR P@10 P@R AP
RR 10 0.997 0.841 0.749 0.733
P@10 10 0.839 1.000 0.861 0.846
P@R 100 0.748 0.861 1.000 0.905

RBP, p = 0.5 10 0.925 0.858 0.768 0.758
RBP, p = 0.8 10 0.887 0.930 0.822 0.812
RBP, p = 0.95 10 0.778 0.880 0.874 0.897
RBP, p = 0.95 100 0.791 0.913 0.896 0.863

NDCG 100 0.763 0.831 0.878 0.916

are thus carrying out broadly the same task. Worth noting, however, is that
RBP with p = 0.5 gives similar behavior to reciprocal rank; and that RBP with
p = 0.95 compares well to all of P@10, P@R, and average precision (which is
known to correlate well with P@R [Buckley and Voorhees 2005; Aslam et al.
2005]). Also worth comment is that RBP provides AP-similar system rankings
even when the relevance assessment pool depth is just 10. That is, in terms of
experimental cost, it may be preferable to use RBP with an assessment depth
of 10 than it is to use AP with a depth of 100. Similar results (not shown here)
were obtained when the same experiment was applied to the 127 system runs
submitted to TREC-8 in 1999, and when Spearman correlation coefficients were
computed rather than Kendall’s τ .

To put Table III into perspective, we also computed the Kendall’s τ correlation
scores for the relationships plotted in Figures 2 and 4. In the case of the Figure 2
comparison between AP with a pool depth of 10 and AP with a pool depth
of 100, the correlation score was 0.898. Figure 4 plots three sets of similar
relationships; the Kendall’s τ scores for p = 0.5, p = 0.8, and p = 0.95 were,
respectively, 1.000, 0.986, and 0.891.

In the second investigation, we tested the consistency of a range of metrics,
measured in terms of their ability to provide support for questions of the form
“are these two systems significantly different?” In this experiment, the 61
TREC-5 systems were pairwise compared over the 50 queries, using query
similarity scores computed using several different effectiveness metrics. For
each combination of system pair and evaluation metric, two statistical tests,
at two significance levels, were applied, and the number of pairwise system
comparisons that generated “yes, they are significantly different” outcomes
was counted.
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Table IV.
The rate at which different effectiveness metrics allow significant
distinctions to be made between retrieval methods. A total of 61 system
runs were pairwise compared using the TREC-5 queries, making a
total of 61 × 60/2 = 1830 system comparisons. The four columns show
the number of those tests that were judged to be significant using the
indicated statistical comparison. Of the traditional metrics, AP is the
most consistent, in terms of allowing systems to be experimentally
separated; of the RBP variants, that with p = 0.95 is the most consistent.
The NDCG measure is a little better than both RBP and AP. In all cases
the test undertaken was a two-tailed one, to answer the question “Are
the two systems significantly different?”

Wilcoxon t test
Metric

95% 99% 95% 99%
RR 1020 759 1000 752
P@10 1141 897 1150 915
P@R 1209 989 1142 931
AP 1259 1077 1164 969

RBP, p = 0.5 1067 834 1050 810
RBP, p = 0.8 1164 919 1166 917
RBP, p = 0.95 1231 1006 1209 987

NDCG 1291 1092 1269 1101

The results of the second experiment are shown in Table IV. The trend in
each column of the table is clear—of the conventional metrics in the top part
of the table, AP is more consistent than P@10 is more consistent than RR; and
using the RBP approach, evaluation using p = 0.95 is more likely to yield
system separation than is p = 0.8 or p = 0.5. The NDCG measure appears
to be even more consistent in its behavior. The same pattern is observed over
all four combinations of significance level and statistical test. We conclude that
RBP, with an appropriate choice of p, is comparable to existing metrics in terms
of its usefulness in supporting system comparisons.

6. CONCLUSION

We have defined a new measure of retrieval effectiveness, designed to address
the shortcomings that can be observed in the measures that are currently in
common use. Our rank-biased precision measure has the following attractive
properties:

—It is derived from a straightforward state-based model of user behavior that
has support in empirical user studies.

—It can be interpreted in an economic-modeling sense, as the average rate
at which the user gains utility from performing their search, including in
situations in which graded relevance judgments are being used.

—It measures only the behavior of the system as observed by the user, and it
does not rely on unknowns such as collection size, or the number of documents
relevant to each query.
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—It provides a mechanism for allowing calculation of the required ranking
depth if scores are to be presented to a certain level of accuracy.

—In the presence of uncertainty (partial rankings, or unjudged documents), an
error bound can be precisely determined.

—It is well defined even when a query has no answers.
—Depending on the parameter p chosen, it gives overall system rankings sim-

ilar to reciprocal rank, or similar to P@10, or similar to P@R and AP.
—It is as likely as comparable measures to lead to statistically significant sys-

tem comparisons.

In addition, we have shown how the use of RBP at the “performing judg-
ments” stage of an experiment can reduce the amount of effort needed (com-
pared to pooling) when TREC-style system comparisons are being carried out
using RBP as the evaluation metric [Moffat et al. 2007], noting that similar rela-
tionships based on MAP have also been proposed [Aslam et al. 2006; Carterette
et al. 2006; Cormack and Lynam 2006; Büttcher et al. 2007].

Needing to be weighed in the balance against these benefits are the following:

—For practical purposes RBP values are always strictly less than 1, since only
an infinitely long ranking of relevant documents can give rise to RBP = 1.

—Rank-biased precision scores reflect user satisfaction in absolute terms,
rather than in “relative to the maximum possible for this query” terms. It
may be that standardization [Webber et al. 2008] can be usefully applied to
RBP, but we have yet to explore this possibility.

—In any evaluation, the person reporting the experiment must choose a value
of p, and be willing to defend that choice to their target audience. If their
chosen p is significantly higher than the p used by the person designing the
experiment, then (a calculable level of) imprecision will result.

On balance, and taking both the drawbacks and benefits into account, we
believe that rank-biased precision provides a useful tool that will be of benefit
in all situations where recall, or precision, or some amalgam of them such as
average precision, might currently be used.

ACKNOWLEDGMENTS

Jamie Callan, Bruce Croft, Mark Sanderson, Ellen Voorhees, and William
Webber provided helpful assistance.

REFERENCES

ALLAN, J., CARTERETTE, B., AND LEWIS, J. 2005. When will information retrieval be “good enough”?
See Marchionini et al. [2005], 433–440.

ASLAM, J. A., PAVLU, V., AND YILMAZ, E. 2006. A statistical method for system evaluation using in-
complete judgments. In Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, S. Dumais, E. N. Efthimiadis, D. Hawking,
and K. Järvelin, Eds. ACM Press, New York, NY, 541–548.

ASLAM, J. A., YILMAZ, E., AND PAVLU, V. 2005. A geometric interpretation of r-precision and its
correlation with average precision. See Marchionini et al. [2005], 573–574.

ACM Transactions on Information Systems, Vol. 27, No. 1, Article 2, Publication date: December 2008.



2:26 • A. Moffat and J. Zobel

BORLUND, P. AND INGWERSEN, P. 1998. Measures of relative relevance and ranked half-life: Perfor-
mance indicators for interactive IR. In Proceedings of the Twenty-First Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, W. B. Croft, A. Moffat,
C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, Eds. ACM Press, New York, NY, 324–331.

BUCKLEY, C. AND VOORHEES, E. M. 2004. Retrieval evaluation with incomplete information. In
Proceedings of the Twenty-Seventh Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, M. Sanderson, K. Järvelin, J. Allan, and P. Bruza,
Eds. ACM Press, New York, NY, 25–32.

BUCKLEY, C. AND VOORHEES, E. M. 2005. Retrieval system evaluation. In TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, Cambridge, MA, Chapter 3, 53–75.
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