
Fast Phrase Querying With Combined
Indexes

HUGH E. WILLIAMS, JUSTIN ZOBEL, and DIRK BAHLE
RMIT University

Search engines need to evaluate queries extremely fast, a challenging task given the quantities
of data being indexed. A significant proportion of the queries posed to search engines involve
phrases. In this article we consider how phrase queries can be efficiently supported with low disk
overheads. Our previous research has shown that phrase queries can be rapidly evaluated using
nextword indexes, but these indexes are twice as large as conventional inverted files. Alternatively,
special-purpose phrase indexes can be used, but it is not feasible to index all phrases. We propose
combinations of nextword indexes and phrase indexes with inverted files as a solution to this
problem. Our experiments show that combined use of a partial nextword, partial phrase, and
conventional inverted index allows evaluation of phrase queries in a quarter the time required to
evaluate such queries with an inverted file alone; the additional space overhead is only 26% of the
size of the inverted file.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and effectiveness)

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Nextword indexes, phrase queries, query evaluation, Web
search

1. INTRODUCTION

Search engines are used to find data in response to ad hoc queries. On the Web,
most queries consist of simple lists of words. However, a significant fraction of
the queries include phrases, where the user has indicated that some of the query
terms must be ordered and adjacent, typically by enclosing them in quotation
marks. Phrases have the advantage of being unambiguous concept markers
and are therefore viewed as a valuable retrieval technique [Clarke et al. 1997;
Croft et al. 1991; de Lima and Pedersen 1999; Lewis and Croft 1990]. Moreover,
phrase querying has been described as being intuitive and is used with little
error [Spink and Xu 2000].

This research was supported by the Australian Research Council.
Parts of this article are based on “Efficient Phrase Querying with an Auxiliary Index,” by D. Bahle,
H. E. Williams, and J. Zobel, published in Proceedings of the ACM-SIGIR Conference on Research
and Development in Information Retrieval (Tampere, Finland, August 2002), pp. 215–221.
Authors’ addresses: School of Computer Science & Information Technology, RMIT University, GPO
Box 2476V, Melbourne 3001, Australia; email: {hugh,jz,dbahle}@cs.rmit.edu.au.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
C© 2004 ACM 1046-8188/04/1000-0573 $5.00

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004, Pages 573–594.

574 • H. E. Williams et al.

In this article, we explore new techniques for efficient evaluation of phrase
queries. A standard way to evaluate phrase queries is to use an inverted in-
dex, in which for each index term there is a list of postings, and each posting
includes a document identifier, an in-document frequency, and a list of offsets.
These offsets are the ordinal word positions at which the term occurs in the
document. Given such a word-level inverted index and a phrase query, it is
straightforward to combine the postings lists for the query terms to identify
matching documents. This does not mean, however, that the process is fast.
Even with an efficient representation of postings [Witten et al. 1999], the list
for a common term can require several megabytes for each gigabyte of in-
dexed text. Worse, heuristics such as frequency-ordering [Persin et al. 1996]
or impact-ordering [Anh et al. 2001] are not of value, as the frequency of a word
in a document does not determine its frequency of participation in a particular
phrase.

A crude solution is to use stopping, as was done by some widely used Web
search engines until recently—the Google search engine, for example, neglected
common words in phrase queries until 2002—but this approach means that a
small number of queries cannot be evaluated, while many more are evaluated
incorrectly [Paynter et al. 2000].

Another solution is to index phrases directly. A phrase query such as “albert
park lake” can be answered extremely quickly with this index, because answer
documents can be determined directly from the postings of that phrase. How-
ever, complete phrase indexes that cover all phrases in a given text are likely to
be prohibitive in size and construction time, while storing only selected phrases
creates the problem of how to effectively identify useful phrases in the absence
of queries.

In recent work, we proposed nextword indexes as a way of supporting phrase
queries and phrase browsing [Bahle et al. 2001a, 2001b;Williams et al. 1999].
In a nextword index, for each index term or firstword there is a list of the words
or nextwords that follow that term, together with the documents and word po-
sitions at which the firstword and nextword occur as a pair. The disadvantage
of a nextword index is its size, typically around half that of the indexed collec-
tion. Also, our original nextword index was inefficient because the nextwords
must be processed linearly and, compared to a standard inverted index, for rare
firstwords the overhead of the additional layer of structure may outweigh the
benefits.

In this article, we propose that phrase queries be evaluated through a com-
bination of an inverted index for rare words, a form of nextword index for the
commonest words, and a phrase index for the commonest phrases. We explore
the properties of phrase queries and show experimentally that query evalua-
tion time can be halved if just the three most common firstwords are supported
through a nextword index. We also show that directly indexing the 10,000 most
common phrase queries reduces query evaluation time by over 10%. The disk
overheads of these approaches are small and the benefits are substantial. The
main cost is of maintaining the additional index structures. For example, on doc-
ument insertion the number of inverted lists that must be modified is increased
by perhaps 10%–20%. The benefits are even greater when the two approaches

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 575

are combined: the complementary use of direct phrase indexing and a partial
nextword index reduces query evaluation to only a quarter of the time taken
with an inverted index.

We have observed that around 40% of ordinary ranked queries—those with-
out quotation marks—resolve successfully if processed as a phrase query. This
is unsurprising as, for example, it is rare that users put peoples’ names in
quotations when searching for home pages. It is also perhaps encouraged by
the behavior of popular engines that highly rank matches in which the query
terms are adjacent. This suggests that our phrase querying approach is a po-
tential method for a fast “first-cut” evaluation method, as it allows more rapid
identification of documents in which the terms occur as a phrase.

This article is structured as follows. Section 2 overviews the properties of
phrase queries, investigates the impact of stopping, and describes the test data
we used in our experiments. Section 3 explains how inverted indexes are used
in phrase query evaluation, and presents results using an efficient inverted
index. We describe the special-purpose partial phrase and nextword indexes in
Section 4, and show results of using a full nextword index for phrase querying.
In Section 5, we present our novel ideas for combining phrase and inverted
indexes for fast, space-effective query evaluation. Our results are presented in
Section 6, and our conclusions in Section 7.

2. PROPERTIES OF QUERIES

With large Web search engines being used daily by many millions of users,
it has become straightforward to gather large numbers of queries and see how
users are choosing to express their information needs. Some search engine com-
panies have made extracts of their query logs freely available. In our research,
we have made extensive use of query logs provided by Excite from 1997 and
1999, as well as more recent logs from other sources. These logs have similar
properties (with regard to our purposes), and we report primarily on the Excite
logs in this work. In the Excite log, after sanitizing to remove obscenity there
were 1,583,922 queries including duplicates. Of these, 132,276 or 8.3% were
explicit phrase queries, that is, they included a sequence of two or more words
enclosed in quotes. This is consistent with other studies of actual queries, which
have shown that about 5%–10% are explicit phrase queries [Spink et al. 2001;
Jansen and Pooch 2001]. Interestingly, we also found that almost exactly 41%
of the remaining nonphrase queries actually matched a phrase in an around
20-gigabyte (GB) Web dataset.

A surprising proportion of the phrases included a common term. Among the
explicit phrase queries, 11,103 or 8.4% included one of the three words that
are commonest in our dataset, the, to, and of. In total, 14.4% of the phrase
queries included one of the 20 commonest terms. In some of these queries the
common word had a structural function only, as in tower of london, and can
arguably be safely neglected during query evaluation. In other queries, however,
common words played an important role, as in the movie title end of days
or the band name the who, and evaluation of these queries was difficult with
the common words removed, especially when both the and who happen to be

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

576 • H. E. Williams et al.

common terms [Paynter et al. 2000]. Other all-stopword queries in the query
logs included to be or not to be, who are we, and all in all.

Taken together, these observations suggest that stopping or ignoring common
words will have an unpredictable effect. Stopping may yield efficiency gains, but
means that a significant number of queries cannot be correctly evaluated. We
experimented with a set of 122,438 phrase queries that between them matched
309 × 106 documents. Stopping of common words means that a query such as
tower of london must be evaluated as tower—london: the query evaluation
engine knows that the two remaining query terms must appear with a sin-
gle term between them. If the commonest three words are stopped, there are
390 × 106 total matches for all queries extracted from the log. However, these
are distributed extremely unevenly among the queries: for some queries the
great majority of matches are incorrect. The figure rises to 490 × 106 for the
commonest 20 words, and 1693×106 for the commonest 254 words, while a sig-
nificant number of queries, containing only stopped words, cannot be evaluated
at all.

It can be argued that stopwords are often insignificant, and that even a
document that is technically a mismatch—due to the wrong stopword being
present—may be just as likely to be relevant as a document where the match is
correct. However, it is worth emphasising that there are many queries in which
stopwords do play an important role. The words to and from are often stopped,
for example, but mismatches to the query flights to london are likely to be
incorrect. Another instance is that the word the often forms part of a description;
thus the moon should not match Web sites about a moon of Jupiter, Keith Moon,
or a book publisher. Examples in the Weblogs of queries that mismatch due
to stopping include so many roads and how many roads, and man in the moon
and man on the moon.

Among the phrase queries, the median number of words in a phrase is 2,
and the average is almost 2.5. About 34% of the queries have three words or
more, and 1.3% have six words or more. A few queries are much longer, such as
titles: the architect of desire beauty and danger in the stanford white
family by suzannah lessard.

Another point of interest is where in a phrase the common words occur.
In English, the common words rarely terminate a phrase query. Only 0.4%
of phrase queries containing the words the, to, or of have them at the end.
Almost all of these queries are short: virtually no queries of four words or more
terminate with one of the commonest terms. In the short queries ending in a
common term, the other query terms are themselves usually common. We take
advantage of these trends in the methods for phrase query evaluation proposed
in this article.

2.1 Test Data

We used the WT10g collection in our experiments. This collection is 10.27 GB
in size and contains around 1.67 million documents. The collection was created
from a Web crawl in 1997 and was motivated by the need for a realistic Web
collection that can be used to compare different retrieval methods in a constant

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 577

Table I. Frequently Occurring Words and Word-Pairs in WT10g

Word Document Count Word-Pair Document Count

the 1, 442, 962 of the 875, 373
to 1, 409, 600 to the 699, 322
of 1, 359, 221 with the 369, 047
and 1, 320, 093 home page 316, 342
for 1, 188, 776 in a 311, 550
in 1, 185, 007 will be 279, 379
on 1, 046, 783 with a 260, 492
is 998, 037 to a 225, 361
by 953, 516 that the 221, 836
this 896, 804 the first 204, 629
with 869, 809 you can 197, 432
or 827, 315 you have 161, 783
at 814, 872 to make 145, 685
all 799, 295 want to 144, 270
from 794, 283 well as 138, 491
are 791, 523 you are 137, 504
be 736, 281 which is 107, 897
that 724, 923 we are 106, 644
as 718, 672 we have 101, 024
an 684, 139 you to 85, 818

environment [Bailey et al. 2003; Soboroff 2002]. The collection was primarily
used at the TREC-9 and TREC 2001 conferences [Harman 1995; Voorhees and
Harman 2001].

Table I gives an overview of the most frequent words and word-pairs in
WT10g. The table shows that common words participate in forming common
word-pairs with the exception of the word-pair home page, which is composed
of two words that are both not among the twenty commonest words. Note that
most frequent word-pairs occur an order of a magnitude less often than most
frequent words.

3. INVERTED INDEXES

Inverted indexes are the standard method for supporting queries on large text
databases; there are no practical alternatives to inverted indexes that are fast
for ranked query evaluation. An inverted index is a two-level structure. The
upper level is a vocabulary or lexicon of all the index terms for the collection.
For text databases, the index terms are usually the words occurring in the text,
and all words are included. The lower level is a set of postings lists, one per
index term. Following the notation of Zobel and Moffat [1998], each posting is
a triple of the form

〈d , fd,t, [o1, . . . , o fd,t]〉,
where d is the identifier of a document containing term t, fd,t is the frequency
of t in d , and the o values are the positions in d at which t is observed. An
example inverted index is shown in Figure 1. In this example the vocabulary
has five words, each of which has a postings list.

It is straightforward to use an inverted index to evaluate a phrase query.
Consider the query hatful of hollow and the index in Figure 1. Of the query

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

578 • H. E. Williams et al.

Fig. 1. An inverted index for a collection with a vocabulary of five words.

terms, hatful is the rarest (it occurs once in one document, document 9 at word
position 4), and its inverted list is fetched first. The postings are decoded and a
temporary structure is created, recording the document that contains this word
and the ordinal word position at which it occurs. The term hollow is the next
rarest, and is processed next. For each document identifier and word offset in the
temporary structure created earlier, a posting is sought to see whether hollow
is in document 9 but two words later. If the search fails, that word position is
discarded from the temporary structure, as is the document identifier if no word
positions for that document remain. The result of this process is that document
9 at position 4 is the only location of the occurrence of hatful—hollow. As both
the structure and the postings are sorted, this process is a linear merge. Then
the postings list for of is fetched and decoded, and used to further delete entries
from the temporary structure or resolve the query. The remaining entries are
documents and word positions at which the phrase occurs, in this case document
9 at position 4.

This sorted phrase query algorithm for a query t1, . . . , tn of n > 0 words can
be stated as follows:

(1) Sort the n query terms t by their collection document frequency d f ,t such
that ti < ti+1.

(2) Fetch and decode postings for t1 into a set of (d , o) tuplesL, where the values
o are the offsets at in which t1 appears in d . To simplify merging, subtract
from each value o the position of t1 in the original phrase.

(3) For each remaining query term ti = t2, . . . , tn, fetch the postings for ti and
remove from L any postings for which there is no corresponding posting
in ti. That is, each ti has a set of (d , o) tuples, where the offsets have been
modified by subtracting from each value o the position of ti in the original
phrase. The new L is the intersection of the original L with the set of tuples
derived from the postings of ti.

The initial set of (d , o) postings in L is a superset of the set of answer docu-
ments. The above algorithm has a lower bound of n fetching operations for post-
ing lists and requires n − 1 merging steps. This bound must be implemented
to arrive at an accurate result. Resolving, for example, only postings for the
words hatful and hollow—for the album name hatful of hollow—could result
in answer documents that may contain a phrase such as hatful from hollow,

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 579

but not the original phrase. We can thus exit the algorithm when either L is
empty or postings for all words have been processed.

In this query evaluation model, processing of the first query term estab-
lishes a superset of the possible locations of the complete phrase, which are
maintained in a temporary structure; as the subsequent query terms are eval-
uated, this structure is pruned but never added to. It is therefore essential to
begin processing with the rarest query term, to avoid creation of an excessively
large temporary structure (or of having to process the inverted lists in stages
to stay within a memory limit). The rarity of a query term is approximated by
d f ,t and this is typically used to derive a query evaluation plan; document fre-
quency is an approximation because it is the number of documents containing
the term, and not the total term occurrences in the collection.

A simple heuristic to address this problem is to directly merge the inverted
lists rather than decode them in turn. On the one hand, merging has the dis-
advantage that techniques such as skipping [Moffat and Zobel 1996] cannot
easily be used to reduce processing costs (although as we discuss later skipping
does not necessarily yield significant benefits). On the other hand, merging of
at least some of the inverted lists is probably the only viable option when all
the query terms are moderately common.

Whether the lists are merged or processed in turn, the whole of each list
needs to be fetched (unless query processing terminates early due to lack of
matches). For ranked query processing it is possible to predict which post-
ings in each inverted list are most likely to be of value, and move these to
the front of the inverted list; techniques for such list modification include
frequency-ordering [Persin et al. 1996] and impact-ordering [Anh et al. 2001].
With these techniques, only the first of the inverted lists need be fetched during
evaluation of most queries, greatly reducing costs.

In contrast, for phrase querying it is not simple to predict which occurrences
of the term will be in a query phrase, and thus such reordering is unlikely to be
effective. Offsets only have to be decoded when there is a document match, but
they still have to be retrieved. Perhaps the only obvious optimization is that,
once a superset of possible matches is established, a list can be abandoned
if a posting is for a document that has an ordinal number greater than the
largest in the temporary structure; however, this relies on the postings being
document-ordered and we use this optimization in our experiments.

Other techniques also have the potential to reduce query evaluation time,
in particular skipping [Moffat and Zobel 1996], in which additional informa-
tion is placed in inverted lists to reduce the decoding required in regions in
the list that cannot contain postings that will match documents that have been
identified as potential matches. On older machines, on which CPU cycles were
relatively scarce, skipping could yield substantial gains. On current machines,
however, disk access costs are the more important factor, and in other experi-
ments we have observed that the increase in length of lists required by skipping
outweighs the reduction in decoding time. We therefore did not use skipping in
our experiments.

As discussed previously, another additional strategy that could be efficient is
stopping. Despite the false matches, there is significant potential for efficiency

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

580 • H. E. Williams et al.

Table II. Average Times for Phrase Querying
with an Inverted Index Using the 132,276

Phrase Entries in the Excite Query Log
Resolved on WT10g

Retrieval Time (s)
Phrase
Length Full Index Stopped Index

All 1.04 0.20
2 0.35 0.17
3 1.62 0.26
4 3.73 0.26
5 3.80 0.26
6 4.67 0.30
7 4.99 0.29

gains. We have implemented a phrase query evaluator based on inverted lists,
using compression techniques similar to those employed in the open-source
MG text retrieval engine and described by Witten et al. [1999]. We used this
implementation to test the efficiency of phrase query evaluation using the
Excite query log and WT10g. The initial inverted index size for WT10g is
around 1,429 MB, and stopping results in avoiding processing posting lists
that are around 427 MB in total size. A stopped inverted index thus requires
1,002 MB.

Average retrieval times sorted by query length in words are shown in Table II.
The row labeled All shows the average time for all queries, while the remaining
rows are concerned with average retrieval times for two- to seven-word queries.
The second column shows average retrieval times for the evaluation of all query
words and the third column shows timings for phrase query evaluation with a
carefully constructed list of 490 stopwords.

Our results show that an average query of more than two words without stop-
ping requires more than one second to evaluate. In contrast, stopped queries
are on average 5 (for two words) to 17 (for seven words) times faster. However,
this improvement comes at the expense of accuracy: querying without stopping
results in a total of around 107 million answer documents, while stopping re-
sults in about 733 million answer documents. It is therefore unclear whether
the tradeoff between efficiency and effectiveness favors stopping.

4. PHRASE INDEXES

A phrase index is an inverted index where the items stored in the vocabulary
are word sequences rather than individual words. A partial phrase index stores
information about selected phrases, and can thus only be used to answer queries
on these phrases efficiently. Complete phrase indexes are likely to be prohibitive
in construction time and space requirements, while partial indexes are only
effective if frequently queried phrases have been indexed.

Partial phrase indexes can be categorized further into phrase indexes that
keep track of all phrases with a certain length or phrase indexes that keep
track of arbitrarily long selective phrases. Again, a partial index with selec-
tive phrases of any length is effective if many future queries can be reliably

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 581

Fig. 2. A partial phrase index with a vocabulary of five popular phrases.

predicted. The same argument applies to partial phrase indexes for phrases
of a length l , because a phrase index with l = 3 cannot be used efficiently to
answer two-word queries, but is effective and efficient if a high percentage of
all queries have three words or more.

We experiment with two types of partial phrase index in this article:

—partial phrase indexes, where selected phrase queries of lengths l ≥ 2 are
stored as terms in a conventional inverted index structure; and

—partial nextword indexes, a structure that is organized for efficient evaluation
of phrases of length l = 2.

We describe these two classes of phrase index in detail in this section.

4.1 Partial Phrase Indexes

A partial phrase index stores phrases that are exact matches to queries [Gutwin
et al. 1998]. An example is shown in Figure 2, where five common phrases are
stored with postings lists. Each posting has the form

〈d , fd,p〉,
where d is a document containing phrase p and fp,t is the frequency of p in d .
Offsets are not stored, as we only experimented with exact matching and so the
location of the phrase within a document was not required.

Query evaluation using this structure is straightforward. For each phrase
query posed by a user, the phrase vocabulary is searched. When an exact match
is found, the postings list is retrieved, and the document identifiers used to
retrieve and display the answers. If an exact match is not located, then another
approach must be followed to resolve the query; possible choices include the
partial nextword index structure we describe in the next section, or using an
inverted index and the conventional algorithm we described previously.

The partial phrase index affords the greatest efficiency savings for common
queries and for queries that are difficult to resolve using other approaches. For
example, with only an inverted index, the phrase query new york requires the
retrieval and processing of the long postings list for the common word new. In
contrast, the postings list for the phrase new york in the partial phrase index
is at most as long as the postings list for york and probably somewhat shorter.
Moreover, precomputation of the answer set saves the cost of merging lists.

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

582 • H. E. Williams et al.

The usefulness of a partial phrase index is dependent on successfully pre-
dicting future queries and storing them in the structure. A simple approach is
to store frequent past queries, and we report experiments with this approach
later. Consider the queries lord of the rings and britney spears that occur
12 and 59 times, respectively, in our log. We can speculate that a frequent phrase
in the past can indicate a high likelihood for its recurrence in the future. It is
thus straightforward to argue that a frequent query, such as the latter query,
should be part of the phrase index.

However, given a stream of queries over a long period and a fixed volume
of memory, a strategy may also be required to update the vocabulary so that
the least recently used or least frequently used queries are replaced; we have
not experimented with this in practice. This strategy is a form of query-result
caching, which has been shown to significantly reduce the cost of processing a
stream of queries [Saraiva et al. 2001]; in contrast to standard caching strate-
gies, however, our intention is to maintain collections of queries for which in-
verted lists rather than explicit answers sets are maintained. There may also
be better strategies for choosing queries—such as selecting those that are dif-
ficult to evaluate with an inverted index or weighting the choice to those that
have occurred more recently—but we leave this for future work when larger
query logs are available.

Interestingly, in contrast to our motivating example new york, common
phrase queries do not appear to be those that are difficult to evaluate. How-
ever, as we show later, the partial phrase index is still efficient because the
total saving over the set of common queries is significant. For example, in
the Excite log we used in our experiments, the most common queries were
(with frequency in brackets): thumbnail posts (198), thumbnail post (198),
jennifer lopez (126), the cranberries (79), and santa claus (76). With the
exception of the cranberries, there are no common words in the queries that
would necessitate the retrieval of long inverted lists from a word-based inverted
index.

A related approach to partial phrase indexing is using an inverted index and
approximating phrases through a ranked query technique [Clarke et al. 1997;
Lewis and Croft 1990]. We did not experiment with this approach in the work
we report on in this article.

4.2 Nextword Indexes

Fast phrase query evaluation is possible with the partial phrase index described
in the previous section. However, when an exact match cannot be found, a differ-
ent strategy is required. One possibility is to resort to evaluation using the con-
ventional inverted index approach described in Section 3. Another possibility is
to use another special-purpose structure for phrase querying that complements
the partial phrase index and is faster than an inverted index.

An efficient, special-purpose structure with no additional in-memory space
overheads is the nextword index [Williams et al. 1999], a search structure de-
signed to accelerate processing of word pairs. As noted previously and observed
elsewhere, the commonest number of words in a phrase is two [Spink et al.

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 583

Fig. 3. A nextword index with two firstwords.

2001]. In addition, a phrase query can never be less than two words in
length, and therefore all phrase queries can be decomposed into (overlapping or
nonoverlapping) pairs of words; as we show later, this permits using a nextword
index to resolve phrase queries of all lengths.

A nextword index is similar to an inverted index in that it uses a set of distinct
terms at the root, and posting lists at the bottom of the retrieval structure.
However, a nextword index is a three-level structure that is optimized for the
retrieval of word-pairs. (For clarity we use inverted index solely to refer to a
standard word-level inverted file. However, we note that nextword indexes are
a form of inverted index.)

In a nextword index, any distinct word-pair such as web page is composed
of two words v = “web” and w = “page” and we call a distinct word v a
firstword, while w is a nextword of v. Nextword indexes organize firstwords
and nextwords such that each firstword is associated with a set of nextwords,
and each nextword in turn has a posting list. Finding the word web, then its
nextword page, and then retrieving the posting list is thus equivalent to an-
swering the phrase query web page [Williams et al. 1999].

Part of an example nextword index is shown in Figure 3. In this example,
there are two firstwords shown, hatful and of. Two of the nextwords for of
are hollow and house. The firstword hatful has only one nextword, of. For
each firstword-nextword pair, there is a postings list. Posting information for
word-pairs is organized as for inverted indexes.

Using the same syntax as previously, but replacing the notation for a word
w with the notation of a word-pair wp, a nextword postings list is as follows:

fwp, 〈d , fd,wp, [o1, . . . , on]〉, . . . , 〈. . .〉.
Posting lists begin with fwp, the number of documents in which a word-pair wp
occurs. The remaining information are triples, which repeat fwp times. Every
such triple stores information about the occurrence of wp in a document d . The
document word-pair frequency fd,wp shows how often a document d contains
wp, and the o values indicate the ordinal position of wp in d .

The postings lists in nextword indexes are typically short, because most pairs
occur infrequently. For example, the postings list for the firstword-nextword
pair the·who is orders of magnitude smaller than the postings lists for these

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

584 • H. E. Williams et al.

words in an inverted file. It follows that phrase query evaluation for such pairs
can be extremely fast.

The original description of nextword indexes [Williams et al. 1999] proposed
storing nextwords in an alphabetically sorted front-coded list on disk. Consider
a firstword of that has nextwords that include an, a, and, and at. These are
sorted alphabetically and compressed by storing the length in characters of the
common prefix between the current word and the previous word, the number
of new characters that suffix that prefix, and then the suffix itself. For our
example, the nextwords are represented as

〈0, 1, a〉 〈1, 1, n〉 〈2, 1, d〉 〈1, 1, t〉.
This representation requires that the nextword list be processed sequentially,

that is, each word can only be decoded relative to the previous word. Williams
et al. [1999] stored the integer values using a fast, variable-byte representa-
tion [Williams and Zobel 1999] and stored the suffix characters in ASCII.

We use a simple variation of the original approach that affords faster process-
ing of nextwords. We store every

√
fv,wth nextword in a main-memory array,

where fv,w is the total number of nextwords w for that firstword v. Each entry
holds a nextword, a pointer to its posting list, and a pointer to the next nextword
in the nextword list. The in-memory array is searched sequentially for a close
match, and the on disk list is searched for an exact match in a second step;
since nextwords are stored uncompressed in main-memory, random access to
the front-coded nextword list is possible. (We experimented with many different
variants of this main-memory approach, and found this to be the most efficient
and effective.)

For phrase queries of more than two words, multiple postings lists must be
fetched from the nextword index to resolve the query. Selection of which listings
to fetch requires care. For example, the query

boulder municipal employees credit union

can be resolved by fetching the lists for the pairs boulder·municipal, em-
ployees·credit, and credit·union. Alternatively, it is possible to fetch the lists
for boulder·municipal, municipal·employees, and credit·union. The most effi-
cient plan depends on whether the list for employees·credit is shorter than the
list for municipal·employees.

Unfortunately, establishing which list is shorter requires two disk accesses,
to retrieve the nextwords for employees and municipal. However, we have ob-
served that the frequency of a firstword closely correlates to the length of its
nextword list. Thus, for example, in the query

historic railroads in new hampshire

we can with confidence choose railroads·in in preference to in·new, because
railroads is much less common than in.

Generalizing, if the number of query terms n is even, the query can consist
of n/2 disjoint firstword-nextword pairs. If the number of query terms n is odd,
�n/2� firstword-nextword pairs must be chosen. However, in both cases it is
more efficient to choose more than the minimum number of pairs, if doing so

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 585

Table III. Retrieval Times (s) for Inverted and
Nextword Indexes with Phrase Queries from the

Excite Query Log Resolved on WT10g

Phrase Length Inverted Index Nextword Index
All 1.04 0.02
2 0.35 0.01
3 1.62 0.04
4 3.73 0.03
5 3.80 0.27
6 4.67 0.10
7 4.99 0.16

avoids the choice of a common word as a firstword. We have described and
evaluated algorithms for choosing order of evaluation elsewhere [Bahle 2003;
Bahle et al. 2001b].

Summarizing our discussion, an efficient algorithm for evaluating phrase
queries q1, . . . , qn with a nextword index is as follows:

(1) Identify all n − 1 firstword-nextword pairs qi · qi+1; then sort them by in-
creasing firstword frequency; then discard from the list the pairs that are
completely covered by preceding selections.

(2) This yields a sequence of pairs P1, . . . , Pm. Each pair has an inverted list.
These lists are processed in turn as for phrase processing with an inverted
file.

The nextword index for the WT10g collection is 2.75 GB in size, almost ex-
actly twice that of an inverted file. As shown in Table III, the savings in query
evaluation times are dramatic. Average query evaluation time is reduced to
0.02 s, faster than inverted files by a factor of around 50. For two-word queries,
the time falls to 0.01 s from 0.35 s. Similar savings are observed for all query
lengths, with (for the higher lengths) variations due to behavior on individual
problematic queries.

An interesting possibility suggested by these results is that—given space for
a nextword index—all queries be evaluated as if they were phrases. We observed
in the introduction that around 41% of all queries in the Excite log successfully
evaluate as phrase queries, and indeed on browsing the query logs it is obvious
that many of the queries without quotation marks are nonetheless intended to
be phrases. Spink et al. [2001] suggested that most two-word queries should be
treated as a phrase queries even if they were entered as a ranked queries. Given
that search engines return as highest matches the pages in which the query
words appear in sequence, use of a nextword index provides a rapid mechanism
for finding these pages.

Much of the speed improvement for phrase queries yielded by nextword in-
dexes is for queries involving nonrare words. Indeed, for queries of rare words
there may be little gain, as query processing with nextword indexes involves
more complex structures than does processing with inverted indexes. As the
two approaches to phrase query processing appear to have complementary ad-
vantages, it is attractive to try to combine their strengths, and we explore this
in the next section.

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

586 • H. E. Williams et al.

5. COMBINED QUERY EVALUATION

We observed in Section 3 that inverted indexes are slowest for phrases involv-
ing common words, the case where nextword indexes yield the greatest speed
advantage; however, we have also shown that a nextword index is a large struc-
ture. Phrase indexes provide a third dimension to this tradeoff: they can be used
to manage index information for common queries (as opposed to queries involv-
ing common words). It is therefore attractive to combine the approaches so that
the benefits of speed for nextword index and partial phrase index evaluation,
and a compact inverted index, are combined.

Different methods of combining are considered below and all these have one
aim, to construct a compact partial phrase or partial nextword index that is used
together with a complete inverted index. Nextword and phrase indexes should
arguably be partial, because certain queries can be resolved as efficiently with
the inverted index. In contrast, the inverted index must be complete, because
other query modes—such as ranked or Boolean querying—still need to be fully
supported.

5.1 Combined Inverted and Nextword Indexes

We propose that common words only be used as firstwords in a partial nextword
index, and that this new index be used where possible in evaluation of phrase
queries. We have explored other schemes based on the frequency of words in the
indexed collection, or based on the frequency of words in the query log. None of
these offered a better space and time tradeoff.

An example of a combined index is shown in Figure 4. At the left there is a
vocabulary of five words. Each word has an inverted list, together constituting
a complete inverted file for these words. In addition, the common words of and
was have a nextword index.

With a combined index, processing involves postings lists from both the
inverted index and the nextword index. Consider again the query hatful of
hollow. The term hatful is not a common word, so establishing that it occurs in
the phrase involves fetching its postings lists from the inverted index and pro-
cessing in the usual way. However, since of is common, there is a choice: first, we
can retrieve the posting list for the firstword-nextword pair of·hollow from the
partial nextword index; or, second, we can to retrieve the posting lists for of and
hollow from the inverted index, and process in the usual way. The benefit of the
first approach is that the nextword index postings list for of·hollow cannot be
longer than the inverted index postings list for hollow and in all likelihood is a
great deal shorter. On the other hand, compared to the inverted index, an extra
disk access is required to fetch a postings list from the nextword index. In our
implementation, we process using the nextword index if possible, and resort to
the inverted index only for terms that are not in an indexed firstword-nextword
pair.

In summary, we identify all pairs in the list in which the first term is an
indexed firstword, and all terms not in a firstword-nextword pair. The post-
ings lists are then processed in increasing order of collection document fre-
quency d f ,t , so that processing of nextword index lists and of inverted file lists

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 587

Fig. 4. A combined inverted file and partial nextword index.

is interleaved. In this model, a common word need only be evaluated via its
postings list in the inverted file if it occurs as the last word in a query, which is
rare in the Excite query log.

We state this algorithm as follows. For a phrase query, q1, . . . , qn with n > 1
words, we make use of both inverted and nextword indexes:

(1) Create a set P = {P1, . . . , Pm} of pairs qi · qi+1 such that qi is an indexed
firstword.

(2) Form set Q of the remaining query terms.
(3) Associate the document frequency with each member of P and Q.
(4) Form the union R = P ∪ Q, and sort the members of R by increasing

document frequency.
(5) This yields a sequence of members R1, . . . , Rm, where m ≤ n. Each mem-

ber has an inverted list. These lists are processed in turn as for phrase
processing with an inverted file.

We have tested other query resolution methods that involved term sorting
based on nextword frequency fv,w, firstword frequency (the number of pairs
in the collection in which the firstword appears as the left-most word), and
combinations of these and document frequency. We also experimented with
resolving nextword entries of a given query always first, or always last. We
found overall that these different resolution methods did not significantly vary
in query speed and behaved almost identically to sorting by document frequency
only. We therefore sorted inverted index terms and nextword terms based on
document frequency since we did not need to keep another statistical value per
index term and sorting was straightforward.

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

588 • H. E. Williams et al.

5.2 Combined Inverted and Phrase Indexes

The second combination that we propose is that common phrases be evaluated
with a partial phrase index where possible, and that otherwise an inverted
index be used. In this approach, the vocabulary of searchable terms consists
of both words and phrases, and each search term has an inverted list. In our
implementation, we stored the phrase vocabulary in a separate, compact search
structure [Zobel et al. 2001].

With this combined index, processing involves postings lists from both the
inverted index and the partial phrase index. Consider again the query new york,
and the phrase index shown in Figure 2. This phrase is treated as a single term,
and looked up in the phrase vocabulary. As it is present in the structure, the
postings list is retrieved and the query evaluation is complete. Consider our
other query hatful of hollow. Again, the phrase is treated as a single term
and searched for in the partial phrase index. As it is not present as a phrase,
the inverted index is used as described in Section 3 to evaluate the query. The
benefits of finding a query new york in the phrase index are that a short postings
list is retrieved—it cannot be longer than the lists for either new or york—and
no management of temporary structures or merging is required. In contrast,
the drawback of not finding the query hatful of hollow in the phrase index is
that an extra lookup is required prior to the standard query evaluation being
followed.

We state this algorithm as follows. For a phrase query, q1, . . . , qn with n > 1
words, we make use of both inverted and partial phrase indexes:

(1) Using the partial phrase index, look for an exact match to the query q1 . . . qn.
(a) If found, fetch and decode the postings.
(b) If not found, then proceed with the inverted index query plan described

in Section 3 beginning with sorting the n query terms t by their collec-
tion document frequency.

As discussed previously, we have not experimented with using partial phrase
indexes for partial matching. For example, the query new york city can be
resolved using the partial phrase index to find the locations of new york and
merging with the inverted index postings list for city. However, this requires
that all contiguous overlapping subphrases of the query be searched for in the
partial phrase index (in this example, new york city, new york, and york city),
or that a heuristic be available to determine which phrases are likely to be
in that index. Moreover, a requirement for partial matching prohibits the use
of hashing, the fastest lookup technique for this application, and it is only in
phrases of more than two words that it would be of value. It seems unlikely that
approaches of this kind would be faster in practice than resolving the query
using conventional techniques, and we chose not to continue the investigation
of partial matching.

5.3 Three-Way Index Combination

The third and final combined index that we consider is that of a partial
nextword, partial phrase, and complete inverted index. As discussed previously,

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 589

Table IV. Overheads for a Combined Inverted and Partial
Nextword Index, with Different Numbers of Common Words Used

in the Nextword Index; The Percentage Is the Index Size
Compared to Original Data Size

Number of Firstwords

3 6 12 24 48 96 192
Disk (MB) 192 309 404 514 619 730 865
Disk (%) 1.83 2.94 3.84 4.89 5.88 6.94 8.23
Memory (kB) 30 55 92 149 230 366 594

we believe this combination is likely to yield significant advantages: the partial
nextword index can accelerate the processing of word pairs that begin with a
common word, the partial phrase index can resolve frequent phrases that do
not typically contain common words, and the inverted index can be used for the
remaining, less difficult cases.

As we consider only exact matching with the partial phrase index, there is
only one possible strategy for query evaluation with this combination. First, a
phrase query is looked up in the partial phrase index; if it is found, then the
query is resolved and, if not, a second step is required. Second, the combined
plan for a partial nextword and complete inverted index is pursued: as detailed
previously, word pairs in which the firstword is present in the nextword index
are evaluated with the nextword structure, while the remaining terms are eval-
uated through the inverted index; processing is ordered by increasing document
frequency.

We state this algorithm as follows. For a phrase query, q1, . . . , qn with n > 1
words, we make use of the full inverted, partial phrase, and partial nextword
indexes:

(1) Using the partial phrase index, look for an exact match to the query q1 . . . qn.
(a) If found, fetch and decode the postings.
(b) If not found, then proceed with the combined inverted and nextword

index plan described in Section 5.1.

6. EXPERIMENTAL RESULTS

In this section, we report our experiments with combined indexes for phrase
querying. We use the Excite phrase query log and WT10g collection described in
Section 2.1. All experiments were run on an Intel 700-MHz Pentium III-based
server with 2 GB of memory and data stored on local disks, running the Linux
operating system under light load.

6.1 Inverted + Nextword

In Table IV we show sizes of nextword indexes in which only the commonest
terms are allowed as firstwords. The table shows that a nextword index that
contains only the three commonest terms consumes 192 MB, that is, just over
13% of the space of the inverted index or around 2% of the size of the original
HTML collection. The main-memory overheads of storing frequent words, and
the structure to support skipping into nextword lists, are insignificant.

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

590 • H. E. Williams et al.

Fig. 5. A plot of times for phrase query evaluation (seconds) on a combined index versus space
required (megabytes) for the index structures. The space requirements are those shown for the
numbers of firstwords listed in Table IV. The solid line shows overall performance for all query
lengths. The other lines show the performance for queries of length n = 2 to n = 7.

Query evaluation time with a combined index is shown in Figure 5. The
figure shows the tradeoff between the size of the additional index structures—
as shown in Table IV—and query evaluation times. As can be seen by the solid
line, phrase query evaluation times fall dramatically as additional structures
of less than 200 MB are added to the inverted index structures. Indeed, use of
a partial nextword index of 2% of the HTML collection size more than halves
query evaluation time; a partial nextword index of 4% of the size of the collection
cuts time to a third. These are substantial savings at low cost. Perhaps the most
significant impact is on index update costs, as the number of inverted lists to
be modified on a document insertion is increased by the number of distinct
firstword-nextword pairs in that document. With a nextword index on the three
commonest words, the increase in number of lists would be around 10%. The
increase in maintenance time would be smaller than 10%, as short lists are
relatively cheap to modify.

6.2 Inverted + Phrase

As discussed previously, entries in our partial phrase index were selected from
frequent past queries. To do this, we split the Excite query log in half, and we
referred to the first and last 66,000 queries as the head and tail of the log,
respectively. We used the most frequent 100, 1000, and 10,000 distinct phrase
queries from the head of the query log to determine phrase index entries, and
used the tail for querying. In all, we executed four experiments, one with the
full inverted index structure to determine a baseline measure and three more
with the above phrase index configurations. The space required to store the

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 591

Table V. Average Query Times (s) for Inverted Index Queries from Tail
of Query Log with Phrase Indexes Constructed from the Most
Frequent Head Queries of the Excite Query Log, Taking the

Top 0, 100, 1,000, and 10,000 Queries

Number of Frequent Queries
Query
length 0 100 1,000 10,000
All 1.04 1.03 0.98 0.89
2 0.35 0.34 0.29 0.25
3 1.62 1.61 1.57 1.44
4 3.73 3.74 3.51 3.15
5 3.80 3.67 3.64 3.58
6 4.67 4.68 4.69 4.46
7 4.99 5.00 5.01 4.94

phrase indexes was less than 0.1% of the collection size: 2.1 MB, 4.8 MB, and
12.8 MB, respectively, for the three experiments.

The average times for resolving the 66,000 tail queries with the inverted
index and the three partial phrase indexes are shown in Table V. Average
timings are shown for all queries and for queries with lengths from two to seven
words. Overall, storing 10,000 queries in the partial phrase index reduced the
average query evaluation cost by around 15%.

Around 70% of all queries in the larger of our three partial phrase in-
dexes were two-word queries, 21% three-word queries, and about 6% four-word
queries. There were also longer queries such as an american dictionary
of the english language and los angeles department of water and power,
but queries of this length were rare and, in any case, the 10,000 most fre-
quent queries included some that occurred only once. As discussed in Section 5,
larger-scale studies of how to choose and maintain a phrase index are desirable
but would require larger, publicly available query logs.

We expected, based on the above observations, that short queries would im-
prove on query time efficiency, rather than long queries. This expectation was
met by the results, where queries with five to seven words improved at best
by about 6% in comparison to shorter queries, which for two words improved
by around 29%. These results are particularly good considering that we used
a simple scheme of selecting phrases based on frequency of occurrence, and
additional memory and disk storage costs were tiny.

6.3 Inverted + Phrase + Nextword

Table VI shows the average timings for phrase queries of lengths of two to
seven words for the inverted index, and for partial nextword and phrase in-
dexes used in combination with the inverted index. Comparing these results
to those in the previous two sections shows that the improvements afforded by
both phrase querying structures were complementary. That is, both phrase and
nextword indexes improved subsets of queries that did not overlap significantly.
For example, queries with a length of two words have improved by 60% com-
pared to the inverted index and partial phrase index combination, and by 15%
compared to the combined inverted index and partial nextword index. Overall,

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

592 • H. E. Williams et al.

Table VI. Average Query Times (s) of Around 66,000 Tail Queries Resolved with a
Combined Full Inverted Index, an Index of 10,000 Common Phrases, and a Nextword

Index Based on 0 to 192 Most Common Firstwords

Number of Firstwords
Query IF
Length Only 3 6 12 24 48 96 192
All 1.04 0.41 0.30 0.27 0.26 0.24 0.22 0.20
2 0.35 0.14 0.14 0.14 0.13 0.13 0.12 0.11
3 1.62 0.64 0.39 0.31 0.28 0.25 0.22 0.17
4 3.73 1.32 1.00 0.92 0.88 0.84 0.81 0.74
5 3.80 1.62 1.13 1.06 0.95 0.89 0.85 0.77
6 4.67 1.78 1.39 1.33 1.21 1.12 0.91 0.81
7 4.99 2.31 1.41 1.41 1.37 0.78 0.63 0.56

Table VII. Summarizing Space and Time Efficiencies Observed in All
Experiments with WT10g

Scheme Total Index Size (MB) Av. Query Time (s)
Inverted 1429 1.04
Inverted (stopping) 1002 0.20
Nextword index 2816 0.02
Inverted + nextword, 24 firstwords 1943 0.31
Inverted + phrase, top 10,000 1442 0.89
Combined 1956 0.26

depending on the choice of number of firstwords in the partial nextword index,
phrase querying was between 60%–80% faster than using an inverted index
alone.

7. CONCLUSIONS

Phrase queries are important tool for meeting information needs: around 10%
of queries to Web search engines are explicit phrase queries, and more than
40% of all queries have answers if they are evaluated using phrase techniques.
We have proposed that phrase queries on large text collections be supported by
the use of small auxiliary indexes. In this approach, all words in the text are
indexed via an inverted file; in addition, the commonest words are indexed via
an auxiliary nextword index and the commonest phrases are indexed as terms
in the inverted index. The nextword index stores postings lists for firstword-
nextword pairs. We have experimented with different combinations of these
structures.

Table VII summarizes the results from our experiments. Phrase querying
with an inverted index alone is slow at an average of 1.04 s/query. In the past,
search engines have chosen to solve this problem by introducing stopping, which
we have found reduces times to around 0.20 s/query but introduces mismatches
and prevents queries containing only common words from being evaluated at
all. Search engines no longer use stopping in phrase querying, and we agree
that stopping is unacceptable for this task.

Depending on the availability of disk, we have shown that our solutions can
reduce the average time to evaluate a phrase query to around or less than that
of a stopping-based approach. With a large, complete nextword index, phrase

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

Fast Phrase Querying With Combined Indexes • 593

querying is 50 times faster than using an inverted index or 10 times faster
than the stopped alternative. More practically, we have proposed that combi-
nations of partial phrase, partial nextword, and full inverted indexes be used
and we have shown that these are fast with low disk overheads. Most signif-
icantly, phrase querying with a combination of all three approaches is more
than 60% faster on average than using an inverted index alone and requires
structures that total only 20% of the size of the collection. We conclude that our
approaches make stopping unnecessary and allow fast query evaluation for all
phrase queries.

Our schemes have scope for improvement. In particular, we are further inves-
tigating structures for representing nextword lists. As larger query logs become
available, we are also keen to investigate other strategies for selecting common
phrases for the partial phrase index, and strategies for removing queries when
they become uncommon.

ACKNOWLEDGMENTS

We thank Amanda Spink, Doug Cutting, Jack Xu, and Excite Inc. for providing
the query log.

REFERENCES

ANH, V. N., DE KRETSER, O., AND MOFFAT, A. 2001. Vector-space ranking with effective early termi-
nation. In Proceedings of the ACM-SIGIR International Conference on Research and Development
in Information Retrieval (New Orleans, LA), W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel,
Eds. ACM Press, New York, NY, 35–42.

BAHLE, D. 2003. Efficient phrase querying. Ph.D. dissertation. School of Computer Science and
Information Technology, RMIT, Melbourne, Australia.

BAHLE, D., WILLIAMS, H. E., AND ZOBEL, J. 2001a. Compaction techniques for nextword indexes. In
Proceedings of the String Processing and Information Retrieval Symposium (San Rafael, Chile).
IEEE Computer Society Press, Los Alamitos, CA, 33–45.

BAHLE, D., WILLIAMS, H. E., AND ZOBEL, J. 2001b. Optimised phrase querying and browsing in text
databases. In Proceedings of the Australasian Computer Science Conference, M. Oudshoorn, Ed.
Conferences in Research and Practice in Information Technology. Australian Computer Society,
Gold Coast, Australia, 11–19.

BAILEY, P., CRASWELL, N., AND HAWKING, D. 2003. Engineering a multi-purpose test collection for
Web retrieval experiments. Inform. Process. Manage. 39, 6, 853–871.

CLARKE, C. L., CORMACK, G. V., AND TUDHOPE, E. A. 1997. Relevance ranking for one- to three-term
queries. In Proceedings of the Fifth RIAO International Conference “Recherche d’Information
Assistee par Ordinateur” (Montreal P.Q., Canada). 388–400.

CROFT, W. B., TURTLE, H. R., AND LEWIS, D. D. 1991. The use of phrases and structured queries in
information retrieval. In Proceedings of the ACM-SIGIR International Conference on Research
and Development in Information Retrieval (Chicago, IL), A. Bookstein, Y. Chiaramella, G. Salton,
and V. V. Raghavan, Eds. ACM Press, New York, NY, 32–45.

DE LIMA, E. F. AND PEDERSEN, J. O. 1999. Phrase recognition and expansion for short, precision-
biased queries based on a query log. In Proceedings of the ACM-SIGIR International Conference
on Research and Development in Information Retrieval (Berkeley, CA), M. Hearst, F. Gey, and
R. Tong, Eds. ACM Press, New York, NY, 145–152.

GUTWIN, C., PAYNTER, G., WITTEN, I., NEVILL-MANNING, C., AND FRANK, E. 1998. Improving browsing
in digital libraries with keyphrase indexes. Decis. Supp. Syst. 27, 1/2, 81–104.

HARMAN, D. 1995. Overview of the second text retrieval conference (TREC-2). Inform. Process.
Manage. 31, 3, 271–289.

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

594 • H. E. Williams et al.

JANSEN, B. AND POOCH, U. 2001. A review of web searching studies and a framework for future
research. J. Amer. Soc. Inform. Sci. Tech. 52, 3, 235–246.

LEWIS, D. D. AND CROFT, W. B. 1990. Term clustering of syntactic phrases. In Proceedings of the
ACM-SIGIR International Conference on Research and Development in Information Retrieval
(Brussels, Belgium), J.-L. Vidick, Ed. ACM, New York, NY, 385–404.

MOFFAT, A. AND ZOBEL, J. 1996. Self-indexing inverted files for fast text retrieval. ACM Trans.
Inform. Syst. 14, 4 (Oct.), 349–379.

PAYNTER, G. W., WITTEN, I. H., CUNNINGHAM, S. J., AND BUCHANAN, G. 2000. Scalable browsing for
large collections: A case study. In Proceedings of the ACM Digital Libraries (San Antonio, CA).
ACM Press, New York, NY, 215–223.

PERSIN, M., ZOBEL, J., AND SACKS-DAVIS, R. 1996. Filtered document retrieval with frequency-sorted
indexes. J. Amer. Soc. Informat. Sci. 47, 10, 749–764.

SARAIVA, P. C., MOURA, E. S., ZIVIANI, N., FONSECA, R., MEIRA, W., MURTA, C., AND RIBEIRO-NETO, B. 2001.
Rank-preserving two-level caching for scalable search engines. In Proceedings of the ACM-SIGIR
International Conference on Research and Development in Information Retrieval (New Orleans,
LA), W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, Eds. ACM Press, New York, NY, 51–58.

SOBOROFF, I. 2002. Does WT10g look like the Web? In Proceedings of the ACM-SIGIR Interna-
tional Conference on Research and Development in Information Retrieval (Tampere, Finland),
M. Beaulieu, R. Baeza-Yates, S. H. Myaeng, and K. Jävelin, Eds. ACM Press, New York, NY,
423–424.

SPINK, A., WOLFRAM, D., JANSEN, B. J., AND SARACEVIC, T. 2001. Searching the Web: The public and
their queries. J. Amer. Soc. Informat. Sci. 52, 3, 226–234.

SPINK, A. AND XU, J. 2000. Selected results from a large study of Web searching: The Excite study.
Informat. Res. 6, 1. Available online at: http://InformationR.net/ir/6-1/paper90.html.

VOORHEES, E. M. AND HARMAN, D. K. 2001. Overview of TREC 2001. In The Tenth Text REtrieval
Conference (TREC 2001), E. M. Voorhees and D. K. Harman, Eds. NIST Spec. pub. 500-250.
National Institute of Standards and Technology, Gaithersburg, MD, 1–15.

WILLIAMS, H. E. AND ZOBEL, J. 1999. Compressing integers for fast file access. Comput. J. 42, 3,
193–201.

WILLIAMS, H. E., ZOBEL, J., AND ANDERSON, P. 1999. What’s next? Index structures for efficient
phrase querying. In Proceedings of the Australasian Database Conference (Auckland, New
Zealand), M. Orlowska, Ed. Springer-Verlag, Berlin, Germany, 141–152.

WITTEN, I. H., MOFFAT, A., AND BELL, T. C. 1999. Managing Gigabytes: Compressing and Indexing
Documents and Images, 2nd ed. Morgan Kaufmann, San Francisco, CA.

ZOBEL, J. AND MOFFAT, A. 1998. Exploring the similarity space. SIGIR Forum 32, 1 (Spring), 18–34.
ZOBEL, J., WILLIAMS, H. E., AND HEINZ, S. 2001. In-memory hash tables for accumulating text

vocabularies. Informat. Process. Lett. 80, 6 (Dec.), 271–277.

Received September 2003; revised February 2004; accepted April 2004

ACM Transactions on Information Systems, Vol. 22, No. 4, October 2004.

