
19

Efficient Online Index Construction
for Text Databases

NICHOLAS LESTER

RMIT University, and Microsoft Corporation

ALISTAIR MOFFAT

The University of Melbourne

and

JUSTIN ZOBEL

RMIT University

Inverted index structures are a core element of current text retrieval systems. They can be con-

structed quickly using offline approaches, in which one or more passes are made over a static set of

input data, and, at the completion of the process, an index is available for querying. However, there

are search environments in which even a small delay in timeliness cannot be tolerated, and the

index must always be queryable and up to date. Here we describe and analyze a geometric partition-
ing mechanism for online index construction that provides a range of tradeoffs between costs, and

can be adapted to different balances of insertion and querying operations. Detailed experimental

results are provided that show the extent of these tradeoffs, and that these new methods can yield

substantial savings in online indexing costs.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Anal-

ysis and Indexing—Indexing methods; H.3.2 [Information Storage and Retrieval]: Informa-

tion storage—File organization; H.3.4 [Information Storage and Retrieval]: Systems and

Software—Performance evaluation (efficiency and effectiveness)

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Index construction, index update, search engines, text indexing

This article incorporates and extends “Fast on-line index construction via geometric partitioning”

by N. Lester, A. Moffat, and J. Zobel, in Proceedings of the International Conference on Information
and Knowledge Management (CIKM), 2005, 776–783.

This article was completed while N. Lester was employed by RMIT University, with support from

the Australian Research Council.

Authors’ addresses: N. Lester, One Microsoft Way, Redmond, WA; email: nlester@microsoft.com; A.

Moffat, Department of Computer Science and Software Engineering, The University of Melbourne,

Victoria 3010, Australia; email: alistair@csse.unimelb.edu.au; J. Zobel, School of Computer Science

and Information Technology, RMIT University, Victoria 3001, Australia; email: jz@cs.rmit.edu.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or direct

commercial advantage and that copies show this notice on the first page or initial screen of a

display along with the full citation. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, to redistribute to lists, or to use any component of this work in other works requires

prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,

ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or

permissions@acm.org.
C© 2008 ACM 0362-5915/2008/08-ART19 $5.00 DOI 10.1145/1386118.1386125 http://doi.acm.org/

10.1145/1386118.1386125

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:2 • N. Lester et al.

ACM Reference Format:
Lester, N., Moffat, A., and Zpbel, J. 2008. Efficient online index construction for text databases.

ACM Trans. Datab. Syst. 33, 3, Article 19 (August 2008), 33 pages. DOI = 10.1145/1386118.1386125

http://doi.acm.org/10.1145/1386118.1386125

1. INTRODUCTION

Inverted index structures are a core element of current text retrieval systems.
An inverted index that stores document pointers can be used alone for boolean
querying; an index that is augmented with fd,t within-document term frequen-
cies can be used for ranked queries; and an index that additionally includes
the locations within each document at which each term occurrence appears can
be used for phrase querying. Zobel and Moffat [2006] and Witten et al. [1999]
provide an introduction to these querying modes and to inverted indexes.

Inverted indexes can be constructed quickly using offline approaches, in
which one or more passes are made over a static set of input data, and, at
the completion of the process, an index is available for querying. Zobel and
Moffat [2006] summarize several such offline mechanisms. Offline index con-
struction algorithms are an efficient way of proceeding if a lag can be tolerated
between when a document arrives in the system and when it must be available
to queries. For example, in systems in which hundreds of megabytes of data
are indexed, an hourly index build taking just a few minutes on a low-end
computer is sufficient to ensure that all documents more than an hour old are
accessible via the index. Systems in the gigabyte range might be indexed daily,
and, in the terabyte range, weekly or monthly. A typical mode of operation in
this case is for the new index to be constructed while queries are still being
directed at the old one then for file pointers to be swapped, to route queries
to the new index; and finally for the old index to be retired and its disk space
reclaimed.

On the other hand, there are search environments in which even a small
delay in timeliness cannot be tolerated, and the index must always be queryable
and up to date. In this article we examine the corresponding task of online index
construction—how to build an inverted index when the underlying data must
be continuously queryable and documents must be indexed for search as soon
they arrive.

Making documents immediately accessible adds considerably to the complex-
ity of index construction, and a range of tensions are introduced, with several
quantities—including querying throughput, document insertion rate, and disk
space—tradeable against each other. Here we describe a geometric partitioning
mechanism that offers a range of tradeoffs between costs, and can be adapted
to different balances of insertion and querying operations. The principle of our
new method is that the index is divided into a controlled number of partitions,
where the capacities of the partitions form a geometric sequence. We show,
moreover, that the concept of partitioning can be applied to both the inverted
lists and the B+-tree [Ramakrishnan and Gehrke 2003] that maintains the
vocabulary.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:3

The presence of multiple partitions means that querying is slower than under
a single-partition model, but, as we demonstrate empirically, the overhead is
not excessive. More significantly, the use of geometric partitions means that
online index construction is faster and scales better than methods based on a
single partition, while querying is faster than under other multiple-partition
approaches. The new method leads to substantial practical gains; experiments
with 426 GB of Web data show that, compared to the alternative single-partition
implementation, construction speed is several times faster. Our experiments
also demonstrate that the reduction in asymptotic cost of incremental index
construction offered by geometric partitioning can be achieved in practice.

2. INVERTED INDEX STRUCTURES

An inverted file index contains two main parts: a vocabulary, listing all the
terms that appear in the document collection; and a set of inverted lists, one
per term. Each inverted list contains a sequence of pointers (also known as
postings), together with a range of ancillary information, which can include
within-document frequencies, together with a subsidiary list of positions within
each document at which that term appears. A range of compression techniques
have been developed for inverted lists [Scholer et al. 2002; Anh and Moffat
2006; Zobel and Moffat 2006], and, even if an index contains word positional
information, it can typically be stored in around 25% of the space occupied by
the original text. Index compression also reduces the time required for query
evaluation.

The standard form of inverted index stores the pointers in each inverted list
in document order, referred to as being document-sorted. It is this index orga-
nization that we consider in this article. Other index orderings are frequency-
sorted and impact-sorted. None of the online mechanisms we describe in this
article apply to these other forms of index organization. Inverted lists are typ-
ically stored on disk in a single contiguous extent or partition, meaning that
once the vocabulary has been consulted, one logical disk seek and one logical
disk read are required per query term.1

A retrieval system processes queries by examining the pointers for the query
terms and using them to calculate a similarity score that estimates the like-
lihood that the document matches the query. This process requires that all
terms in the collection be indexed, with the possible exception of a small num-
ber of common terms that carry little information. Phrase queries can also be
resolved via the index if it contains word positions. In this case the retrieval
system treats each phrase in the query as a term, and infers an inverted list
for it by combining the lists for the component terms. Stop-words also need to
be indexed for phrase queries to be efficiently resolved.

1Note that in many operating systems, Unix included, logical disk operations may be translated

into multiple physical disk operations as index blocks (i-nodes) and the like are processed. In

all of the work reported here, we presume that the operating system makes effective use of the

underlying physical disk, and that sequential logical disk operations are translated into physical

disk operations with a negligible amount of overhead. The alternative would be for us to implement

our own raw file system, which is appropriate for a commercial setting, but not a research one.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:4 • N. Lester et al.

Adding just one new document to an existing index adds a new pointer to
each of a large number—potentially thousands—of inverted lists. Seeking on
disk for each list update would be catastrophic, so in practical systems the disk
costs are amortized across a series of updates. To this end, the inverted index in
a dynamic retrieval system is stored in two parts: an in-memory component that
provides an index for recently included documents; and an on-disk component
that is periodically combined with the in-memory bufferload of pointers in a
merging event, and then written back to disk. This approach is effective because
a typical series of documents has many common terms; the disk-based merging
process can be sequential rather than random-access; and because all of the
random-access operations can take place in main memory. However, querying
is now more complex, since the in-memory part of each terms’ inverted list must
be logically combined with the on-disk part.

In order to efficiently access inverted lists while resolving queries, informa-
tion retrieval systems also maintain a central vocabulary. This structure maps
each indexed term to an inverted list, and also requires update when the con-
tents of the inverted lists change.

We assume that the vocabulary is stored using a B+-tree, as this data struc-
ture scales beyond the capacity of main memory, and is commonly used in
practice. B+-tree update is a well-explored problem [Bayer 1972; Knuth 1973;
Comer 1979; Graefe 2006].

3. INDEX CONSTRUCTION TECHNIQUES

To analyze the costs associated with index construction, we assume that an
index of n pointers is being built; that the in-memory index can hold b point-
ers, and hence that there are �n/b� merging events; and that the initial cost of
inverting each bufferload of b pointers is b log b steps of computation. The log b
cost per pointer is for a search operation in a dictionary data structure con-
taining not more than b items; once the appropriate in-memory list has been
identified, appending each pointer takes constant time. Note that the dictionary
data structure is assumed to be reinitialized after each merging event.

An important consideration in any database system is the number of disk
accesses required to process data. Our analysis does not directly account for
the disk activity. However, we note that all techniques modeled in this article
allow sequential processing of pointers, in which case the number of disk op-
erations required to complete an operation can be derived from any analysis
that is performed to count more elementary operations, such as comparisons or
data movements. The only exception to this numeric relationship is the INPLACE

strategy, which is used in Section 4.2 as an additional reference point.

3.1 Offline Index Construction

An obvious point of comparison for online construction algorithms is to examine
the efficiency of offline algorithms whose performance forms a lower bound to
that achievable by online techniques. The method of Heinz and Zobel [2003]
is used throughout this article as being exemplary in the performance of off-
line construction algorithms, and is presented as Algorithm 1. We refer to this

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:5

Algorithm 1 [OFFLINE] Index construction using single-pass in-memory inversion

Input: a sequence of 〈p0, . . . , pn−1〉 pointers, and b, the pointer capacity of main memory.

1: assign T ← {} {initialize an on-disk temporary space}
2: assign r ← 0, i ← 0

3: while i < n do {index further pointers}
4: assign B ← {} {initialize a new bufferload of pointers}

{invert a bufferload of pointers}
5: while |B| < b and i < n do {further pointers fit into main memory}
6: if t /∈ vocab(B) then {term t does not have an associated in-memory list}
7: assign Bt ← 〈〉 {create an empty in-memory list for term t}
8: assign Bt ← Bt + pi {append pointer pi to in-memory list Bt for term t}
9: i ← i + 1

{write a bufferload of pointers to disk as a sorted run}
10: assign Tr ← B {store bufferload of pointers in temporary disk space, sorted by term}
11: assign r ← r + 1

12: merge r runs in T to form the final index D
Output: an inverted index, D, over the n pointers

algorithm as OFFLINE. A similar algorithm is given by Moffat and Bell [1995],
with the key difference being the way that the vocabulary is managed.

The OFFLINE algorithm operates by building a bufferload of pointers in main
memory, and writing them to disk as sorted runs once main memory is full. After
all pointers have been processed in this fashion, the sorted runs are merged
into the final index. Heinz and Zobel [2003] suggest using multiway in-situ
merging [Moffat and Bell 1995] to form the final index, but the implementation
of OFFLINE used in the experiments described in Section 6 employs a faster
standard multiway merge using additional disk space [Knuth 1973, p. 252].

There are three distinct activities performed by all construction algorithms.
The first is in-memory inversion, where a bufferload of pointers is built in
main memory, as described by Heinz and Zobel [2003], resulting in a set of
pointers indexed by the distinct terms to which they refer. The cost of this
activity is denoted by α, and is the same for all of the algorithms considered
in this article. The other two activities are the manner in which in-memory
pointers are incorporated into the on-disk index during merging events, denoted
β, and the manner in which the vocabulary is updated to reflect such changes,
denoted by γ .

The cost of inverting pointers in main memory, as performed by the OFFLINE

algorithm, can be reasonably approximated as n log b, since �n/b� bufferloads
of pointers are inverted, at a cost of b log b each. The cost of reading the pointers
must also be added, making the total cost of in-memory inversion

α(n, b) = n + n log b. (1)

The OFFLINE algorithm creates inverted lists by writing sorted runs to disk and
subsequently performing a multiway merge. The cost attributed to the merge
requires some care to correctly account for the comparisons performed. A simple

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:6 • N. Lester et al.

approach is to consider that the merge reads a total of n pointers from a set of
�n/b� sorted runs, requiring a total of n log2�n/b� comparisons. But this is pes-
simistic, because the pointers created during in-memory inversion are already
ordered by document identifier, and the bufferloads index disjoint portions of
the collection. Once a pointer is selected, all further pointers in that bufferload
for that term can also be transferred to the final index.

Taking this observation into account,
∑�n/b�

i=1 di “find smallest pointer” oper-
ations are required during the merge, where di is the number of distinct terms
in the ith bufferload. In the worst case, that sum may become n if terms occur
only once in each bufferload, but this is unrepresentative of typical text collec-
tions. An alternative might be to assume a linear relationship between distinct
terms and pointers [Williams and Zobel 2005]. However, linear estimates be-
come increasingly pessimistic for large sets of pointers of the kind considered
here.

3.2 Vocabulary Size

We proceed by assuming that the number of distinct terms arising from a se-
quence of x pointers is bounded by x/ log2 x; that is, that the average multiplic-
ity of the words appearing in a sequence of x words is log2 x. This is a slightly
stronger assumption than linearity, in that, in the limit, x/ log2 x is smaller
than x/k for all values of k. Nevertheless, it provides a generous empirical
bound (demonstrated in Section 6.2), and has the desired behavior when sub-
sequences of pointers are considered. For example, we are suggesting that a
sequence of 100 words would give rise to around 15 distinct words; and a se-
quence of one million words would contain around 50,000 distinct words. The
assumption of vocabulary growth rates has similarities to Heap’s law [Baeza-
Yates and Ribeiro-Neto 1999, p. 147], which states that the number of distinct
terms, v, is bounded above by O(nφ), where the growth parameter φ depends on
the given collection. Our assumption of v ≤ n/ log n avoids parameters in favor
of a looser upper bound that is sufficient for our needs here.

On this basis, we have di ≤ b/ log b, and the cost of inverted list construction
using the OFFLINE algorithm can be quantified:

βOFFLINE(n, b) = n + log�n/b� ×
�n/b�∑
i=1

di

≈ n + n log(n/b)

log b
. (2)

If b is taken to be constant, the practice that we adopt throughout this ar-
ticle, then the cost of offline index construction is asymptotically dominated
by the O(n log n) cost of the multiway merge. Worth noting also is that if b is
at least

√
n (which is the case in all of our experiments), then βOFFLINE(n, b) =

n + (n log(n/b))/ log b ≤ 2n, and the n log b ≈ (n log n)/2 in-memory inversion
cost dominates.

In addition to the costs associated with building inverted lists, the OFFLINE

algorithm must also construct a vocabulary. This can be achieved using a B+-
tree bulk-loading algorithm [Ramakrishnan and Gehrke 2003, p. 360], where

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:7

each entry is successively written into leaf pages. After any page has been filled,
the first entry in that page is written into the index page that is its hierarchical
parent. We assume that an average of f > 1 entries fit into each page of the
vocabulary, with a typical value of perhaps f ≈ 200. The one-time vocabulary
construction cost is then

γV-OFFLINE(n) =
∞∑

i=0

⌈
n

f i log n

⌉

≈ n
log n

×
∞∑

i=0

1

f i .

This quantity can be reduced further, given f 1, by noting that

∞∑
i=0

1

f i = f
f − 1

≈ 1 .

Therefore

γV-OFFLINE(n) ≈ n
log n

. (3)

Note that to prevent confusion with list construction algorithms, we add a lead-
ing “V-” to vocabulary update processes. The reasons for this distinction will
become clearer in Section 5.4.

Having modeled the cost of each of the three components of OFFLINE construc-
tion, we can reason about the overall running time of the OFFLINE algorithm
by considering how the three costs might be combined. The O(n/ log n) cost
of vocabulary construction is, asymptotically, the least costly of the three pro-
cesses. The cost of the multiway merge, though O(n log n) for any fixed value of
b, is (because b is typically large relative to

√
n) near-linear in practice, mean-

ing that the O(n log b) cost of in-memory inversion dominates. Replacing the
comparison-based dictionary structure assumed in the analysis here with one
based on hashing allows O(1)-time per pointer to be achieved, but at the end of
each bufferload the vocabulary must then be sorted, at a total cost of O(n log b)
time. Either way, the constant factor is small, and for large-but-fixed values of
b, experiments show that the time required for offline index construction varies
approximately linearly with index size.

To quantify some of the calculations, typical values for the two parameters
are n ≈ 2×1010 and b ≈ 8×107. An index of 20 billion pointers might arise, for
example, in a collection of 500 GB of Web documents; and 80 million pointers
stored in the in-memory part of the index would require approximately 500 MB
of main memory, and give rise to about 200 MB of compressed pointers on disk.
Using these figures, the total cost of OFFLINE index construction amounts to just
30 billion operations above the 550 billion operations required as the base cost
of the in-memory inversion of the �n/b� bufferloads of pointers.

4. DYNAMIC INDEXES

Three online index construction approaches have been explored in previous
literature [Lester et al. 2005]. They are to rebuild the index from the stored
collection (termed rebuild), to merge the bufferload of new pointers into the

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:8 • N. Lester et al.

index (termed remerge), or to perform an in-place update of each inverted list
that has new pointers (termed inplace).

Rebuilding is a relatively wasteful strategy for online index construction.
Instead of altering the existing index in response to collection modifications,
previous pointers are discarded and the collection is reprocessed. In contrast,
in both the inplace and remerge approaches the previous index is extended to
include new pointers. During merging events, the inplace and remerge strate-
gies can either maintain each inverted list in a single contiguous disk location,
or to allow it to occupy multiple, discontiguous locations. Indexes constructed
offline typically store each inverted list in single contiguous extent, as this
provides maximum query performance. Breaking lists into discontiguous frag-
ments increases online indexing speed, at the cost of requiring additional disk
operations during query processing.

4.1 Rebuilding

The simplest online index construction strategy is to entirely rebuild the on-
disk index from the stored collection whenever the in-memory part of the index
exceeds b pointers. Despite the obvious disadvantages of this strategy, it is
not unreasonable for small collections with low update frequency. For example,
Lester et al. [2005] give experimental results showing that this technique is
plausible in some restricted situations.

At each merging event, the REBUILD strategy constructs a new index from the
stored bufferloads of data processed thus far, using the OFFLINE construction
algorithm. Once the new index is ready, the old is discarded, and queries can
be resolved using the updated index. At any point during the execution of the
algorithm, a query can be resolved using the combination of the on-disk and
in-memory index components stored by REBUILD.

During each merging event, REBUILD reprocesses the previous bufferloads
against the new information provided as part of the most recent bufferload.
Because the growth of pointers is linear, the cost of maintaining the inverted
lists over an eventual set of n pointers is thus n/(2b) times the cost of the OFFLINE

method:

βREBUILD(n, b) =
�n/b�∑
i=1

(α(ib, b) + βOFFLINE(ib, b))

≈
�n/b�∑
i=1

(
ib + ib log�ib/b�

log b

)

≤ b(1 + logb(n/b))

�n/b�∑
i=1

i

≈ n2

2b
(1 + logb(n/b)), (4)

where it is assumed that the source text does not need to be completely reparsed
after each bufferload and that all intermediate bufferloads can be retained on
disk.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:9

An upper bound on the cost of maintaining the vocabulary using REBUILD

can be similarly determined by observing that the vocabulary is processed n/b
times, with at most n/log n entries present at each iteration:

γV-REBUILD(n, b) ≈ n2

b log n
. (5)

That is, for any fixed value of b, REBUILD requires time that grows (approxi-
mately) quadratically to maintain the inverted lists, with O(n2/ log n) time re-
quired to maintain the vocabulary. For the values of n and b hypothesized above,
the β cost amounts to some 3.3 trillion operations, and the γ cost amounts to
around 150 billion operations. Because of the repeated computations, the over-
all construction cost of 4.0 trillion operations is nearly a full order of magnitude
greater than the comparable cost of OFFLINE construction.

Note that we are not arguing that this method is efficient, and it is discussed
purely because it is one possible way of supporting the requirement for online
index construction.

4.2 In-place Update

The second merging strategy involves writing new pointers at the end of the
existing lists whenever possible. During each merging event, pointers from
the in-memory index are transferred into the free space at the end of the
term’s on-disk inverted list. If insufficient free space is available at the end of
the on-disk list, the combined list is moved to occupy unused space in a new
location in the file. Variations include keeping short lists within the vocabulary
structure [Cutting and Pedersen 1990]; keeping short lists within fixed-size
“bucket” structures [Shoens et al. 1994]; and predictive over-allocation for long
lists to reduce relocations and discontiguity [Tomasic et al. 1994; Shieh and
Chung 2005]. The staggered growth of inverted lists also introduces a free-
space management problem. Space management of large binary objects, such
as image data, has been examined by several authors [Biliris 1992a, 1992b;
Carey et al. 1986, 1989; Lehman and Lindsay 1989], but note that inverted
indexes present different problems to those of other types of binary data.

Algorithm 2 specifies the operation of INPLACE construction strategies. After
a bufferload of pointers has been inverted, each term with in-memory pointers
is visited in turn, and the on-disk portion of that inverted list is located. If the
term is new, the in-memory pointers for that term are written to disk in any
location where there is sufficient free space. If the term has previous pointers,
then the amount of free space following that list is ascertained and the new
pointers appended if possible. Lists with insufficient free space are relocated to
a new position on disk, by finding a suitable new location, reading the previous
list from its current location, and writing the entire updated list to the new one.
Whenever a list is moved to a new location on disk, over-allocation factors k ≥
1.0 and a ≥ 0 are used to reserve additional free space at the end of the list. Two
variations of Algorithm 2 are of particular interest: INPLACE, with geometric over-
allocation only (that is, k ≥ 1.0 and a = 0) termed INPLACE GEOM; and INPLACE,
with arithmetic over-allocation only (k = 1.0 and a > 0) termed INPLACE ARITH.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:10 • N. Lester et al.

Algorithm 2. [INPLACE] On-line index construction using individual update of lists and
over-allocation.

Input: a sequence of 〈p0, p1, . . .〉 pointers, b, the pointer capacity of main memory, and

over-allocation constants k ≥ 1.0 and a ≥ 0.

1: assign D ← {} {initialize the on-disk index}
2: assign i ← 0

3: while true do {index further pointers}
4: assign B ← {} {initialize a new bufferload of pointers}

{invert a bufferload of pointers}
5: while |B| < b do {further pointers fit into main memory}
6: if t /∈ vocab(B) then {term t does not have an associated in-memory list}
7: assign Bt ← 〈〉 {create an empty in-memory list for term t}
8: assign Bt ← Bt + pi {add pointer pi to in-memory list Bt for term t}
9: assign i ← i + 1

{incorporate the bufferload of pointers into the on-disk index}
10: for each index term t ∈ vocab(B) do {for all terms t that have an in-memory list}
11: if t ∈ vocab(D) then {term t also has on-disk pointers}
12: determine the amount of available space w available within and

following Dt

13: if w < |Dt | + |Bt | then {previous list Dt must be relocated}
14: copy list Dt to a new location with available space not less than

k × (|Dt | + |Bt |) + a
15: append Bt to Dt {add new pointers to previous list}
16: else {term t is new to D}
17: find a location with available space not less than k × |Bt | + a
18: assign Dt ← Bt {write in-memory pointers into a new on-disk list}
Invariant: The combination of D and B indexes all pointers examined thus far

To analyze the cost of building an index using the INPLACE GEOM approach,
suppose that each list is over-allocated by a fixed proportional factor of k > 1.
When the list for some term t contains ft pointers and is at its current capacity,
and a ft + 1st pointer is to be added to it during the merge event, the list is
first extended to be �k ft� pointers and then the new one is added. Consider
the set of pointers in the just-extended list. One of them—just appended—has
never taken part in a list extension operation. A further ft − ft/k items have
just been copied for the first time; ft/k − ft/k2 items have just been moved for
the second time; and so on. The average number of times each of those ft + 1
pointers have been moved is given by

1

ft + 1

(
1 − 1

k

) (
ft

1
+ 2 ft

k
+ 3 ft

k2
+ · · ·

)

≈
(

1 − 1

k

) ∞∑
i=0

i + 1

ki

= k
k − 1

.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:11

For example, if k = 1.25, then just after any list is resized, the pointers in it
have been moved five times on average. This amortized limit is independent of
the size ft of the list, and applies to all lists just after they have been extended,
which is when the average number of moves is highest. The expression above is
thus an upper bound on the per-pointer cost of constructing the inverted lists.

The cost of adding every pointer to its initial list should also be included.
Taking this into account, the total number of operations required to process the
n pointers given by

βINPLACE GEOM(n) = (2k − 1)

k − 1
n . (6)

No similar guarantee applies to the INPLACE ARITH algorithm, where—assuming
that the over-allocation factor a is smaller than b, the size of the in-memory
buffer—every pointer in the index may have to be moved for each successive
merging event. As a result, the worst-case cost of inverted list construction
using the INPLACE ARITH algorithm is

βINPLACE ARITH(n, b) ≤
�n/b�∑
i=1

ib

≈ n2

2b
. (7)

For any fixed value of b, the complexity of the INPLACE ARITH algorithm is
asymptotically dominated by the O(n2) cost of pointer relocation. Thus the
INPLACE ARITH algorithm scales poorly to large collections compared to an in-
place approach with geometric over-allocation. For example, when n and b
are as suggested at the beginning of this section, and k = 1.25 is used, the
INPLACE GEOM and INPLACE ARITH algorithms require, respectively, around 120 bil-
lion and 2.5 trillion operations.

However, the INPLACE GEOM method also has two disadvantages that partly or
completely negate the small operation count. The first is its memory overhead.
Because all the lists are growing, around 60% of the over-allocated space is al-
ways vacant. That is, when k = 1.25, around 15% of the disk space allocated to
the lists in the index is unused. There will also be external fragmentation that
is not taken into account in this computation, caused by the unpredictable over-
all sequence of list resizings. This could easily add a further 5% to 25% space
overhead, depending on the exact disk storage management strategy used.
The second problem is that processing speed is not as fast as the analysis above
would suggest. Data movements are certainly a critical cost, but the inplace
mechanisms also require nonsequential processing of the index file during each
merge event, and it is the consequent disk accesses that make it expensive in
practice [Lester et al. 2005].

Vocabulary entries for altered inverted lists are individually updated in these
strategies. In terms of comparisons performed, the cost of each vocabulary up-
date is not more than log(n/ log n) ≤ log n. Over all (n/b) bufferloads, and the
di = (b/ log b) distinct terms in each bufferload, the total vocabulary cost is thus

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:12 • N. Lester et al.

Fig. 1. The number (solid line) and percentage (dotted line) of vocabulary entries (upper graph)

and vocabulary pages (lower graph) that are accessed during each merging event. The horizontal

axes show the number of pointers in the index. The left vertical axes show the number of items

requiring change per merging event in thousands; and the right vertical axes show the same value

as a percentage of the total number of vocabulary items or pages. The collection used is the 426 GB

gov2 [Clarke et al. 2004], with a buffer of b = 8 million pointers and a vocabulary page size of 4 kB.

bounded by

γV-INPLACE(n, b) = n
b

b
log b

log
n

log n
≈ n logb n . (8)

As was the case above, if b is at least
√

n, this expression is linear in n.
A possible issue with the vocabulary analysis is that each comparison might

correspond to a disk access to fetch a page of the B+-tree, meaning that the
linearity might have a high constant factor. The top graph in Figure 1 quanti-
fies this relationship, by plotting the number of vocabulary entries that require
alteration during each merging event when indexing the 426 GB gov2 collec-
tion [Clarke et al. 2004] with a (small) buffer size of b = 8 × 106. The number
of vocabulary entries requiring alteration is the di value for that bufferload,
and is plotted as a solid line. Note that for b = 8 × 106, the expression b/ log b
has the value 350,000, and is not exceeded in any of the bufferloads in this text
sample. Note also that to avoid anomalies resulting from the partial bufferload
produced at the end of the index construction, the final point is not included.
The percentage of total vocabulary entries requiring alteration is plotted as the

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:13

dashed line. As predicted, the number of entries updated in each merging event
is a decreasing fraction of the total vocabulary size as the vocabulary grows.

However, the vocabulary resides within an on-disk B+-tree, and we expect
disk transfer times for page accesses to be a significant cost. As a close surro-
gate for the total number of pages changed by the vocabulary update strategy,
the number of leaf pages altered by the V-REMERGE strategy is shown in the
bottom graph of Figure 1. The number of B+-tree leaves changed has a strong
correlation to the number of terms with new pointers in each merging event.
However, the blocking of vocabulary entries into B+-tree leaves ensures that a
far higher proportion of leaf pages is altered than of vocabulary entries, and
nearly every merging event affects 40% or more of the leaf pages. We return to
this observation below.

4.3 Remerge Update

The third index update strategy avoids random accesses by sequentially re-
processing the entire index at each merging event. To process a bufferload of
pointers, the entire on-disk index is read and written in extended form to a new
location, with the pointers from the in-memory part of the index inserted as
appropriate. When the output is completed, the original index files are freed
and querying is transferred over to the new index. This approach is shown
by Algorithm 3, which defines the REMERGE strategy. It has the disadvantage
that the entire index must be processed every time the in-memory and on-disk
components are combined. Unless care is taken, peak disk usage will also be
twice the cost of storing the index [Clarke and Cormack 1995; Moffat and Bell
1995]. However, compared to the inplace methods, the remerge approach has
the advantage of performing all disk operations sequentially.

The merge between the in-memory pointers and the on-disk pointers, both of
which are sorted, incurs a data transfer cost proportional to the total number
of pointers in the resulting index. Over the n/b merging events the cost is
thus

βREMERGE(n, b) =
�n/b�∑
i=1

ib

≈ n2

2b
. (9)

The number of comparisons required by the merge is not represented in Eq. (9),
as there are exactly two sources in each merge. The resulting cost of merge
comparisons is dominated by the O(n2) cost of processing pointers. This cost is
identical to the limit derived for the INPLACE ARITH algorithm in Eq. (7), reflecting
the fact that both algorithms do (in the case of REMERGE) or may (in the case
of INPLACE ARITH) reprocess all pointers within the index during each merging
event.

Construction of a vocabulary during REMERGE is unchanged from the process
required during REBUILD—that is, bulk construction of a b+-tree during inverted
list merging. Analysis of the number of operations utilized by V-REMERGE is thus

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:14 • N. Lester et al.

Algorithm 3. [REMERGE] On-line index construction using repeated merging.

Input: a sequence of 〈p0, p1, ...〉 pointers, and b, the pointer capacity of main memory.

1: assign D ← {} {initialize the on-disk index}
2: assign i ← 0

3: while true do {index further pointers}
4: assign B ← {} {initialize a new bufferload of pointers}

{invert a bufferload of pointers}
5: while |B| < b do {further pointers fit into main memory}
6: if t /∈ vocab(B) then {term t does not have an associated in-memory list}
7: assign Bt ← 〈〉 {create an empty in-memory list for term t}
8: assign Bt ← Bt + pi {append pointer pi to in-memory list Bt for term t}
9: assign i ← i + 1

{incorporate the bufferload of pointers into the on-disk index}
10: assign T ← {} {initialize a new on-disk index}
11: for each term t ∈ vocab(D) ∪ vocab(B), in lexicographical order do
12: if t ∈ vocab(D) then {term t has on-disk pointers}
13: assign Tt ← Dt {append on-disk pointers Dt for term t to the new index}
14: if t ∈ vocab(B) then {term t has in-memory pointers}
15: if t ∈ vocab(T) then
16: assign Tt ← Tt + Bt {append in-memory pointers to existing list in new

index}
17: else
18: assign Tt ← Bt {merge the new list into the index}
19: assign D ← T {replace previous index}

Invariant: The combination of D and B indexes all pointers examined thus far

identical to the analysis of V-REBUILD:

γV-REMERGE(n, b) ≈ n2

b log n
, (10)

that is, a maximum of n/ log n entries are processed n/b times. With a buffer of
constant size b, this vocabulary update cost is not quite quadratic, suggesting
that the O(n2) cost of inverted list construction should be the dominant factor
in the performance of REMERGE implementations.

The number of operations required by REMERGE in the example given earlier,
with n ≈ 2 × 1010 and b ≈ 8 × 107, is 2.5 trillion operations for inverted list
construction, and 146 billion operations to maintain the vocabulary, making it
(based purely on the operation count) as costly as REBUILD and INPLACE ARITH.
However, in experiments with these three methods, Lester et al. [2005] show
that REMERGE is more efficient than the other two in a wide range of practical
scenarios, primarily because of its sequential disk access pattern.

4.4 Multiple Partitions

One of the primary reasons that these three online index construction
algorithms are inefficient is that they keep a single, contiguous, inverted list

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:15

per term. On the other hand, sort-based offline construction algorithms are
not constrained in this regard, and make use of multiway merging strategies to
reduce the number of times each pointer is handled. For example, the dominant
operation in the OFFLINE algorithm is the in-memory inversion of bufferloads of
pointers, the cost of which on a per-pointer basis is independent of the total
amount of data being indexed. Tomasic et al. [1994] describe an index construc-
tion strategy that avoids reprocessing data by creating new discontiguous list
fragments as inverted lists grow. Their scheme is like the inplace scheme, ex-
cept that when a list outgrows its allocation the old list is left unchanged, and
a new fragment is allocated in order to hold additional pointers. Tomasic et al.
do not use over-allocation for any but the first fragment, so their algorithm
creates approximately one fragment per merging event. It is straightforward
to alter the Tomasic et al. algorithm to include predictive over-allocation, but
the approach still results in each inverted list being spread across a number of
fragments that grow linearly in the size of the collection, and query processing
times suffer accordingly.

Assuming that the index for each bufferload is written to memory and then
linked from the previous partition of the index lists, the processing time for the
Tomasic et al. approach is

βTOMASIC(n) ≈ n (11)

plus the time needed to create the chains of pointers that thread the structure
together. Query costs scale badly in this approach, or with similar approaches
in which lists are represented as linked chains of fixed-size objects [Brown et al.
1994]. For the values of n and b supposed in the example, querying would entail
as many as 250 disk seeks per query term.

5. GEOMETRIC PARTITIONING

We now describe a new scheme that blends the remerge method described in
Section 4.3, and the too-many-fragments approach of Tomasic et al. [1994].
The key idea is to break the index into a tightly controlled number of parti-
tions. Limiting the number of partitions means that as the collection grows
there must continue to be merging events, but they can be handled rather more
strategically than before, and the result is a net saving in processing costs.
The drawback is that each index list is now in multiple parts, making querying
slower than with single-partition lists. Section 6 quantifies the amount of that
degradation.

5.1 Hierarchical Merging

At any given point, the index is the concatenation of the set of partitions, each of
which is a partial index for a contiguous subset of the documents in the collec-
tion. We also impose an ordering on partition sizes, requiring that the partition
containing the most recently added documents be the smallest. Similarly, the
first documents to enter the collection are indexed via the largest partition.
Figure 2 shows an example arrangement in which the on-disk part of the index
is split into three partitions.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:16 • N. Lester et al.

Fig. 2. A geometrically partitioned index structure, with three levels. The oldest index pointers

are in the largest partition, which in this example is at level 3. The vocabulary, not shown in the

figure, includes three pointers with each term’s entry. Some terms are absent from some partitions.

The vocabulary entry for each term records multiple disk addresses, one
for each partition. The locations of all the index partitions for a term are then
available at the cost of a single disk read, although the vocabulary will typically
be slightly larger as a result. When queries are being processed, each of those
partitions on disk is retrieved and processed, as in the work of Tomasic et al.
The difference in our approach is that we ensure, via periodic merging, that the
number of partitions does not grow excessively.

Consider what happens when an in-memory bufferload of pointers is to be
transferred to disk. That bufferload can be merged with any one of the parti-
tions, or indeed, with any combination of them. The key issue to be addressed
is how best to manage the sequence of merging so as to minimize the total
merging cost, without allowing the number of partitions to grow excessively.
The linear cost of each merging step means that, for it to be relatively efficient,
the two lists should not differ significantly in size. To this end, we introduce a
key parameter r, and use it to define the capacity of the partitions: the limit
to the number of pointers in one partition is r times the limit for the next.
In particular, if a bufferload contains b pointers, we require that the first par-
tial index not exceed (r − 1)b pointers; the second partial index not contain
more than (r − 1)rb pointers; and, in general, the j th partial index not more
than (r − 1)r j−1b pointers. In addition, r also specifies a lower bound on the
size of each partition—at level j the partition is either empty, or contains at
least r j−1b pointers. In combination, these two constraints ensure that, when
a merge of two partitions at adjacent levels takes place, the combined output is
not more than r times bigger than the smaller of the two input partitions, and
is at least r/(r − 1) times bigger than the larger. As is demonstrated shortly,
this relationship allows useful bounds to be established on the total cost of all
merging.

The limits on the capacity of each partition give rise to a natural sequence
of hierarchical merges that follows the radix-r representation of the number of
bufferloads that have been merged to date. Suppose, for example, that r = 3,

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:17

Fig. 3. The merging pattern established when r = 3. The first index is placed into partition 3

only after nine bufferloads have been generated by the in-memory part of the indexing process. All

numbers listed represent multiples of b, the size of each bufferload.

and, as before, the stream of arriving documents is processed in fixed buffer-
loads of b documents. The first bufferload of pointers is placed, without change,
into partition 1. The second bufferload of pointers can be merged with the first,
still in partition 1, to make a partition of 2b pointers. But the third buffer-
load of pointers cannot be merged into partition 1, because doing so would
violate the (r − 1)b = 2b limit on partition 1. Instead, the 3b pointers that are
the result of this merge are placed in partition 2, and partition 1 is cleared. The
fourth bufferload of pointers must be placed in partition 1, because it cannot be
merged into partition 2. The fifth joins it, and then the sixth bufferload triggers
a three-way merge, to make a partition containing 6b pointers in the second
partition. Figure 3 continues this example, and shows how the concatenation of
three more bufferloads of pointers from the in-memory part of the index leads
to a single index of 9b pointers in the third partition.

5.2 Analysis

Within each partition the index sizes follow a cyclic pattern that is determined
by the radix r. For example, in Figure 3, the “Partition 2” column cycles through
sizes 0, 3, 6, and then repeats. In general, the j th partition of an index built
with radix r cycles through the sequence 0, r j−1, 2r j−1, . . . , (r − 1)r j−1. Over

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:18 • N. Lester et al.

one full cycle this sequence sums to

(r − 1)r
2

r j−1 = (r − 1)r j

2
. (12)

We make use of this quantity below.
Each of the numbers in the cycle is exactly the cost of forming the corre-

sponding partition, since it is the sum of the sizes of the segments that were
joined together to make that partition. For example, to build an index of size
9b pointers with r = 3, the total merging cost is the sum of all of the partition
sizes in Figure 3, which amounts to three cycles through partition 1 (total cost:
9b), one cycle through partition 2 (total cost: 9b), and a single merge of cost 9b
in partition 3, for a total of 27b units.

For an index of n pointers in total, the merging pattern has �n/b� rows.
Hence, in the ith column there will be at most �n/b�/ri full cycles of the merging
pattern; furthermore, the average merging cost in any partial cycles that have
taken place is less than the average cost over the completed cycles. For fixed
values of n, b, and r, the number of partitions (columns) p required is given by

p = 1 + �logr (n/b)� ≈ 0.5 + log(n/b)

log r
. (13)

Summing over all columns and all cycles of the merging pattern (rows), the
total cost of the merging stages is thus

βGEOM(n, b, r) = b ×
p∑

i=1

�n/b�
ri

(r − 1)ri

2

≈ (r − 1)n
2

(
0.5 + log(n/b)

log r

)
. (14)

Breaking each inverted list into partitions introduces additional disk seek
operations, and slows overall query throughput rates, since index list compo-
nents for each term need to be fetched from all nonzero partitions. Over the r
partition sizes in each cycle, there is a 1/r chance of that partition being empty
at any given time. Multiplying by the number of partitions p means that, per
query term, the disk access cost is approximately

r − 1

r

(
0.5 + log(n/b)

log r

)
. (15)

That is, Eq. (15) quantifies the number of disk accesses that are required to
retrieve the full inverted list of each term. Table I shows, for several values of
r, the number of operations required during merging events to build the index
(in billions of operations, calculated according to Eq. (14)), and the expected
number of disk accesses per term (using Eq. (15)), for the values n = 1010 and
b = 8×107. The multiple-partitions method of Tomasic et al. [1994] can be seen
as an extreme form of this method. Pointers are never moved, so index creation
cost is linear, but querying costs are high.

However, the cost attributed to each multiway merge in the analysis re-
quires elaboration. In Figure 3, for example, it was assumed that the three-
way merge to create the partitions of size six and nine cost six and nine units

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:19

Table I.

r βGEOM(n, b, r) Access Cost

2 85 4.2

3 110 3.7

4 130 3.4

6 180 3.0

8 220 2.8

12 300 2.5

Index construction cost (billions of operations calculated)

and the expected number of disk accesses per query term

(calculated), for n = 2×1010 and b = 8×107, and different

fixed values of r.

of work, respectively. More generally, the analysis assumes that a k-way merge
between objects of size n1, n2, . . . , nk takes time

∑k
i=1 nk . To demonstrate that

the linear summation is correct, first consider the total number of source parti-
tions involved in merges throughout the construction of the index, as shown by
Figure 3. Partition 0 participates in all of the �n/b� merges as a source. Every
other partition i, where i > 0, is used as a source for r −1 out of every ri merges.
Thus, the total number of source partitions, s, merged during the construction
of the index is given by

s ≈
⌈n

b

⌉
+

p∑
i=1

r − 1

ri

⌈n
b

⌉

≤
⌈n

b

⌉ (
1 + (

r − 1
) ×

∞∑
i=1

1

ri

)
. (16)

Given that r > 1, this expression can be simplified using the identity∑∞
i=1(1/ri) = 1/(r − 1). Averaging the total number of source partitions s, over

the number of merges �n/b�, shows that on average just two partitions par-
ticipate in each merge. Finally, since the log function is concave, the cost of
comparison-based merging must also be linear in the number of data items,
even without making the earlier assumption that the number of distinct terms
appearing in a sequence of x pointers is at most x/ log x.

5.3 Varying the Radix

The best choice of r depends on the balance of operations. Table I suggests
that use of an overly small value of r is likely to harm query costs, and should
be avoided when the operation mix is dominated by queries; similarly, if the
operation mix is dominated by insertions, smaller values of r are to be pre-
ferred. It is also possible to consider the number of partitions p to be the
fixed quantity, and determine r accordingly, so as to never require more than
p partitions. Doing so makes the seeks-per-term part of the querying cost
largely independent of n, at the expense of slowly increasing per-insertion
times.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:20 • N. Lester et al.

Fig. 4. The merging pattern established when p = 2 and r is varied. All numbers listed represent

multiples of b, the size of each bufferload.

When p is fixed, and the index restricted to not more than p levels, the ratio
r must be such that

n
b

≤ 1 + r + r2 + · · · + r p = r p+1 − 1

r − 1
.

Setting

r =
⌈(n

b

)1/p
⌉

=
⌈

p

√
n
b

⌉
is sufficient to meet the requirement, and suggests an approach in which p
is fixed and r is varied as necessary as the index grows. Figure 4 shows the
merging sequence for p = 2. As the tenth bufferload of text is processed, r is
incremented to �√10 � = 4. The next few sizes of the second partition are 15, 20

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:21

Table II.

p Final r βGEOM(n, b, (n/b)1/p)

2 16 320

3 7 190

4 4 160

5 4 150

Inverted list construction cost (billions of operations, cal-

culated) for n = 2 × 1010 and b = 8 × 107, and different

fixed values of p. The final value of r in each case is also

shown.

(because r is increased to 5), 25, 31, and then 38. The REMERGE strategy of
Section 4.3 is thus simply a special case of this strategy, that of p = 1, with
every bufferload of pointers merged into a single partition.

The execution cost of this variant scheme is bounded above by

βGEOM(n, b, r) = βGEOM(n, b, (n/b)1/p)

= n × (n/b)1/p − 1

2
× (0.5 + p)

≈ pn1+1/p

2b1/p
, (17)

which is asymptotically dominated by the O(n1+1/p) term. Table II shows the
calculated number of operations required to build an index for the hypothesized
values of n and b, for various values of the bound p. Table III then shows the
calculated cost of the bufferload-processing part of all of the index construction
mechanisms we have described. To set these values in context, the in-memory
inversion cost (α) under the two scenarios presented in Table III are 480 billion
operations for b = 8 × 106 and 550 billion operations for b = 8 × 107, supposing
throughout that n = 2 × 1010.

5.4 Vocabulary Update

A subtle issue that arises with geometric partitioning of inverted lists is how
the vocabulary should be updated. Since the inverted list partitions are updated
by merging, a matching V-REMERGE strategy is a reasonable approach in combi-
nation with GEOM strategies. However, as indicated by Eq. (10), the quadratic
complexity of the REMERGE approach extends to its use as a vocabulary update
scheme, and experiments in Section 6 demonstrate that for large collections,
or small buffer sizes, the cost of the V-REMERGE strategy does indeed dominate
the cost of geometric list merging. The issues presented in Figure 1 suggest
that use of a V-INPLACE strategy with geometric partitioning—that is, individual
update of each vocabulary entry that changes during merging events—is also
unlikely to be an improvement over V-REMERGE.

To address this dilemma, geometric partitioning techniques need to be
applied to vocabulary update as well as inverted list construction. The result-
ing V-GEOM scheme stores the vocabulary in multiple B+-tree structures, merging
new entries and existing vocabulary partitions to update them. To avoid con-
fusion with geometric partitioning applied to inverted list construction, we

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:22 • N. Lester et al.

refer to inverted list partitions as �-partitions and vocabulary partitions as
v-partitions.

Vocabulary partitioning operates by storing independent vocabulary data
structures. The growth of v-partitions occurs analogously to the geometric par-
titioning of inverted lists, and the same geometric partitioning algorithm—with
a fixed radix or a fixed number of partitions—is used to update the vocabulary as
is applied to the inverted lists. However, in order to further control the number
of v-partitions and minimize overhead on query processing, a single v-partition
can be used to record list locations within multiple �-partitions. The cardinality
of this relationship, c ≥ 1, is an additional parameter required by vocabulary
update using geometric partitioning. That is, there will be �p/c� v-partitions,
when geometric partitioning has created p different �-partitions, and the radix
for the V-GEOM algorithm is rc compared to the r radix used by the GEOM strategy.
Substituting these alternatives into the analysis developed for the GEOM algo-
rithm (Eq. (14)) with a suitably changed radix and number of partitions, and
multiplying it by the number of distinct terms in a bufferload, b/ log b, rather
than the number of pointers in a bufferload, b, yields

γV-GEOM(n, b, r, c) ≤ b
log b

×
�p/c�∑
i=1

�n/b�
rci

(rc − 1)rci

2

≈ n(rc − 1)

2c log b

(
0.5 + log(n/b)

c log r

)
. (18)

The fixed-partitions variation of geometric partitioning can be analyzed in the
same way:

γV-GEOM(n, b, p, c) ≈ pn1+c/p

2cbc/p log b
. (19)

This analysis indicates that the cost of vocabulary update can be reduced to
O(n log n) using fixed-radix partitioning, or O(n1+1/p) using a fixed number of
partitions. Evidence of the practical value of this improvement appears in the
next section.

6. EXPERIMENTS

To validate our analysis, we experimented with the 426 GB gov2web-based doc-
ument collection, and measured index construction times and querying times
for a range of online and offline indexing techniques. All experiments were
performed on a dual-processor Intel Pentium 4 2.8 GHz machine with hyper-
threading turned on, but employing only a single processor. The experimental
machine had 2 GB of RAM and was under light load, with no other significant
processes running. Times presented are elapsed times, including all parsing,
indexing, and list merging phases. In each experiment the construction process
repeatedly inverted b (with b = 80 × 106 for the most part) pointers in memory,
corresponding to approximately 200 MB of index data. When each bufferload
was full, a merging event was initiated. On the gov2 collection, b = 80 × 106

gave rise to 237 bufferloads of pointers needing processing. Merges were per-
formed with a total buffer size of 100 kB, split evenly between input and output

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:23

Fig. 5. Time taken to index the gov2 collection using a pointer buffer of b = 80 million pointers.

Two variations of the GEOM algorithm are shown, one using a fixed radix of r = 3 and one using

p = 2 partitions, with both using the V-REMERGE vocabulary update mechanism. In addition, the

REMERGE algorithm and an OFFLINE construction baseline are shown. The horizontal axis shows the

number of pointers processed. The vertical axis shows the cumulative time required to construct

an index over the given number of pointers.

buffering. The half assigned for input lists was divided further between input
partitions, where applicable, on an equal basis. In unreported experiments, we
verified that increasing the merging buffer size did not significantly alter the
outcomes of the experiments presented.

6.1 Index Construction Time

Index construction times for two different variants of the online partitioned
approach are shown in Figure 5, and compared to the time taken by the OFFLINE

method and the REMERGE online method. Note that the index constructed using
the OFFLINE method is not available for querying until the entire collection has
been processed. Times for the REBUILD and INPLACE GEOM methods are not shown;
both are considerably slower than REMERGE for this combination of data and
buffer size [Lester et al. 2005]. The relationships between the methods plotted
in Figure 5 are as expected, with the r = 3 version being slightly faster than
the p = 2 variant, and both being significantly faster than REMERGE. The super-
linear growth rate of these two approaches is also as expected. In particular,
note that the partitioned method with p = 2 forces r = √

(n/b)′.
Table IV explores the accuracy of the β cost models used to generate Table III.

Taking the REMERGE approach as a baseline, expected percentage reductions in
the β component of the predicted operation count are calculated for two versions
of the geometric scheme, and compared with the computation time reductions
measured when building an index for the .gov collection. The actual reductions
are close to the predicted β-based reductions, validating the analysis model used
in Sections 3, 4, and 5.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:24 • N. Lester et al.

Table III.

β

Algorithm Reference b = 8 × 106 b = 8 × 107

OFFLINE Equation 2 30 25

REBUILD Equation 4 37,000 3,300

REMERGE Equation 9 25,000 2,500

INPLACE GEOM, k = 1.25 Equation 6 120 120

INPLACE ARITH Equation 7 25,000 2,500

GEOM, r = 3 Equation 14 150 110

GEOM, p = 2 Equation 17 1,000 320

Inverted list construction cost (billions of operations calculated) for different in-

verted list construction strategies, using n = 2 × 1010 and two different values of

the pointer buffer size parameter b.

Fig. 6. The solid line shows the total number of distinct vocabulary terms during construction of

an index for the gov2 collection. The assumed upper bound on the vocabulary size, x/ log x for an

index of x pointers, is shown by the dotted line. The vertical axis uses a logarithmic scale.

6.2 Vocabulary Size

All of the online construction methods plotted in Figure 5 utilize V-REMERGE

to update the vocabulary, the cost of which grows super-linearly in the size of
the collection (Eq. (10)) and is O(n1.5), for example, if b ≈ √

n. That the mea-
sured performance of geometric partitioning is good indicates that the relative
constant factor of vocabulary update is modest for this scenario, and that, as
predicted in Section 5.2, the overall cost of construction is dominated by the
cost of updating inverted lists.

Before investigating the extent to which vocabulary update costs might be-
come important with other parameter combinations, the assumption made in
Section 4 regarding the number of distinct terms produced by a sequence of
pointers if length x needs to be put to the test. Figure 6 shows the relation-
ship between the number of pointers in the index and the number of distinct
terms indexed for collection gov2. It is clear that the number of distinct terms

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:25

Table IV.

Operations Predicted Build Time Actual

Strategy (Billions) Reduction (’000 Seconds) Reduction

REMERGE 2,500 – 398.0 –

GEOM, p = 2 320 87.2% 42.2 89.4%

GEOM, r = 3 110 95.6% 24.3 93.9%

Predicted and actual cost reduction between REMERGE and two variants of the geometric

partitioned method of index maintenance. The gov2 collection was indexed, using b = 80

million pointers per bufferload. The column labeled “Operations” is taken from the β costs

given in Table III, with the next column, “Predicted reduction,” calculating the extent of the

predicted savings for the two GEOM methods relative to REMERGE, assuming that the β is the

dominant component of the running time. The column labeled “Time” is then the measured

cost of incremental index construction, using the V-GEOM method for vocabulary mainte-

nance. The final column calculates actual time savings, relative to the REMERGE baseline,

and provides empirical confirmation of the validity of the cost model used in Sections 3, 4,

and 5.

indexed remains well within the presumed upper bound as the pointers of the
collection are processed. By the time the last pointer of the collection is been
dealt with, the vocabulary size is less than 10% of n/ log n. Further evidence
of the reasonableness of the vocabulary assumption is presented in Table V,

which shows the quantities
∑�n/b�

i=1 di and (
∑�n/b�

i=1 di)/(n/ log b) for four different
collections and two different values of b. Our assumption is that each di value
is less than b/ log b (Section 3.1), meaning that the sum of the di values should
not exceed n/ log b. Table V shows that this conjectured bound is met, with a
factor of two safety margin, in all of our experiments.

6.3 Vocabulary Update

Figure 7 shows the time required to construct an index over the gov2 collection
using geometric partitioning, with a fixed radix of r = 3, and the V-REMERGE

strategy, and a (small) buffer of b = 8 million pointers. The execution time is
broken into three categories: time spent appending pointers to inverted lists, β,
at the top of the graph; time spent updating the vocabulary, γ , in the middle of
the graph; and time spent on all other construction activities, primarily pars-
ing and in-memory inversion, α, at the bottom. Like Figure 5, the horizontal
axis shows the number of pointers incorporated into the index, and the vertical
axis shows the amount of time required to construct an index over that many
pointers. The numbers at the mid- and end-points of the graph are the percent-
age of the total time spent in each of the three cost categories, through to that
point, and, as expected, the cost of in-memory inversion grows approximately
linearly in the size of the collection. The cost of geometric partitioning is also
modest. On the other hand, for this combination of techniques and buffer size,
the cost of vocabulary update (in the middle) dominates, taking over half of the
total time required for construction. In addition, the percentage of time taken
by V-REMERGE at the end-point is larger than the percentage at the mid-point,
confirming that the vocabulary cost is a growing fraction of the total time.

An alternative strategy is to use geometric partitioning for vocabulary up-
date. Figure 8 shows a decomposition of the costs incurred by this strategy.
Compared to Figure 7, the cost of vocabulary update has been reduced ten-fold,

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:26 • N. Lester et al.

Fig. 7. Cumulative time taken for the different components of online index construction using

fixed-radix geometric partitioning with r = 3. The vocabulary is maintained using V-REMERGE. The

collection is the 426 GB gov2, using a buffer of b = 8 million pointers. The cumulative time spent in

each of the three cost categories is shown, with the in-memory inversion cost, α, using the darkest

shading. The time spent updating the vocabulary, γV-REMERGE, is the middle component with the

lightest shading, and the time spent appending pointers to inverted lists, βGEOM, is shown uppermost

with moderate shading. With this combination of techniques and buffer size the vocabulary costs

dominate.

Fig. 8. Cumulative time taken for the different components of online index construction using

fixed-radix geometric partitioning with r = 3. The vocabulary is maintained using geometric par-

titioning with one v-partition per �-partition. All other details are as for Figure 7. The vocabulary

cost no longer dominates construction time.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:27

Table V. ∑�n/b�
i=1

di

Collection n Distinct Terms 8M Pointers Buffered 80M Pointers Buffered

tipster 744.7M 1.8M 9.4M (0.29n/ log b) 3.8M (0.13n/ log b)

wt10g 902.2M 4.5M 20.1M (0.51n/ log b) 9.9M (0.29n/ log b)

gov 1.2B 3.6M 20.2M (0.39n/ log b) 8.7M (0.19n/ log b)

gov2 18.9B 24.0M 288.3M (0.35n/ log b) 120.3M (0.17n/ log b)

Collection statistics produced during construction. For each collection the total number of pointers, n,

and total number of distinct terms in the collection are shown. The quantity
∑�n/b�

i=1 di is recorded using

b = 8 million pointers and b = 80 million pointers. The ratio between each of these values and n/ log b,

the assumed sum of the per-bufferload vocabulary sizes, is in parentheses. The tipster [Harman 1993]

collection consists of the entire contents of disks one to five of the TREC Tipster distribution. The wt10g

and gov collections are described by Bailey et al. [2003] and Craswell and Hawking [2002] respectively.

A suffix of “M” indicates units of millions and “B” indicates units of billions.

Table VI.

Build Time

List Strategy Vocab. Strategy (’000 Seconds) �-Partitions v-Partitions

REMERGE V-REMERGE 3,100* 1 1

GEOM, p = 2 V-REMERGE 272.1 2 1

GEOM, r = 3 V-REMERGE 181.8 7 1

GEOM, p = 2 V-GEOM, c = 1 169.8 2 2

GEOM, r = 3 V-GEOM, c = 4 71.6 7 2

GEOM, r = 3 V-GEOM, c = 1 63.7 7 7

OFFLINE OFFLINE 40.6 1 1

Time required to construct indexes for the gov2 collection, using a buffer size of b = 8 million pointers

and different construction strategies. This buffer size produced �n/b� = 2,364 merging events over

the collection. The maximum number of list and vocabulary partitions created by each scheme is also

shown. The figure marked with an asterisk was estimated using Eq. (9) and the results of the REMERGE

strategy using a larger buffer of 80 million pointers; all other figures are measured execution times on

the experimental hardware. These times are higher than those presented in Table III because of the

smaller buffer size b used.

making it the smallest cost category. Overall, a three-fold reduction in construc-
tion time is obtained. Table VI gives numeric details of this result, and others
in the evolving sequence of techniques that we have described, all measured
under the same conditions using a buffer of b = 8 million pointers. The strat-
egy shown in Figure 8 is only 50% slower than OFFLINE index construction; a
significant achievement, given the small buffer size used.

6.4 Query Time

The final component of our experimentation was an exploration of the effect
that noncontiguous lists had on query costs. Figure 9 shows the effect of the
partitioned index construction scheme on querying efficiency when r = 3 and
c = 1. The upper graph shows the number of nonempty partitions at each stage
in the construction process, essentially counting the number of nonzero digits in
the base-r representation of the number of bufferloads processed. As geometric
partitioning has been utilized for both inverted list construction and vocabulary
update and c = 1, each nonempty partition results in both one v-partition and
one �-partition.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:28 • N. Lester et al.

Fig. 9. Query times for a fixed-radix geometric partitioning strategy with r = 3, and vocabulary

partitioning with one v-partition per �-partition. The collection is gov2, with a buffer of approxi-

mately 8 million pointers. The upper graph shows the number of non-empty partitions after each

merging event. The lower graph shows the measured per-query cost of evaluating 10,000 MSN

queries, using two indexes: one with noncontiguous index lists and one with contiguous lists. In

the lower graph the set of queries was executed after every approximately 50 merging events to

obtain the times indicated by the tick marks.

The lower graph in Figure 9 shows the average per-query elapsed time over
a sequence of 10,000 queries, using the index at 49 different points during its
construction. The query sample points were dictated by the sizes of the set
of files storing the collection, and are indicated by the tick marks. The 10,000
queries were taken from a query log provided by Microsoft Search, with queries
selected for inclusion in the log only if they had a result from the .gov domain
in the top three rank positions at the time they were executed by Microsoft
Search. Preliminary experiments not described here confirmed that execution
of 10,000 queries was sufficient to obtain stable measurements of execution
time. In particular, the query set was large enough that data cached in main
memory from previous experiments provided no improvement in running times,

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:29

Fig. 10. Query times for a fixed-radix geometric partitioning strategy with p = 2, and vocabulary

partitioning with one v-partition per �-partition. Other details are as for Figure 9.

meaning that cache effects were limited to those we would expect to realize in
practice. The dotted line shows the querying cost for the same set of data, but
using an index in which each list is contiguous, as would be generated by the
OFFLINE or REMERGE techniques.

The query times in Figure 9 show that the overhead arising from the use of
multiple partitions is definite, but not excessive. The greatest overhead, when
there are seven partitions in both the inverted lists and vocabulary, is approx-
imately 67%. The corresponding graph for geometric partitioning with p = 2,
c = 1 (Figure 10) shows an overhead of not more than 18%, and averaging
around 12%.

There is a consistent relationship in Figures 9 and 10 between the query
overhead (at the tick points in the lower graph) and the number of index parti-
tions at that time (shown by the corresponding tick points in the upper graph).
This relationship suggests that the additional execution time is indeed a result
of the partitioning of index lists rather than any other factors, and that our
models accurately predict the extent of the query overhead.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:30 • N. Lester et al.

The measurements presented in Figures 9 and 10 are a worst-case estimate
of the query overhead required by multiple index partitions. This overhead may
be reduced by explicitly caching inverted lists in main memory, or by placing
disk partitions on separate physical devices, allowing parallel disk accesses to
the partitions. Improvements in query resolution speed would render geometric
partitioning more attractive in comparison to the alternatives discussed in this
article.

7. RELATED WORK

A range of previous work contains elements of the indexing structures we have
described here. In particular, this article extends the work of Lester et al. [2005]
in a number of ways: Section 5.2 presents a revised analysis, including a break-
down of the costs underlying the three key processes in index construction;
Section 5.4 discusses the need for the geometric method to also be applied to
vocabulary maintenance; and the experimental results in Section 6 are also
more detailed, and are based on a revised implementation of geometric parti-
tioning.

In a presentation at the same conference as our original work, Büttcher and
Clarke [2005] independently described an r = 2 “logarithmic merge” method
built on the same key insight that prompted our investigation. Büttcher and
Clarke [2006] and Büttcher et al. [2006] have extended their approach to a
hybrid construction scheme in which different maintenance techniques are ap-
plied to lists of different lengths in the same index, which, if coupled with the
generalized geometric methods described here, can be expected to provide ad-
ditional efficiency gains.

Methods based on discontiguous lists have been used in practice for some
time. For example, the Lucene2 search engine utilizes multiple partitions of non-
decreasing size in order to optimize incremental indexing. The Lucene method
allows, for a given radix-like parameter N , up to N − 1 partitions containing
the same number of bufferloads, s. In contrast, geometric partitioning requires
that successive merges be used to maintain a single partition containing the
s × (N − 1) bufferloads. The Lucene method represents a different tradeoff be-
tween query and update efficiency, with the index potentially distributed across
more partitions. Update efficiency is greater, because of the lower amount of
merging required, but query resolution speed can be degraded to a greater de-
gree than with geometric partitioning. In a similar approach, Hamilton and
Nayak [2001] sketch a mechanism in which “a stack of indexes is maintained”
and “new documents are put in a small index, which is periodically batch merged
into a larger index.”

Other work related to optimization of incremental index updates has largely
focussed on inplace strategies. Cutting and Pedersen [1990] store short lists
within the vocabulary during inplace index update, and Shoens et al. [1994]
keep short lists within fixed-sized “buckets.” Over-allocation for long lists during
inplace maintenance is examined in a variety of related work [Brown et al. 1994;
Shoens et al. 1994; Shieh and Chung 2005]. Clarke and Cormack [1995] discuss

2See http://lucene.apache.org/.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:31

a remerge approach to index maintenance, with a custom space management
scheme that reduces the peak disk space requirement of the scheme presented
in Section 4.3.

Maintenance of B+-tree indexes under high insertion rates has also been
studied in several contexts [Graefe 2006]. Two major alternatives are repre-
sented in the literature: to buffer updates within the indexing structure [den
Bercken et al. 1997], or to maintain separate indexing structures and period-
ically merge them, see, for example, Jagadish et al. [1997]. Buffering updates
within index nodes is not efficient in incremental inverted indexing, as mem-
ory utilized for buffering updates to a B+-tree can be more effectively allocated
to buffering new postings [Cutting and Pedersen 1990]. Our proposed vocabu-
lary maintenance scheme has similarities to that proposed by Jagadish et al.
[1997], but also has several key differences. In particular, Jagadish et al. [1997]
investigate the use of multiple B+-tree indexes of nondecreasing size, analogous
to the indexing scheme implemented by Lucene. As discussed above, allowing
multiple partitions of the same size increases indexing efficiency relative to geo-
metric partitioning, at the cost of greater query speed degradation. In selecting
vocabulary maintenance techniques during incremental indexing, it is impor-
tant to note that optimization of vocabulary maintenance is subordinate to the
mechanisms used to perform inverted list maintenance, due to the significantly
higher cost of the latter. Thus, the scheme used for vocabulary maintenance is
informed by the choice of index maintenance strategy. One consequence of utiliz-
ing the same scheme for maintenance of both inverted lists and the vocabulary
is that the B+-tree merging can, assuming that c = 1 during update, operate
on precisely the portion of the vocabulary that is altered during inverted list
maintenance. Higher values of c trade increased querying efficiency for less ex-
act partitioning of vocabulary entries. Our extension of geometric partitioning
to vocabulary maintenance offers a combined scheme that, as shown by anal-
ysis and empirical observation, provides efficient, low-complexity update of an
entire index.

8. CONCLUSIONS

We have described, analyzed, and measured a mechanism for online index con-
struction for text databases that is based on the principle of dividing the index
into a small number of partitions of geometrically increasing size. In contrast to
update mechanisms for standard contiguous representation of inverted indexes,
construction costs are significantly reduced, and more scalable. In particular,
the time required to build an index for the 426 GB .gov experimental collection
is reduced by a factor of around seven compared to a comparable implemen-
tation of the remerge approach. The results also show that the relative gains
increase with collection size, and overall construction times were within a factor
of two of those achieved by a highly-optimized offline index construction scheme.

The main disadvantage of multiple partitions is that querying is slower. But
by limiting the number of partitions, the degradation in query time is modest;
our experiments show that with p = 2, queries on average take around 10%
longer. As the number of partitions can be controlled either indirectly through

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

19:32 • N. Lester et al.

the choice of radix r, or explicitly via a fixed limit p, a retrieval system can be
tuned to the mix of querying and update operations that is anticipated.

Thus, by restricting the way in which the index partitions grow in size, we
have been able to bound the total cost of the index construction process, and
also the extra cost that arises in query processing. Our work shows that online
methods offer an attractive compromise among construction costs, querying
costs, and access immediacy.

REFERENCES

ANH, V. AND MOFFAT, A. 2006. Improved word-aligned binary compression for text indexing. IEEE
Trans. Knowl. Data Engin. 18, 6, 857–861.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison-Wesley

Longman, Reading, MA.

BAILEY, P., CRASWELL, N., AND HAWKING, D. 2003. Engineering a multi-purpose test collection for

web retrieval experiments. Inform. Process. Manag. 39, 6, 853–871.

BAYER, R. 1972. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta
Inf. 1, 290–306.

BILIRIS, A. 1992a. An efficient database storage structure for large dynamic objects. In Pro-
ceedings of the IEEE International Conference on Data Engineering. IEEE Computer Society,

301–308.

BILIRIS, A. 1992b. The performance of three database storage structures for managing large

objects. In Proceedings of the ACM SIGMOD International Conference on the Management of
Data (SIGMOD’92). ACM, New York, 276–285.

BROWN, E., CALLAN, J., AND CROFT, W. 1994. Fast incremental indexing for full-text information

retrieval. In Proceedings of the International Conference on Very Large Databases (VLDB’94).
192–202.

BÜTTCHER, S. AND CLARKE, C. 2005. Indexing time vs. query time trade-offs in dynamic information

retrieval systems. In Proceedings of the ACM CIKM International Conference on Information and
Knowledge Management (CIKM’05). ACM, New York, 317–318.

BÜTTCHER, S. AND CLARKE, C. 2006. A hybrid approach to index maintenance in dynamic text

retrieval systems. In Proceedings of the European Conference on Information Retrieval (ECIR’06).
229–240.

BÜTTCHER, S., CLARKE, C., AND LUSHMAN, B. 2006. Hybrid index maintenance for growing text

collections. In Proceedings of the ACM-SIGIR International Conference on Research and Devel-
opment in Information Retrieval (SIGIR’06). ACM, New York, 356–363.

CAREY, M., DEWITT, D., RICHARDSON, J., AND SHEKITA, E. 1986. Object and file management in the

EXODUS extensible database system. In Proceedings of the International Conference on Very
Large Databases (VLDB’86). Morgan Kaufmann, 91–100.

CAREY, M., DEWITT, D., RICHARDSON, J., AND SHEKITA, E. 1989. Storage management for objects in

EXODUS. In Object-Oriented Concepts, Databases, and Applications, W. Kim and F. Lochovsky,

Eds. Addison-Wesley Longman, New York, 341–369.

CLARKE, C. AND CORMACK, G. 1995. Dynamic inverted indexes for a distributed full-text retrieval

system. MultiText Project Tech. rep. MT-95-01, Department of Computer Science, University of

Waterloo, Waterloo, Canada.

CLARKE, C., CRASWELL, N., AND SOBOROFF, I. 2004. Overview of TREC 2004 terabyte track. In

Proceedings of the 13th Text REtrieval Conference (TREC-13). National Institute of Standards

and Technology Special Publication 500-261, Gaithersburg, MD.

COMER, D. 1979. The ubiquitous B-tree. Comput. Surv. 11, 2, 121–137.

CRASWELL, N. AND HAWKING, D. 2002. Overview of the TREC-2002 web track. In Proceedings of the
11th Text REtrieval Conference (TREC-2002). National Institute of Standards and Technology

Special Publication 500-251, Gaithersburg, MD, 86–95.

CUTTING, D. AND PEDERSEN, J. 1990. Optimizations for dynamic inverted index maintenance. In

Proceedings of the ACM-SIGIR International Conference on Research and Development in Infor-
mation Retrieval (SIGIR’90). ACM, New York, 405–411.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

Efficient Online Index Construction for Text Databases • 19:33

DEN BERCKEN, J. V., SEEGER, B., AND WIDMAYER, P. 1997. A generic approach to bulk loading

multidimensional index structures. In Proceedings of the Conference on Very Large Data Bases
(VLDB’97). Morgan Kaufmann, San Francisco, CA, 406–415.

GRAEFE, G. 2006. B-tree indexes for high update rates. SIGMOD Rec. 35, 1, 39–44.

HAMILTON, J. R. AND NAYAK, T. K. 2001. Microsoft SQL server full-text search. IEEE Data Engin.
Bull. 24, 4, 7–10.

HARMAN, D. 1993. Overview of the first TREC conference. In Proceedings of the ACM-SIGIR
International Conference on Research and Development in Information Retrieval (SIGIR’93).
ACM, New York, 36–47.

HEINZ, S. AND ZOBEL, J. 2003. Efficient single-pass index construction for text databases. J. Amer.
Soc. Inform. Sci. Tech. 54, 8, 713–729.

JAGADISH, H., NARAYAN, P., SESHADRI, S., SUDARSHAN, S., AND KANNEGANTI, R. 1997. Incremental

organization for data recording and warehousing. In Proceedings of the International Conference
on Very Large Databases (VLDB’97). Morgan Kaufmann, San Francisco, CA, 16–25.

KNUTH, D. 1973. The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd Ed.

Addison-Wesley, Reading, MA.

LEHMAN, T. AND LINDSAY, B. 1989. The Starburst long field manager. In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB’89). 375–383.

LESTER, N., MOFFAT, A., AND ZOBEL, J. 2005. Fast online index construction via geometric partition-

ing. In Proceedings of the ACM CIKM International Conference on Information and Knowledge
Management (CIKM’05). ACM, New York, 776–783.

LESTER, N., ZOBEL, J., AND WILLIAMS, H. 2005. Efficient online index maintenance for contiguous

inverted lists. Inform. Process. Manag. 42, 4, 916–933.

MOFFAT, A. AND BELL, T. A. H. 1995. In situ generation of compressed inverted files. J. Amer. Soc.
Inform. Sci. 46, 7, 537–550.

RAMAKRISHNAN, R. AND GEHRKE, J. 2003. Database Management Systems, 3rd Ed. McGraw Hill,

New York, NY.

SCHOLER, F., WILLIAMS, H., YIANNIS, J., AND ZOBEL, J. 2002. Compression of inverted indexes for

fast query evaluation. In Proceedings of the ACM-SIGIR International Conference on Research
and Development in Information Retrieval (SIGIR’02). ACM, New York, 222–229.

SHIEH, W.-Y. AND CHUNG, C.-P. 2005. A statistics-based approach to incrementally update inverted

files. Inform. Process. Manag. 41, 2, 275–288.

SHOENS, K., TOMASIC, A., AND GARCIA-MOLINA, H. 1994. Synthetic workload performance analysis

of incremental updates. In Proceedings of the ACM-SIGIR International Conference on Research
and Development in Information Retrieval (SIGIR’94). ACM, New York, 329–338.

TOMASIC, A., GARCIA-MOLINA, H., AND SHOENS, K. 1994. Incremental updates of inverted lists for

text document retrieval. In Proceedings of the ACM-SIGMOD International Conference on the
Management of Data (SIGMOD’94). ACM, New York, 289–300.

WILLIAMS, H. AND ZOBEL, J. 2005. Searchable words on the web. Int. J. Digital Libraries 5, 2,

99–105.

WITTEN, I., MOFFAT, A., AND BELL, T. C. 1999. Managing Gigabytes: Compressing and Indexing
Documents and Images, 2nd Ed. Morgan Kaufmann, San Francisco, CA.

ZOBEL, J. AND MOFFAT, A. 2006. Inverted files for text search engines. ACM Comput. Surv. 38, 2,

1–56.

Received September 2007; revised March 2008; accepted May 2008

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 19, Publication date: August 2008.

