
Cache-Efficient String Sorting Using Copying

RANJAN SINHA and JUSTIN ZOBEL

RMIT University

and

DAVID RING

Palo Alto, CA

Burstsort is a cache-oriented sorting technique that uses a dynamic trie to efficiently divide large

sets of string keys into related subsets small enough to sort in cache. In our original burstsort,

string keys sharing a common prefix were managed via a bucket of pointers represented as a list

or array; this approach was found to be up to twice as fast as the previous best string sorts, mostly

because of a sharp reduction in out-of-cache references. In this paper, we introduce C-burstsort,

which copies the unexamined tail of each key to the bucket and discards the original key to improve

data locality. On both Intel and PowerPC architectures, and on a wide range of string types, we

show that sorting is typically twice as fast as our original burstsort and four to five times faster than

multikey quicksort and previous radixsorts. A variant that copies both suffixes and record pointers

to buckets, CP-burstsort, uses more memory, but provides stable sorting. In current computers,

where performance is limited by memory access latencies, these new algorithms can dramatically

reduce the time needed for internal sorting of large numbers of strings.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms]: Sorting; E.5 [Files]: Sorting;

E.1 [Data Structures]: Trees; B.3.2 [Memory Structures]: Cache Memories; D.1.0 [Program-
ming Techniques]: General

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Sorting, string management, cache, tries, algorthims, experi-

mental algorithms

1. INTRODUCTION

Sorting is a core problem in computer science that has been extensively re-
searched over the last five decades. It underlies a vast range of computational
activities and sorting speed remains a bottleneck in many applications involv-
ing large volumes of data. The simplest sorts operate on fixed-size numerical
values. String sorts are complicated by the possibility that keys may be long

Authors’ addresses: Ranjan Sinha and Justin Zobel, School of Computer Science and In-

formation Technology, RMIT University, GPO Box 2476V, Melbourne 3001, Australia; email:

{rsinha,jz}@cs.rmit.edu.au; David Ring, Palo Alto; email: dbring@pacbell.net.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-6654/2006/0001-ART1.2 $5.00 DOI 10.1145/1187436.1187439 http://doi.acm.org

10.1145/1187436.1187439

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006, Pages 1–32.



2 • R. Sinha et al.

(making them expensive to move or compare) or variable in length (making
them harder to rearrange). Finally, sorts that operate on multifield records
raise the issue of stability, that is, conservation of previous order when keys
are equal in the field currently being sorted. The favored sorting algorithms
are those that use minimal memory, remain fast at large collection sizes, and
efficiently handle a wide range of data properties and arrangements without
pathological behavior.

Several algorithms for fast sorting of strings in internal memory have been
described in recent years, including improvements to the standard quicksort
[Bentley and McIlroy 1993], multikey quicksort [Bentley and Sedgewick 1997],
and variants of radix sort [Andersson and Nilsson 1998]. The fastest such algo-
rithm is our burstsort [Sinha and Zobel 2004a], in which strings are processed
depth- rather than breadth-first and a complete trie of common prefixes is used
to distribute strings among buckets. In all of these methods, the strings them-
selves are left in place and only pointers are moved into sort order. This point-
erized approach to string sorting has become a standard solution to the length
and length variability of strings, as expressed by Andersson and Nilsson [1998]:

to implement a string sorting algorithm efficiently we should not move the
strings themselves but only pointers to them. In this way each string movement
is guaranteed to take constant time.

In this argument, moving the variable-length strings in the course of sorting is
considered inefficient. Sorting uses an array of pointers to the strings, and, at
the completion of sorting, only the pointers need to be in sort order.

However, evolutionary developments in computer architecture mean that
the efficiency of sorting strings via pointers needs to be reexamined. Use of
pointers is efficient if they are smaller than strings and if the costs of accessing
and copying strings and pointers are uniform, but the speed of memory access
has fallen behind processor speeds and most computers now have significant
memory latency. Each string access can potentially result in a cache miss; that
is, if a collection is too large to fit in cache memory, the cost of out-of-cache
references may dominate other factors, making it worthwhile to move even
long strings in order to increase their spatial locality. It is the cost of accessing
strings via pointers that gives burstsort (which uses no fewer instructions than
other methods) a speed advantage.

There has been much recent work on cache-efficient algorithms [LaMarca
and Ladner 1999; Jimenez-Gonzalez et al. 2003; Rahman and Raman 2000,
2001; Wickremesinghe et al. 2002; Xiao et al. 2000], but little that applies to
sorting of strings in internal memory. An exception is burstsort [Sinha and
Zobel 2004a], which uses a dynamically allocated trie structure to divide large
sets of strings into related subsets small enough to sort in cache. Like radix
sorts and multikey quicksort, burstsort avoids whole string comparisons and
processes keys one byte at a time. However, burstsort works on successive bytes
of a single key until it is assigned to a bucket, while the other sorts must
inspect the current byte of every key in a sublist before moving to the next byte.
This difference greatly reduces the number of cache misses, since burstsort can
consume multiple bytes of a key in one memory access, while the older sorts

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 3

may require an access for each byte. Furthermore, burstsort ensures that final
sorting will be fast by expanding buckets into new subtries before they exceed
the number of keys that can be sorted within cache.

In tests using a variety of large string collections, burstsort was twice as fast
as the best previous string sorts, due largely to a lower rate of cache misses. On
average, burstsort generated between two and three cache misses per key, one
on key insertion and another during bucket sorting; the remaining fractional
miss was associated with bursting, which requires accessing additional bytes
of the keys, and varied with patterns in the data.

There are two potential approaches to reducing cache misses because of
string accesses. The first is to reduce the number of accesses to strings, which is
the rationale for burstsort. The second approach is to store strings with similar
prefixes together and then to sort these suffixes. By gathering similar strings
into small sets, it is feasible to load the whole of each set into cache and thus sort
efficiently. That is, if strings with similar prefixes could be kept together, then
accesses to them will be cache efficient. Such an approach was found to work for
integers in our adaptation of burstsort, where the variable-length suffix of an
integer that had not been consumed by the trie is copied into the bucket [Sinha
2004]. In this paper, we explore the application of this approach to strings.

The novel strategy we propose is to copy the strings into the buckets. That
is, instead of inserting pointers to the keys into the burst trie buckets, we in-
sert the unexamined suffixes of the keys. This eliminates any need to reaccess
the original string on bucket sorting and by copying only the tails of the keys
into a contiguous array, we make the most efficient use of limited cache space.
Finally, with all prefix bytes reflected in the trie structure, and all suffix bytes
transferred to buckets, we can free the original keys to save memory. Balancing
these advantages, we can expect higher instruction counts reflecting the com-
plications of moving variable length suffixes and increased copying costs when
the suffixes are longer than pointers.

There are several challenges, principally concerning memory usage and in-
struction counts. How efficiently can strings be copied to the buckets? Are the
advantages of spatial locality offset by additional instructions? Is the memory
usage excessive? How will the bucket be managed, as the strings are of vari-
able length? What is the node structure? Are there any auxiliary structures?
Are there any characteristics of the collection, such as the average string length,
that alter best-case parameters?

We show that all of these challenges can be met. In our new string sort-
ing algorithms based on copying, memory usage is reasonable—the additional
space for the strings is partly offset by elimination of pointers—and cache ef-
ficiency is high. Using a range of data sets of up to tens of millions of strings,
we demonstrate that copy-based C-burstsort is around twice as fast as previous
pointer-based burstsorts and four to five times faster than multikey quicksort
or forward radixsort, while generating less than two cache misses per key.

While C-burstsort provides fast sorting of string keys, it is not suitable for
processing records, since it is not stable and discards the original keys. We,
therefore, describe a record-oriented variant, CP-burstsort, which transfers
both string tails and record pointers to buckets. CP-burstsort uses substantially

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



4 • R. Sinha et al.

more memory than C-burstsort or our previous pointer-based burstsorts, but
provides stable sorting at more than twice the speed of a stable radix sort or
70–90% of the speed of C-burstsort.

2. SORTING STRINGS IN INTERNAL MEMORY

Many of the earliest sorting algorithms, such as shellsort and quicksort, re-
arrange data in-place with small constant space overhead. Sorting with these
algorithms involves swapping of fixed-size items, such as integers. Variable-
length strings cannot be readily sorted in this way, so the most common ap-
proach to sorting of strings is to store them in a contiguous array of characters
and index them with an array of fixed-size pointers. Sorting can then proceed by
rearranging the pointers and leaving the strings themselves unaltered. To our
knowledge, all string-sorting algorithms described so far use such an array of
pointers, although it is not strictly necessary in algorithms, such as mergesort.

Historically, as illustrated in the quotation given earlier, such use of pointers
was potentially advantageous, as copying of strings could be expensive. How-
ever, pointer-based methods are not necessarily cache efficient, as each access
can be a cache miss. Here we briefly review recent developments in caching and
sorting; a more detailed overview of sorting is given by Sinha and Zobel [2004a].

2.1 Caching

During the last couple of decades, there have been gradual, but significant,
changes in computer architecture. First, the speed of processors has been in-
creasing by about 50% per year, closely following Moore’s law. This is because
of the fact that the density of transistors is increasing by about 35% per year
and the size of die has been increasing by about 10 to 20% per year [Hennessy
and Patterson 2002]. Second, the density of DRAM is increasing by 40–60%
per year and, as a result, the size of main memory has been expanding rapidly.
However, memory access speeds are increasing only slowly, by only 7% per year
[Hennessy and Patterson 2002]. This latency gap is widening rapidly and this
trend appears likely to continue.

The latency gap has affected the performance of computer programs, espe-
cially those that deal with large amounts of data [LaMarca and Ladner 1999;
Hennessy and Patterson 2002]. However, many programs tend to reuse the
data or instructions that have been recently accessed. As programs do not ac-
cess all code or data uniformly, having those frequently accessed items closer
to the processor is an advantage. This principle of locality has led to solutions,
such as the use of small memories, or caches, between the processor and main
memory. That caches have become a popular solution can be gauged from the
fact that almost all processors come with at least one cache and most have two.
A common approach is to have a large off-chip L2 cache and a small on-chip L1
cache. Current processors have caches ranging from 64 or 256 KB on a Intel
Celeron to 8 MB on a Sun SPARC.

Another important cache in modern processors is the translation lookaside
buffer, or TLB, which is used to translate between virtual and physical ad-
dresses. Recently accessed entries in the page table are cached in the TLB to

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 5

save expensive accesses to main memory. The TLB performance of an algorithm
can be enhanced by improving the page locality of both the data structure as
well the access to the data. To be efficient, an algorithm needs to maximize the
impact of both types of cache [Rahman and Raman 2001].

2.2 Quicksorts

Quicksort was introduced by Hoare [1961, 1962]. The collection to be sorted
is recursively divided into two partitions based on a pivot. Each partition is
then recursively divided, until the partitions are small enough to be efficiently
sorted by simpler methods, such as insertion sort. In later passes, strings having
similar prefixes are in the same partition, requiring unnecessary comparison of
prefixes that are, by construction, known to be identical. The first pass is cache
efficient as it involves sequential passes over the array of pointers as well as
the collection of strings, but successive passes may not be cache efficient, as
the string accesses are effectively random. The number of passes in quicksort
is proportional to log N and thus the number of cache misses per string is
expected to increase logarithmically.

Several optimizations, such as three-way partitioning and adaptive sam-
pling, have been recently introduced in the Bentley and McIlroy [1993] variant
of quicksort. This variant has been used (in most libraries) since the early 1990s.

The concept of multiple word sorting was described in the early 1960s; a prac-
tical algorithm, multikey quicksort, was introduced by Bentley and Sedgewick
[1997]. This algorithm can be regarded as a hybrid of radixsort and three-way
quicksort. The keys are divided into three partitions (p<, p=, and p>) based
upon the dth character of the strings. The next character (at position d + 1)
is compared for strings in the p= partition. The strings in the other two parti-
tions are divided according to the dth character. The character-wise approach
reduces the comparison costs, as the redundant comparison of prefixes is re-
duced, but the disadvantages inherent in quicksort are still present because
of poor spatial locality of the string accesses. The cache efficiency is similar to
that of quicksort and the number of cache misses per key is expected to increase
logarithmically. We have used the implementation by Bentley and Sedgewick
[1997], designated as multikey quicksort.

2.3 Radixsorts

For fixed-length keys, radixsorts can proceed from the least significant (LSD) or
most significant (MSD) end of the key. However, LSD radixsorts are impractical
for variable-length strings.

The in-principle costs of MSD radixsorts approaches the theoretical mini-
mum, reading only the distinguishing prefix and only reading each character
in the prefix once. In the worst case, however, each string may need to be reac-
cessed for each character, so the number of cache misses is then proportional to
the size of the distinguishing prefix. Moreover, it is relatively easy to produce
bad cases, such as a collection that is larger than cache and containing identi-
cal strings. The number of passes is directly proportional to the length of the
distinguishing prefix of each string.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



6 • R. Sinha et al.

The number of cache misses can be reduced by decreasing the number of
passes by increasing the alphabet size, as in adaptive radixsort [Nilsson 1996],
where the size of the alphabet is a function of the number of elements that
remains to be sorted in a bucket. In this approach, a linked list node is created
to address each string; these nodes are shifted between buckets as the sorting
progresses. With both an array of pointers to strings and a set of linked list
nodes, there are considerable space overheads. The alphabet size varies from
8 to 16-bit. Several optimizations have been used that reduces the number of
node elements that need to be looked at for the larger alphabets.

Another variant is the radixsort described by McIlroy et al. [1993], an in-place
array-based method. We have used the original implementation of McIlroy et al.
[1993], designated as MBM radixsort.

2.4 Burstsort

Burstsort is a cache-friendly algorithm that sorts large collections of string keys
up to twice as fast as the previous best algorithms [Sinha and Zobel 2004a]. It is
based on the burst trie [Heinz et al. 2002], a variant of trie in which sufficiently
small subtrees are represented as buckets. As subtrees tend to be sparse, the
use of buckets makes a burst trie much more space efficient than a conventional
trie and leads to more efficient use of cache.

The principle of burstsort is that each string in the input is inserted into a
burst trie, creating a sorted sequence of buckets that are internally unsorted.
In the basic implementation, each bucket is a set of pointers to strings; within a
bucket, each string has the same prefix, representing the path through the trie
that was used to reach the bucket. The most efficient representation of buckets
is as an array that is resized as necessary. Traversal of the burst trie, sorting
each bucket in turn, yields sorted output. Some strings are entirely consumed
in the trie; these are stored in special-purpose end-of-string buckets, in which
all strings are known (by construction) to be identical.

During the insertion phase, then, each string is consumed byte by byte until
it can be assigned to a bucket. Buckets that are larger than the fixed threshold
are burst into new subtries, ensuring that each bucket remains small enough
to be sorted in fast cache memory. Because burstsort processes one string fully
before proceeding to the next, it exhibits better locality than approaches, such
as multikey quicksort or forward radixsort. In these methods, the first byte of
every string is processed before the second of any string, so each string must be
reaccessed for every distinguishing character. When the volume of keys being
sorted is much larger than cache, burstsort generates far fewer out-of-cache
references than the other algorithms [Sinha and Zobel 2004a].

Burstsort gains speed by accessing keys serially and assigning them to buck-
ets small enough to sort within cache. Our exploration of burstsort variants
[Sinha and Zobel 2004a] showed that the speed can be increased by reducing
the number of times that keys are accessed from their original memory loca-
tions, by reducing the number of buckets that are formed, by balancing trie
size against typical bucket size, and by reducing the number of times that large
buckets are grown or burst. The best results are achieved by forming the fewest

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 7

possible buckets and filling them as full as possible and by growing or bursting
buckets while they are still small.

Addressing these conflicting issues, we developed burstsort variants that
avoid most of the bursts, by using the strategy of prebuilding trie structures
based on small random samples of keys [Sinha and Zobel 2004b]. Sampling
burstsorts are 10–25% faster than the original and generate up to 37% fewer
cache misses.

However, the costs involved in growing and bursting buckets are a bottleneck.
The string burstsorts described to date leave the keys in their original locations
and place only pointers in buckets, leading to two problems. First, average key
length can vary significantly by bucket. A burst threshold that is low enough
to ensure that buckets referencing long keys can be sorted within cache may
result in wasteful bursting of buckets that hold shorter keys. Second, pointers
are localized in buckets, but bucket sorting requires repeated access to the keys,
which remain dispersed at their original locations in memory. With low burst
thresholds, there will be room to bring all the keys referenced by a bucket into
cache, but this is wasteful, as only the unexamined terminal bytes of each key
are actually needed. Furthermore, each key is accessed twice: once to assign it
to a bucket and, again, to bring it into cache memory when the bucket is sorted.

In adapting burstsort to integers [Sinha 2004], we discovered that it was
efficient to store only the distinguishing tail of each integer in the buckets;
the common prefix was represented by the path through the burst trie. Within
a bucket, each tail was of the same length, but lengths varied from bucket to
bucket. This suggested that copying strings rather than referencing them could
be advantageous, as we now discuss.

3. COPY-BASED BURSTSORT

Burstsort would be more efficient if the spatial locality of the strings could
be improved, so that strings are more likely to be cached. Improving locality
requires moving strings so that strings sharing a prefix are near each other and,
if feasible, would reduce cache misses during both bursting and bucket sorting.
Our contribution in this paper is copy-based burstsort, in which colocation of
strings is successfully used to reduce sorting costs.

The novel approach that we propose is to copy the suffix of each string into its
bucket, eliminating the need to refer to the strings at their arbitrary memory
locations. In copy-based burstsort, or C-burstsort, each key is accessed just once
in its original memory location. When it has been assigned to the appropriate
bucket, its unexamined tail bytes are copied to the bucket, and the original
key, including the prefix, which is represented by the path through the trie, is
deleted. Buckets grow or burst based on the actual number of tail-of-string bytes
held in them. When all keys have been inserted, each group of suffixes sharing
a common prefix has been localized in a bucket and packed into a minimal
contiguous block of memory.

C-burstsort has three main advantages. First, the full capacity of the cache
can be utilized, whereas, in pointer-based burstsort, the number of strings in
the buckets is typically limited to the number of blocks in cache. This allows

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



8 • R. Sinha et al.

more strings to be accommodated in each bucket, reducing the height of the
trie. Second, bursting a bucket does not require fetching a string from memory,
potentially causing a cache miss with each access; only a scan traversal of the
bucket is required to distribute the strings into the child buckets. Third, sorting
the strings in the final traversal phase is more efficient; only a scan traversal
of the bucket is required and the strings do not have to be fetched from their
original memory locations, a process that would potentially cause a cache miss
for each string.

A disadvantage of C-burstsort is that it is not suitable for sorting of sets of
records, since it sorts unstably and discards the original keys. We, therefore,
developed a record-based variant, CP-burstsort, which transfers both string
tails and record pointers to buckets, and allows stable sorting of records. This
variant requires more memory than C-burstsort or pointer-based burstsorts,
but provides the fastest stable sorting.

The absolute and relative performance of these new algorithms will vary
with the cache architecture and latencies of particular computers, but, in most
cases, we expect them to provide the fastest options available for internal string-
based sorting. The performance in a range of architectures is explored in our
experiments. First, we describe the new copy-based variants of burstsort.

3.1 C-Burstsort

In C-burstsort, the strings are initially loaded into a segmented buffer, or array
of buffers. Segmentation reduces peak memory allocation by allowing groups
of the original keys to be freed as soon as their tails are inserted into buckets.
Making an arbitrary choice, which has only minimal impact on efficiency, we
use 50 buffers. Statistics are collected during loading, including the number
of keys, number of bytes, length of the longest key, and highest and lowest
character value encountered. (The length of the largest string is used during
insertion of strings into the bucket to avoid overflow without double-checking
the string. The character range is used during the traversal phase; only the
buckets within that range are checked.)

The strings are inserted one by one into the trie structure and their unin-
spected suffixes are copied to the buckets, where the suffixes are contiguously
stored. Each bucket is allowed to grow until it reaches the threshold limit for
bursting. A buffer segment is freed once all strings in that segment have been
inserted into the trie. For the empty-string buckets, only the counters need
be incremented. During bursting, the bucket is scan-traversed and the strings
are distributed and copied into new buckets. Once all the strings have been
inserted, the trie nodes are traversed and pointers to the string suffixes in the
buckets are created. The string suffixes in the bucket are then sorted using a
suitable helper sort, such as multikey quicksort, and the strings can be output
in sort order.

In C-burstsort, each bucket is represented as an array of bytes; in prior
versions of burstsort, buckets were arrays of pointers. When a bucket is initially
created, it is small, to avoid waste of space—an arbitrary bucket may never
hold more than a few strings. Each time a bucket overflows, it is enlarged by

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 9

reallocation. A limit threshold is used to put an absolute cap on bucket size;
when this threshold is reached, the bucket is burst. Choice of bucket expansion
strategy and of threshold is discussed later.

In detail, the phases of C-burstsort are as follows.

1. Initialization: Read all strings into the segmented buffer. Statistics are
recorded as described above.

2. Insertion: The keys in the segmented buffer are processed sequentially and
each segment is freed as soon as its keys have been inserted. As each key is
read, its successive bytes are used to traverse the trie structure. Starting at
root, the first byte value indexes the next step in the path for strings begin-
ning with that character. If this step is a trie node, the pointer is followed to
the next node and the next character is examined, and so on, until the key
is exhausted or an unbranched node is found.

If a key runs out, the count for that key is incremented. There are no buck-
ets for exhausted keys in C-burstsort and, after insertion, the keys exist only
as counts and the path of prefix character leading to a given node. Otherwise,
a bucket is reached and its count is incremented. If the incremented count is
one, a new bucket of size, say 2048 bytes, is allocated. The key’s remaining
bytes, including the terminating null, are copied to the end of the bucket. If
the bucket is full it needs to be grown or burst. If the bucket’s contents are
projected to exceed the cache size C, or if the free burst count F (described
later) is greater than 0, the bucket is burst. Otherwise it is grown.

To burst a bucket, a new trie node is allocated. The key tails in the full
bucket are inserted into the new subtrie and the full bucket is then freed.
In the case that all the keys in a burst end up in a single new bucket, the
burst routine automatically bursts that bucket, until a burst forms more
than one new bucket or exhausts at least one key. The free burst counter F
is decremented only if a burst results in a net increase in buckets. (That is,
bursts that deepen the trie without branching are always free.)

To grow a bucket, the contents of the full bucket are copied to a newly
allocated bucket twice as large and the old bucket is freed.

3. Traversal: Starting at the root node, the slots between the lowest and highest
character values observed during loading phase are recursively scanned.
When a bucket is found, it is tested to determine if it has enough free space
to allocate (in cache) a tail pointer to each tail. If not, a rare case, it is burst
and the new subtrie is recursively traversed. The bucket is then scanned, so
that each tail pointer indicates the start of a tail. The tail pointers are then
sorted with the helper sort.

At this point, keys can be recovered in sort order directly from the trie.
Prefixes are built by starting at root with a null string and appending each
character traversed. For strings that are entirely represented within the trie,
counts are used to indicate how often each string should be output. For other
strings, the tail is appended to the prefix and the whole string is output.

A snapshot of C-burstsort after the insertion of all the strings in a collection is
shown in Figure 1. Strings in the trie structure are “bat,” “barn,” “bark,” “by,”

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



10 • R. Sinha et al.

Fig. 1. C-burstsort with five trie nodes, four buckets, and eleven strings. The threshold for bursting

a bucket is five bytes.

“by,” “by,” “by,” “byte,” “bytes,” “wane,” and “way.” The string terminator symbol
in all figures is denoted by “#.”

3.2 CP-Burstsort

CP-burstsort provides stable sorting of records or other data when it is not
desirable to delete the original keys. For each key, both the unexamined suffix
and a pointer to the original key or record are copied to the appropriate bucket.
Output is a sorted sequence of pointers to the records.

In the first phase, the data is copied into a buffer and the statistics (length of
longest string and character range) of the collection are recorded. The strings
are then inserted one by one into the trie structure. As each string is inserted,
a pointer to the string’s location in the input buffer is placed in the bucket,
immediately prior to a copy of the uninspected string suffix. For the empty-
string bucket, only the record pointers need be kept in the bucket. During
bursting, the bucket is scan traversed and the string suffixes and record pointers
are distributed and copied onto new buckets. Once all the strings have been
inserted into the trie, the trie nodes are traversed and pointers to the string
suffixes in the buckets are created. The string suffixes in the bucket are then
sorted using a stable version of multikey quicksort. The records can then be
output in sort order, by a scan traversal of the array of pointers to suffixes in

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 11

Fig. 2. CP-burstsort with five trie nodes, five buckets, and eleven strings. The threshold for burst-

ing a bucket is seven bytes.

the bucket. In detail, the phases of CP-burstsort are as for C-burstsort, but with
the following differences.

1. Initialization: Read all strings (and associated records) into a single buffer.
Statistics are recorded as described above.

2. Insertion: Insertion is similar to that in C-burstsort. The only differences are
that the original keys are not freed after insertion and, instead of holding
only counts, the record pointers of exhausted strings are kept in buckets;
these buckets grow by doubling, but do not burst.

3. Traversal: Traversal is similar to that in C-burstsort. However, alternation of
record pointers and string tails must be taken into account while building the
tail pointer array. Special helper sorts are needed to stably sort CP-burstsort
buckets. When equal keys are found, stability is achieved by arranging their
tail pointers in the order of the tails (which were inserted in original order,
and moved but never reordered during bucket growth and bursting). Once a
bucket has been sorted, the tails are no longer needed. Record pointers are
copied into the positions of the sorted tail pointers and the bucket is freed.

A snapshot of CP-burstsort after the insertion of all the strings in a collection
is shown in Figure 2. Strings in the trie structure are, as above, “bat,” “barn,”
“bark,” “by,” “by,” “by,” “by,” “byte,” “bytes,” “wane,” and “way.” The record pointer

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



12 • R. Sinha et al.

Fig. 3. PPL structure used in C-burstsort and CP-burstsort.

in Figure 2 is denoted by “→” and is assumed, in the figure, to occupy a single
byte.

In comparing the speed of the variants of burstsort, some assumptions need
to be made. For example, in some applications involving large sets of strings,
the array of pointers to strings will already be present; in other applications,
creating the array of pointers is an overhead. In our experiments, in order to
err on the side of underestimating the improvement yielded by C- and CP-
burstsort, we assume the former—the cost of creating the array of pointers is
not counted.

4. IMPLEMENTATION CHOICES

The behavior of C-burstsort may be modified or adapted to a particular system
by changing the growth strategy, cache size (C), initial bucket size (S0), free
burst count (F ), and choice of helper sort. We now explore implementation
choices, after explaining the structures used for these copy-based burstsort
variants.

4.1 Structures Used by C-Burstsort and CP-Burstsort

The PPL elements of the tries used in C- and CP-burstsort are as shown in
Figure 3. The trie node is an array of these PPL elements, which have four
fields: (1) an integer field to keep track of the number of strings in a bucket;
(2) a pointer to start of bucket; (3) a pointer to first unused byte of bucket; (4) a
pointer to the limit at which the bucket will test as full. As a suffix is being
copied into the bucket, if the position exceeds the limit, the bucket is either
grown or burst.

Apart from the trie node structure, a simple array is used for the bucket,
which stores the string suffixes and record pointers. The buckets hold string
tails and (in CP-burstsort) pointers to the original records. In C-burstsort, string
tails are contiguously added to the bucket, with the first byte of each tail follow-
ing the terminating null of the preceding tail. In CP-burstsort, a record pointer
for each key is inserted first, followed immediately by the corresponding tail.
In both methods, tail pointers are created at bucket-sorting time, in a separate
array. Although the tail pointer array is distinct from the bucket, both must
ideally fit into cache during bucket-sorting phase.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 13

Fig. 4. Traversal phase. (a) C-burstsort; (b) CP-burstsort.

During the traversal phase, an array of pointers to suffixes in the bucket is
created and used to sort the bucket. In C-burstsort, the strings can be retrieved
by traversing this array of pointers and concatenating the prefixes to the cor-
responding suffixes. In CP-burstsort, the record pointers are mapped onto the
sorted tail pointers (see below) and can then be used to retrieve records in order.
A snapshot of the traversal phase is shown in Figure 4. The record pointer in
Figure 4 is denoted by “→” and is assumed to occupy a single byte.

On both Intel and PowerPC architectures, a node element occupies 16 bytes,
structured as a four byte integer and three character pointers. Holding the
PPL structure to 16 bytes allows four node elements to fit on a 64-byte cache
line. Depending on alphabet size and character distribution, string data sets
can generate several trie nodes and the effect of cache misses related to the
trie structure would start to become significant. An alternative structure is to
have a more compact node element. In this structure the trie node is an array
of elements having two fields: a counter and a pointer to an index to bucket
structure. The counter keeps track of the number of strings in the bucket. The
BIS bucket index structure consists of five fields: (1) an integer field that records
the size of bucket; (2) a pointer to start of bucket; (3) a pointer to first unused
byte of bucket; (4) a pointer to array of pointers to string in buckets during the
traversal phase; and (5) a pointer to the limit at which the bucket will test as
full. As a suffix is being copied into the bucket, if the position exceeds the limit,
the bucket is either grown or burst.

Including a separate BIS structure is not as cache efficient as the more com-
pact PPL structure, as an access to the bucket requires an access to the node
element and another to the BIS structure. However, a more compact trie node
could lead to more page locality and thus fewer TLB misses for collections of
small alphabets and, in other cases, where the trie structure may become large.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



14 • R. Sinha et al.

For some of our experiments on other architectures, this alternative structure
has been used; refinement of the BIS structure for cases where the PPL structure
is ineffective is a topic for future research.

4.2 Free Bursts and Sampling

Bursting of large buckets is an expensive operation, and significant time can be
saved by correctly predicting buckets that will burst and bursting them while
they are still small. Predictive bursting based on random sampling has been
described for pointer-based burstsorts [Sinha and Zobel 2004b]. A simpler ap-
proach that is nearly as effective is to allow a fixed number F of free bursts,
with one free burst consumed each time a burst increases the net total of buck-
ets. This amounts to a nonrandom sampling scheme in which the first buckets
that fill at the first bucket size (in whatever order the data are loaded) are
preemptively burst without further growth.

In our experiments, we report times for CF-burstsort and CPF-burstsort,
which are C- and CP-burstsort with free bursts, for F = 100. We found that
60–100 free bursts can slightly improve sorting speed for data in random order
and does not degrade performance on presorted or reversed data, while showing
very little effect on memory requirements.

4.3 Fullness and Burst Testing

Each time a key is processed and its suffix inserted into an existing bucket, the
bucket must be tested to determine if it is full. Since this test is so frequent,
it needs to be as simple as possible. Whenever a bucket is created or grown,
its limit pointer is set to its base pointer plus its size, minus the length of the
longest expected key. The fullness test simply checks whether the next free byte
in the bucket is beyond this limit. If so, the bucket size is calculated. If the size
equals cache size or if the free-burst counter F is greater than zero, the bucket
is burst. Otherwise, it is copied to a newly allocated bucket twice the old size
and the old bucket is freed.

These tests guarantee that buckets do not overflow, but, in the case of a cache-
sized bucket, a simple burst test does not guarantee that there is room in cache
for both the string tails in the bucket and a sorting pointer to each of them.
During the traversal phase, the bucket may be burst again if the size of the
bucket plus the space needed for the tail pointers is greater than the cache size.

4.4 Bucket Growth Strategies

A simple way to grow buckets is to use a static growth factor, which is fixed
for all buckets and all sizes. For example, if the growth factor is two, then
whenever a bucket needs to be grown its size is doubled. An alternative is to
use an adaptive growth factor. Different growth factors could be used for small
and large buckets. A large growth factor could be used for smaller buckets and
a smaller growth factor could be used for the larger buckets.

A more principled approach is to use a predictive growth factor. This can be
achieved by choosing the growth factor as the ratio of number of keys in the
collection to the number of keys observed. Thus, a bucket that reaches the limit

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 15

early on will have a larger growth factor than a bucket that is growing more
slowly. This makes the growth factor responsive to the collection characteristics.
Use of such schemes, however, creates the risk of bad performance or excessive
memory usage in pathological cases, such as collections that are already sorted.

For good performance, a scheme must ensure that buckets remain small
enough to be sorted within cache; minimize growth and bursting of large
buckets; and memory overhead must be maintained within reasonable bounds.
The results reported in this paper use a simple scheme with a static growth
factor of two.

For the copy-based schemes, we have used a combination of malloc and
memcpy for allocating and growing the buckets. An alternative would be to use
realloc, an approach that has the advantage that, if an array can be grown in
place, no copying is needed; however, the housekeeping associated with realloc
can be costly. Another alternative would be to preallocate large segmented
buffers and write a dedicated memory manager, avoiding costly invocations
to the free system call. We plan to explore these alternatives in future work.

Buckets are grown until they reach the threshold limit, which depends on the
cache and the TLB sizes. The limit was set to 512 KB for a 512 KB cache on the
Pentium IV, and 512 KB for a 1 MB cache on a Pentium III. Where TLB misses
are expensive, the size of the bucket may need to consider the size of the TLB.

4.5 Other Issues

We have used segmented buffers in C-burstsort to manage the input strings.
To limit memory requirements, C-burstsort reads the original keys into a seg-
mented buffer and frees each segment as soon as its keys have been added to
the burst trie. A larger number of buffers is beneficial from the point of view of
reducing memory usage, but freeing a large number of buffers can be expensive.

CP-burstsort preserves the original keys or records, but as soon as each
bucket is sorted, it reclaims memory by copying record pointers onto the cor-
responding sorted tail pointers and then freeing the bucket. To increase the
likelihood that freed objects can be reused, both C- and CP-burstsort allocate
objects in power-of-2 sizes whenever possible.

C-burstsort demonstrates the advantages of filling buckets with string tails
rather than pointers during insertion phase. However, at bucket-sorting time all
operations occur within cache and it is once again more efficient to manipulate
pointers than the suffixes themselves. Both C- and CP-burstsort reserve space
in cache to allocate a pointer to each tail and use helper sorts that rearrange
only the tail pointers. We have used multikey quicksort as the helper sort for
all results in this paper.

5. CACHE EFFICIENCY

A detailed cache analysis is beyond the scope of this experimental paper. How-
ever, the use of copying was partly motivated by our analysis of the costs of
burstsort; we now sketch the expected cache costs of the new variants. As we
show in our experiments, it is due to reduced cache costs that the new algo-
rithms are so efficient.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



16 • R. Sinha et al.

For C-burstsort, a sketch of the costs is as follows.

� Insertion. The source array of N strings is scan traversed. The number of
cache misses is K /B, where K is the total length of strings and B is the cache
line size. Accesses to the trie nodes, buckets, or bucket index can incur cache
misses. This is the only phase that is not cache optimal, that is, is not O(N/B).
The number and size of trie nodes is relatively small and most are expected
to remain in cache. The number of active locations increases with increase in
the height of the trie, which can result in the buckets and any PPL structures
not being cache resident.

� Bursting. This involves a scan traversal of the parent bucket and sequential
filling of the child buckets. This phase is cache optimal and is an improvement
over pointer-based burstsorts.

� Traversal. The trie is traversed, but only those node elements that are
within the character range are accessed. Each bucket and its associated array
of pointers to suffixes is traversed. The bucket traversal cost can be approxi-
mated to the size of the collection K , resulting in up to K /B misses. Note that
this is a loose upper bound, as only tails of strings are stored in buckets. The
scan traversal of pointers to suffix can be approximated to N/B, where N is
the number of keys. The traversal phase is optimal and is an improvement
over pointer-based burstsort.

� Output. Involves outputting the strings in sort order. This is optimal and
involves only a scan traversal of the buckets and the destination array. This
is an improvement on pointer-based methods, which can incur a cache miss
per key in addition to the traversal of source array of pointers.

The cache performance of CP-burstsort is similar to that of C-burstsort. The
main difference is in the traversal phase, where the cost is up to (K + N )/B
misses, a slight increase. The pointers to suffixes can be approximated to N/B,
where N is the number of keys.

The copy-based burstsorts are much more TLB efficient than the pointer-
based sorting methods, because of the improved spatial locality of the
strings.

� Insertion. As the source array of strings is scan traversed once, if K is the
total length of strings and P is the page size then the number of TLB misses
is K /P . TLB misses can occur while accessing the trie nodes, buckets, and any
PPL structure. However, this is dependent, to a large extent, on the memory
management unit and where the PPL structures are allocated. In the worst
case, each access to the trie nodes and buckets may incur a TLB miss, but
this is highly unlikely.

� Bursting. In pointer-based burstsort, each access to the string could result
in a TLB miss; in the copy-based methods, there will be significantly fewer
misses due to the scan-based approach.

� Traversal. Up to K /P TLB misses are expected for the buckets, with an
extra N/P misses for CP-burstsort. In pointer-based burstsort, each string
access could result in a TLB miss.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 17

Table I. Statistics of the Data Collections Used in the Experiments

Data Set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Duplicates

Size MB 1.013 3.136 7.954 27.951 93.087 304.279

Distinct Words (×105) 0.599 1.549 3.281 9.315 25.456 70.246

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

No duplicates

Size MB 1.1 3.212 10.796 35.640 117.068 381.967

Distinct Words (×105) 1 3.162 10 31.623 100 316.230

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

Genome

Size MB 0.953 3.016 9.537 30.158 95.367 301.580

Distinct Words (×105) 0.751 1.593 2.363 2.600 2.620 2.620

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

Random

Size MB 1.004 3.167 10.015 31.664 100.121 316.606

Distinct Words (×105) 0.891 2.762 8.575 26.833 83.859 260.140

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

URL

Size MB 3.03 9.607 30.386 96.156 304.118 —

Distinct Words (×105) 0.361 0.923 2.355 5.769 12.898 —

Word Occurrences (×105) 1 3.162 10 31.623 100 —

� Output. Involves outputting the strings in sort order, which is TLB optimal
and involves only a scan traversal of the buckets and the destination array.

6. EXPERIMENTAL DESIGN

For our experiments, we have used four real-world collections with dif-
ferent characteristics. These are the same collections as described in ear-
lier work [Sinha and Zobel 2004a, 2004b]1 and we follow the earlier
descriptions.

These collections are composed of words, genomic strings, and web URLs.
The strings are words delimited by nonalphabetic characters and are selected
from the large web track in the TREC project [Harman 1995; Hawking et al.
1999]. The web URLs have been selected from the same collection. The genomic
strings are from GenBank [Benson et al. 1993]. For word and genomic data, we
created six subsets, of approximately 105, 3.1623 × 105, 106, 3.1623 × 106, 107,
and 3.1623 × 107 strings each. We call these SET 1, SET 2, SET 3, SET 4, SET 5,
and SET 6, respectively. For the URL data we created SETS 1–5. The statistics
of the data sets are shown in Table I. In detail, the data sets are as follows.

� Duplicates. Words in order of occurrence, including duplicates. The charac-
teristics are similar to most collections of English documents, that is, some
words occur more often than others.

� No duplicates. Unique strings based on word pairs in order of first occurrence
in the TREC web data.

1These data sets are available at the URL http://www.cs.rmit.edu.au/∼rsinha/papers.html.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



18 • R. Sinha et al.

� Genome. Strings extracted from genomic data, a collection of nucleotide
strings, each typically thousands of nucleotides long. The alphabet size is
four characters. It is parsed into shorter strings by extracting n-grams of
length nine. There are many duplications, and the data does not show the
skew distribution that is typical of text.

� URL. Complete URLs, in order of occurrence and with duplicates, from the
TREC web data, average length is high compared to the other sets of strings.

Alternative collections. In addition to the above collections, we have in-
cluded four collections as used in previous work [Sinha and Zobel 2004a; Bentley
and Sedgewick 1997], three of which are artificial and are designed to explore
pathological cases.

—The length of the strings is one hundred, the alphabet has only one character,
and the size of the collection is one million.

—The length of the strings ranges from one to a hundred, the alphabet size is
small (nine), and the characters appear randomly. The size of the collection
is ten million.

—The length of the strings ranges from one to a hundred; strings are ordered
in increasing size in a cycle. The alphabet has only one character and the
size of the collection is one million.

—Collection of library call numbers consisting of 100,187 strings, about the
size of our SET 1 [Bentley and Sedgewick 1997].2

The aim of our experiments was to compare the performance of our new
algorithms with the best algorithms from our previous work. The performance
was compared in terms of the running time, instruction counts, L2 cache misses,
and data TLB misses. The L2 cache and DTLB results include misses of all three
kinds: compulsory, capacity, and conflict. The programs are all written in C and
have been gathered from the best source we could identify. We are confident
that the implementations are of high quality.

For measuring the cache performance, both simulators and hardware perfor-
mance counters were used. For measuring cache effects using different cache
parameters, we have used valgrind, an open-source cache simulator [Seward
2001]. For measuring the data TLB misses on a Pentium IV, we used PAPI
[Dongarra et al. 2001], which offers an interface for accessing the hardware
performance counters for processor events.

For all data sizes, the minimum time from ten runs has been used so that
occasional variations because of page faults, which do not reflect the cache
performance, are not included. However, in our runs, we did not observe any
significant variations between the runs; the standard deviation was extremely
low. The internal buffers of our machine are flushed prior to each run in order
to have the same starting condition for each experiment. Time spent in pars-
ing the strings and writing it to the source array, creating pointers to strings,
retrieving strings from disk by the driver program are not included. Thus, the

2Available from www.cs.princeton.edu/∼rs/strings.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 19

Table II. Architectural Parameters of the Machines Used for Experiments

Workstation Pentium Power Mac G5 Pentium

Processor type Pentium IV PowerPC 970 Pentium III Xeon

Clock rate 2000 MHz 1600 MHz 700 MHz

L1 data cache (KB) 8 32 16

L1 line size (bytes) 64 128 32

L1 associativity 4-way 2-way 4-way

L1 miss latency (cycles) 7 8 6

L2 cache (KB) 512 512 1024

L2 block size (bytes) 64 128 32

L2 associativity 8-way 8-way 8-way

L2 miss latency (cycles) 285 324 109

Data TLB entries 64 256 64

TLB associativity full 4-way 4-way

Pagesize (KB) 4 4 4

Memory size (MB) 2048 256 2048

Table III. Duplicatesa

Data Set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Multikey quicksort 40 210 680 3,230 14,260 56,230

MBM radixsort 40 190 640 3,270 15,470 63,460

Adaptive radixsort 50 230 720 3,030 12,110 46,940

Burstsort 30 130 380 1,540 6,540 29,310

C-burstsort 30 90 270 1,060 3,570 12,470

CP-burstsort 30 110 310 1,210 4,140 15,270

CF-burstsort 30 100 260 930 3,280 12,200

CPF-burstsort 40 120 310 1,080 3,900 14,860

aRunning-time (ms) to sort with each method on a pentium IV

time measured for the pointer-based algorithms is to sort an array of pointers
to strings; the array is returned as output. Thus, the timing for pointer-based
methods does not include writing the strings in sort order.

We have used two relatively new processors, a Pentium IV and a Pow-
erPC 970. Experiments on an older Pentium III processor have also been in-
cluded. These machines have different cache architectures. Most of the experi-
ments were on a 2000 MHz Pentium IV computer with 2 GB of internal memory
and a 512 KB L2 cache with a block size of 64 bytes and 8-way associativity. The
Pentium IV machine was running the Fedora Linux core 2 operating system
and using the GNU gcc compiler version 3.3.3. Further details on the cache
architecture of the machines used for the experiments can be found in Table II.
In all experiments, the highest compiler optimization level 03 has been used.
The clock function has been used to measure the times. The machine was under
light load, that is, no other significant I/O or CPU tasks were running.

7. RESULTS AND DISCUSSION

Timings for each method, each data set, and each set size are shown in Tables III
to VII. The overall picture of these results is clear: the copy-based burstsorts
are much faster than the pointer-based versions. In the best case, C-burstsort

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



20 • R. Sinha et al.

Table IV. No Duplicatesa

Data Set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Multikey quicksort 50 200 880 3,870 15,470 61,620

MBM radixsort 40 170 830 3,660 15,650 63,870

Adaptive radixsort 60 230 930 3,550 13,800 53,570

Burstsort 30 120 500 1,870 7,510 33,510

C-burstsort 30 100 380 1,380 4,620 15,650

CP-burstsort 30 110 440 1,560 5,310 19,600

CF-burstsort 30 110 380 1,270 4,450 15,260

CPF-burstsort 50 140 430 1,430 5,120 19,300

aRunning-time (ms) to sort with each method on a pentium IV.

Table V. Genome

Data Set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Multikey quicksort 50 270 1,100 4,430 17,820 68,770

MBM radixsort 50 300 1,340 5,470 23,390 91,000

Adaptive radixsort 90 350 1,370 4,690 17,980 67,360

Burstsort 40 160 590 2,200 8,720 40,600

C-burstsort 30 120 390 1,150 3,210 10,730

CP-burstsort 30 160 490 1,350 4,170 14,090

CF-burstsort 20 90 310 930 3,010 10,120

CPF-burstsort 30 100 350 1,060 3,800 13,180

aRunning-time (ms) to sort with each method on a pentium IV

is four times faster than the pointer-based burstsort and six times faster than
the best of the previous sorting methods on the largest set of genome data.

The degree of improvement varies from collection to collection, but the trends
are consistent and clear. First, C-burstsort is always faster than CP-burstsort,
which, in turn, is faster than any previous method. Second, use of free bursts
(in CF-burstsort and CPF-burstsort, with F = 100) consistently yields further
gains. Third, the larger the collection, the greater the improvement.

These strong positive results make it clear that our new copy-based burst-
sorts far outperform other methods when used in typical circumstances. We now
consider in detail the performance in special and pathological cases, as these
illustrate the mechanisms underlying the effectiveness of copy-based sorting.

Table VIII illustrates performance on the pathological case of sorted input.
The locality of strings in a sorted collection is maximal, so pointer-based sorting
methods can make optimal use of cache. This is the only case in which burstsort,
copy-based or otherwise, is not the best method. While the performance of the
pointer-based methods improved dramatically on sorted data, by up to a fac-
tor of 10, the performance of the copy-based methods did not improve quite so
dramatically. The reason appears to be the cost of copying without the relative
advantages of cache efficiency, as in the case for the unsorted collections. How-
ever, we note that these results may be atypical for sorted data; on other sorted
data sets, such as random strings, the copy-based methods were considerably
better.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 21

Table VI. URLa

Data Set

Set 1 Set 2 Set 3 Set 4 Set 5

Multikey quicksort 130 700 2,500 8,860 40,650

MBM radixsort 140 820 3,480 13,220 61,720

Adaptive radixsort 160 730 2,450 10,100 41,760

Burstsort 70 410 1,680 5,660 28,620

C-burstsort 70 230 1,420 4,320 14,090

CP-burstsort 80 260 1,500 4,560 15,390

CF-burstsort 80 240 820 2,830 12,440

CPF-burstsort 90 260 780 3,070 13,730

aRunning-time (ms) to sort with each method on a pentium IV

Table VII. Randoma

Data Set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Multikey quicksort 40 210 970 3,900 15,120 62,360

MBM radixsort 30 130 670 2,360 8,370 37,630

Adaptive radixsort 60 220 760 2,470 9,390 41,260

Burstsort 30 100 450 1,670 5,660 26,440

C-burstsort 20 70 300 1,180 4,420 16,440

CP-burstsort 20 100 370 1,320 5,100 19,770

CF-burstsort 40 110 480 1,620 5,290 16,910

CPF-burstsort 50 150 630 1,960 5,660 20,310

aRunning-time (ms) to sort with each method on a pentium IV

Table VIII. Sorted (duplicates)a

Data Set

Set 2 Set 3 Set 4 Set 5 Set 6

Multikey quicksort 30 100 490 2,070 7,530

MBM radixsort 20 90 400 1,610 5,780

Adaptive radixsort 30 90 330 1,230 4,210

Burstsort 20 80 360 1,460 5,070

C-burstsort 30 120 540 2,420 8,170

CP-burstsort 40 160 670 2,840 9,490

CF-burstsort 10 100 530 2,420 8,160

CPF-burstsort 30 150 660 2,830 9,470

aRunning time (ms) to sort with each method on a pentium IV. Times for

set 1 were too small to measure accurately.

In contrast, the burstsorts are clearly the methods of choice for the alter-
native collections, as shown in Table IX. However, compared to pointer-based
burstsort, the copy-based burstsorts are up to twice as slow for collections A
and C. These collections are particularly challenging for copy-based burstsorts,
as they both have long strings. The primary reason for the poorer performance
is TLB misses. The trie nodes are not compact and, after the insertion of a small
number of strings, the large majority of the strings have to traverse about 100
trie nodes. As there are only 64 TLB entries, each access to a node may lead
to a TLB miss. If the alphabet size is reduced to 128, leading to more compact
trie nodes, the performance improves dramatically by 50%. More generally, the

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



22 • R. Sinha et al.

Table IX. Running-Time (ms) to Sort the Alternative Data

Sets With Each Method on a Pentium IV

Data Set

A B C D

Multikey quicksort 6,970 14,990 2,940 90

MBM radixsort 7,430 31,310 8,060 90

Adaptive radixsort 3,660 16,830 1,760 110

Burstsort 1,300 8,910 780 60

C-burstsort 3,380 5,290 1,600 50

CP-burstsort 3,360 6,190 1,440 60

C-burstsort (BIS) 1,470 5,020 810 50

CP-burstsort (BIS) 1,460 6,280 720 50

Table X. Running-Time (ms) to Sort the

Random Collection of one Million Strings of

Fixed Lengths on a Pentium IV

String length

10 30 60 100

Burstsort 480 520 550 610

C-burstsort 300 640 1,310 2,080

CP-burstsort 370 690 1,350 2,110

CPL-burstsort 480 620 680 740

node size can be restricted to cover only the range of characters observed during
the initial loading of strings into the segmented buffer. For this data, the node
size would collapse to two symbols.

An alternative is to use more compact nodes, as is achieved using the BIS

structure, as shown in Table IX. The results are similar to the pointer-based
burstsort on collections A, C, and D, and are up to twice as fast as pointer-based
burstsort in collection B.

The major advantage that copy-based methods have over pointer-based
burstsort and the other pointer-based methods is that more strings can be
accommodated in cache. In copy-based methods, the strings are stored con-
tiguously; the number of strings in cache depends on string length and the
size of cache, and not on the number of blocks in cache. It is thus expected
that the cache performance of C-burstsort will approach that of pointer-based
burstsorts as the length of strings approaches the cache line size, as observed
in these results.

To show how the performance of the copy-based methods is affected by string
length, we experimented with four collections of fixed-length strings. The length
of the strings in each collection were 10, 30, 60, and 100 characters. The charac-
ters were chosen uniformly at random from the ASCII range. Times are shown
in Table X. As the length of strings increases in these random collections, where
the characters are uniformly distributed, the cost of copying the strings into
the buckets increases. An increase in string length would reduce the number of
strings that can be stored in a bucket. When the average length of the strings
exceeds the cache line size, the number of strings that can be stored in a bucket
is less than that of pointer-based burstsort. This, in turn, results in creation
of more trie nodes, increasing the number of cache misses during the insertion

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 23

phase. However, even then, the bursting and traversal phases are optimal as
compared to the pointer-based burstsort. There is a trade-off between the extra
cache misses incurred during the insertion phase and the cache misses saved
during bursting and traversal. However, there is an underlying difficulty for
burstsort because of the fact that the information density (repetition of pre-
fixes) of these collections is low.

An alternative hybrid scheme for such collections is to copy a record pointer
and a short fixed-length tail segment to buckets. If the segment is enough to
complete bursting and bucket sorting, the cost of copying the remaining irrel-
evant bytes is avoided. If not, the next segment is paged into the bucket (prob-
ably incurring a cache miss). As shown in Table X, this paging scheme, called
CPL-burstsort, was found to be up to three times faster than CP-burstsort on
100-byte random strings. It is expected that the improvements will be even
more dramatic with increasing string length.

The L2 cache misses incurred for the no-duplicates and URL collections are
shown in Figure 5. (Similar results to those on no-duplicates are observed for
the other collections.) The cache misses for C-burstsort are as low as one-half
that of pointer-based burstsort and as low as a one-tenth of that of the previous
best algorithms. The string length of the URL collection is long with the average
length being about 28 characters. Copying and maintaining such large strings
in the bucket may reduce the advantages, but even then for the largest set,
C-burstsort incurs fewer cache misses than pointer-based burstsort.

Copying strings into buckets keeps similar strings together. This increases
the page locality, resulting in fewer TLB misses during the bursting and traver-
sal phases. To further lower TLB misses during bucket sorting, the size of the
bucket should be the smaller of the cache size and the TLB size. TLB misses
can result while accessing trie nodes and bucket, which can be distributed in
memory across several pages. The number of TLB misses due to trie accesses
is distribution dependent and is expected to increase with the size of the col-
lection, as shown in Figures 6 and 7. For smaller data sizes, the TLB misses
are almost nonexistent and rise slowly with increasing data size. The number
of TLB misses incurred by C-burstsort is only one-third that of pointer-based
burstsort or the best of the previous algorithms. For a TLB of 64 entries, the
number of strings in the bucket ideally should be less than 64, but the threshold
size in pointer-based burstsort is 8192 (the number of blocks in cache) which,
in the worst case, results in a TLB miss for each access to a string.

It is expected that the cost of copying string suffixes will be high in terms
of the number of instructions. This is shown in Figure 8, where the number
of instructions per key for C-burstsort is higher than for any other method.
The number of required instructions is up to twice as much as adaptive radix-
sort. In older machines, such as the Pentium III Xeon, this cost in instruc-
tions may offset the savings in cache misses. This is shown later in Figure 11,
where C-burstsort is slower than pointer-based burstsort for the URL collec-
tion. However, as processors continue to increase in speed relative to memory,
the advantage of these new copy-based approach should continue to increase.

In pointer-based burstsort, the number of pointers to strings that can be
stored in a bucket is dependent on the number of blocks in cache. As the size

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



24 • R. Sinha et al.

Fig. 5. Cache misses, 512 KB cache, 8-way associativity, 64 bytes block size. (Top): no duplicates;

(bottom): URLs.

of the cache line increases, the number of blocks in cache will decrease, thus
reducing the threshold size. The effects of varying cache line size using the same
threshold (of 8192) is shown in Figure 9. For pointer-based burstsort, the L2
cache misses shows an increasing trend as the size of cache line increases. More
cache misses are incurred during the bucket-sorting phase, as all the strings
in the bucket may no longer be cache resident for the larger cache lines. For a
line size of 256 bytes, the number of blocks is 2048; it would have been better
to use a threshold size less than 2048, but this will lead to a larger number
of trie nodes, which may be inefficient. Thus the performance of pointer-based
burstsort is relatively more dependent on the number of blocks in cache.

In contrast, increasing the line size has the opposite effect for C-burstsort.
Efficiency is less dependent on the number of blocks in cache; indeed, as the
strings are contiguously stored, an increase in cache line size reduces cache
misses in bucket processing. For C-burstsort, the cache misses decrease by over

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 25

Fig. 6. Data TLB misses on a Pentium IV for the duplicate collection.

Fig. 7. Data TLB misses on a Pentium IV for the URL collection.

a factor of three; only the URL collection shows a slight upward trend for a cache
line size of 256, because of the large number of trie nodes and the decreasing
number of blocks.

The number of trie nodes is shown in Table XI. The number of trie nodes
is directly related to the size of the bucket and the number of strings it can
accommodate. Since, for all collections, the size of the string was less than the
cache line size, the number of strings that can be stored in a bucket under
pointer-based burstsort is less than a bucket under C-burstsort. The number
of trie nodes in pointer-based burstsort was up to seven times more than in
C-burstsort.

Table XII shows the peak memory used while sorting. The results for
multikey quicksort can be taken as a practical best-case for a pointer-based
in-place method. On average, pointer-based burstsort uses about 40% more
memory. Surprisingly, C-burstsort averages very close to multikey quicksort,
using slightly more memory for the duplicates and no-duplicates collections,

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



26 • R. Sinha et al.

Fig. 8. Instructions per key, 512 KB cache, 8-way associativity, 64 bytes block size. (Top) duplicates;

(bottom) URLs.

Fig. 9. Cache misses with varying cache line size on Pentium IV with 512 KB L2 cache.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 27

Table XI. Count of Trie Nodes for the Largest Set Size of Each Collection

Collections

Duplicates No Duplicates Genome URL Random

Burstsort 2,504 2,245 2,792 3,313 95

C-burstsort 371 381 369 1,340 95

CP-burstsort 500 491 508 1,499 95

Table XII. Memory Usage (in MB) for the Largest Set Size

MKQsort Burstsort C-Burstsort CP-Burstsort

Duplicates 427 646 436 768

No duplicates 504 734 566 990

Genome 424 610 342 689

URL 344 412 324 620

Random 440 593 434 948

Sorted (duplicate) 427 644 435 765

Table XIII. Time (ms) to Copy Strings in Sort Order to Destination Array for

the Largest Set Size for Each Collection in Pentium IV

Collections

Duplicates No Duplicates Genome URL Random

Pointer-based 8,570 10,200 10,220 4,420 10,470

Copy-based 3,750 4,570 3,350 2,080 4,240

but somewhat less for the genome, URL, and random collections. On a wider
variety of data collections in random, sorted, or reverse order, we have observed
that C-burstsort and multikey quicksort both use an average of 1.3 bytes of al-
located memory per byte sorted. Memory usage by C-burstsort can be further
reduced by using smaller buffer segments during key insertion or (with some
loss of speed) by using a smaller bucket-growth factor. CP-burstsort shows the
highest memory usage, since its buckets hold both string tails and record point-
ers and the original keys are not deleted. However, it should be compared with
other stable sorts, such as the adaptive radixsorts, which also tend to have
higher memory requirements.

In the experiments reported above, the timings do not include the time taken
to write the strings in sort order. The time taken for writing the sorted strings
onto the destination array for pointer-based and copy-based methods is shown
in Table XIII. For pointer-based methods, the time taken to write the strings
in sort order by traversing the sorted array of pointers to strings involves a
scan traversal of the array of pointers to strings and may incur a cache miss
per string access as the strings are accessed arbitrarily. In the case of the copy-
based methods, the time measured includes a traversal of the entire trie node
and a scan traversal of the bucket and writing the strings to the destination
array. As the strings are contiguously stored, this phase is a scan traversal and
can be regarded as optimal.

7.1 Other Architectures

While most of our experiments used the Pentium IV, we also tested our algo-
rithms on the older Pentium III and on the significantly different architecture

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



28 • R. Sinha et al.

Fig. 10. PowerPC 970, relative sorting time for each method. The vertical scale is time (ms) divided

by n log n. (Top) duplicates; (bottom) genome.

of the PowerPC 970. The copy-based burstsort with the BIS structure has been
used for these experiments. In the PowerPC, Figure 10 shows that for the largest
collection, C-burstsort is up to three times faster than pointer-based burstsort.
These are dramatic improvements for such a small collection size. Similar per-
formances were seen for the other collections.

On older processors like the Pentium III, copying costs may offset savings
in cache misses. Figure 11 shows that C-burstsort is faster than pointer-based
burstsort for most collections, except for the URL collection. While the im-
provements for most collections are much smaller than on the Pentium IV or
PowerPC, they are still faster than pointer-based burstsort. In other words,
the trends in hardware are favoring the burstsorts, compared to other sorting
methods, and favor our new copy-based burstsorts compared to the original
burstsort.

The normalized times for C-burstsort are shown in Figure 12. For all these
collections, the normalized time has not grown at all with the increase in collec-
tion size. For the genome collection, the normalized time has gone down because
of the increase in duplicates.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 29

Fig. 11. Pentium III, sorting times (ms) for the largest set size for each collection.

Fig. 12. Pentium III, time for C-burstsort for all collections. The vertical scale is time (ms) divided

by n log n.

8. DISCUSSION

The pointer-based burstsorts described in our previous papers are fast be-
cause, with a single access to each key, they assign related strings to buck-
ets small enough to be sorted in cache. However, their performance is lim-
ited by three problems. First, since the buckets hold only pointers, each key
must again be accessed at its original arbitrary memory location at bucket
sorting time; these random references contribute significantly to the cache and
TLB misses generated by the pointer burstsorts. Second, when the original
keys are reaccessed, the terminal bytes needed for final sorting are flanked
by already processed prefix bytes and bytes from adjacent, but unrelated,
keys; thus, the cache lines loaded contain a substantial proportion of use-
less bytes. Third, buckets that burst at a fixed pointer count are not effi-
cient when average key length varies significantly from one bucket to an-
other; if the threshold is set low enough that buckets of long keys fit into

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



30 • R. Sinha et al.

cache for sorting, buckets of short keys will waste a substantial amount of
cache space.

We expect the fastest sorting when buckets are designed to assemble exactly
the information needed for final sorting, when they use cache efficiently without
wastage and when they are as few and as large as possible (since there is
an overhead cost for each bucket). C-burstsort was designed to address these
goals as well as the specific limitations of pointer-based burstsorts. Additional
goals were to decrease memory requirements, to increase the locality of data
processing, and for CP-burstsort, to achieve the speed of burstsort in a stable
sort suitable for processing multiple field records.

In large part, the goals have been met. Since C-burstsort loads buckets
with unexamined key tails instead of pointers, the exact data needed for fi-
nal sorting is already present, and there is no need to reaccess the origi-
nal memory locations of the keys at bucket-sorting time. Since key suffixes
sharing a common prefix are contiguously copied into buckets, they are adja-
cent to related suffixes except at bucket boundaries, and cache lines loaded
for bucket sorting will contain very few irrelevant bytes. Finally, buckets are
grown or burst based on the cumulative length of the key tails copied to
them instead of a fixed count; if keys are short, buckets automatically hold
more key tails and cache space is not wasted. Thus, the specific problems of
pointer-based burstsorts are all addressed by inserting string tails instead of
pointers.

In more general terms, C-burstsort comes close to assembling exactly the in-
formation needed for final sorting and using cache efficiently without wastage.
The exception is the terminal bytes of suffixes that are sorted before all their
bytes are read; these are not needed, but there is no time-saving way to identify
such bytes in advance. The goal of making buckets as few and large as possible
is less clear cut; certainly, C-burstsort enables a given amount of cache memory
to hold and process more short keys, but it is still the case that most buckets
will neither be full nor as large as cache. It seems likely that control of bucket
count and size can be further improved. The basic change in C-burstsort—filling
buckets with suffixes rather than pointers—also greatly increases the spatial
locality of data. Finally, CP-burstsort provides stable sorting with much of the
speed of C-burstsort.

An instance in which copy-based burstsorts are slower than pointer-based
burstsorts is the case of long random strings, where copy-based burstsorts are
weighed down by the cost of moving long terminal sequences that do not affect
sort order. An alternative is to copy a record pointer and a short fixed-length tail
segment to buckets. We found that this hybrid paging scheme, CPL-burstsort,
was up to three times faster than CP-burstsort on 100-byte random strings
while using lesser memory.

Aside from long strings of random data, we do not know if there are patho-
logical forms or orders of string data that severely degrade the performance of
copy-based burstsorts. We know that free bursts can improve performance and
that random sampling can do better than free bursts, in some cases, but we
do not know the best scheme for bucket growth and bursting that will produce
the fewest buckets and the most efficient use of cache. The burst trie structure

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



Cache-Efficient String Sorting Using Copying • 31

results in many buckets that are not full and, thus, much smaller than cache;
development of a modified dynamic structure that efficiently partitions large
buckets while not splitting into as many small ones is being investigated.

9. CONCLUSIONS

We have proposed variants of burstsort that are based on copying the strings
into buckets. This improves the spatial locality of the strings compared to the
pointer-based burstsort. Several experiments on different architectures with
both real and artificial collections of several data sizes were used to measure
efficiency. These results have shown substantial reductions in sorting time com-
pared to pointer-based sorting algorithms. These copy-based versions are effi-
cient on modern processors, where locality is an increasingly important issue.
The time to sort and the number of L2 cache misses incurred are one-half those
of pointer-based burstsort. Random accesses to strings are completely elimi-
nated, as all string accesses in the copy-based versions involve a scan traversal
of an array.

Reducing unnecessary random accesses to strings improves the page locality
of the copy-based variants, resulting in far fewer TLB misses. The scan traversal
of the buckets implies that the copy-based algorithms should cause fewer misses
in the lower levels of the cache hierarchy, while the use of free bursts to rapidly
build a skeleton tree structure minimizes copying costs when buckets are burst
at large sizes. This work has shown that algorithms that improve the spatial
locality of strings can yield substantial improvements in performance. While
the absolute and relative sorting speeds observed will depend on the cache
architecture of a particular system, we expect these algorithms to be the fastest
available for sorting large collections of string keys when memory latency is an
important factor.

There is still significant scope to improve copy-based burstsorts. More so-
phisticated control of bucket growth may yield better results than our simplis-
tic doubling scheme. The traversal and output in C-burstsort can be integrated
into a single pass; the strings in a bucket can be output after the bucket is
sorted. Memory requirements can be substantially reduced by reading keys di-
rectly into the trie structure, and outputting directly from each bucket after it
is sorted. This lowers C-burstsort’s average memory usage from 1.3 to about
0.84 bytes allocated per byte sorted. Further investigation is needed to deter-
mine the most compact way to implement trie nodes for the largest collection
sizes. Finally, use of special-purpose memory management code and tuning al-
gorithm parameters to the TLB sizes of particular systems may further increase
efficiency.

However, our new copy-based burstsorts are already by far the most ef-
ficient algorithms for sorting large string collections on cache architectures.
They demonstrate that cache-awareness can provide large improvements
over previous methods. In our experiments, the gain in sorting speed be-
tween quicksort (1961) and adaptive radixsort (1998) is less than the addi-
tional improvement by the copying burstsorts in 2005. These are dramatic
results.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.



32 • R. Sinha et al.

ACKNOWLEDGMENTS

David Ring would like to acknowledge James Barbetti for insightful remarks
regarding the performance of pointerized sorts on cache versus noncache ar-
chitectures. This research was supported by the Australian Research Council.

REFERENCES

ANDERSSON, A. AND NILSSON, S. 1998. Implementing radixsort. ACM J. Experimental Algorith-
mics 3, 7.

BENSON, D., LIPMAN, D. J., AND OSTELL, J. 1993. Genbank. Nucleic Acids Research 21, 13, 2963–

2965.

BENTLEY, J. AND SEDGEWICK, R. 1997. Fast algorithms for sorting and searching strings. In Proc.
Annual ACM-SIAM Symp. on Discrete Algorithms, Ed. Society for Industrial and Applied Math-

ematics, New Orleans, LA. 360–369.

BENTLEY, J. L. AND MCILROY, M. D. 1993. Engineering a sort function. Software—Practice and
Experience 23, 11, 1249–1265.

DONGARRA, J., LONDON, K., MOORE, S., MUCCI, S., AND TERPSTRA, D. 2001. Using PAPI for hardware

performance monitoring on linux systems. In Proc. Conf. on Linux Clusters: The HPC Revolution.

Urbana, Illinois.

HARMAN, D. 1995. Overview of the second text retrieval conference (TREC-2). Inf. Process. Man-
age., 31, 3, 271–289.

HAWKING, D., CRASWELL, N., THISTLEWAITE, P., AND HARMAN, D. 1999. Results and challenges in web

search evaluation. Computer Networks 31, 11–16, 1321–1330.

HEINZ, S., ZOBEL, J., AND WILLIAMS, H. E. 2002. Burst tries: A fast, efficient data structure for

string keys. ACM Transactions on Information Systems 20, 2, 192–223.

HENNESSY, J. L. AND PATTERSON, D. A. 2002. Computer Architecture: A Quantitative Approach, 3rd

Ed. Morgan Kaufmann Publishers, San Mateo, CA.

HOARE, C. A. R. 1961. Algorithm 64: Quicksort. Communications of the ACM 4, 7, 321.

HOARE, C. A. R. 1962. Quicksort. Computer Jour. 5, 1, 10–15.

JIMENEZ-GONZALEZ, D., NAVARRO, J., AND LARRIBA-PEY, J. L. 2003. CC-radix: a cache conscious sorting

based on radix sort. In Proc. Euromicro Workshop on Parallel, Distributed and Network-based
Processing, A. Clematis, Ed. IEEE Computer Society Press, Los Alamitos, CA, USA, 101–108.

LAMARCA, A. AND LADNER, R. E. 1999. The influence of caches on the performance of sorting. Jour.
of Algorithms 31, 1, 66–104.

MCILROY, P. M., BOSTIC, K., AND MCILROY, M. D. 1993. Engineering radix sort. Computing Sys-
tems 6, 1, 5–27.

NILSSON, S. 1996. Radix sorting & searching. Ph.D. thesis, Department of Computer Science,

Lund University, Lund, Sweden.

RAHMAN, N. AND RAMAN, R. 2000. Analysing cache effects in distribution sorting. ACM Jour. of
Experimental Algorithmics 5, 14.

RAHMAN, N. AND RAMAN, R. 2001. Adapting radix sort to the memory hierarchy. ACM Jour. of
Experimental Algorithmics 6, 7.

SEWARD, J. 2001. Valgrind—memory and cache profiler. http://developer.kde.org/∼sewardj/
docs-1.9.5/cg techdocs.html.

SINHA, R. 2004. Using compact tries for cache-efficient sorting of integers. In Proc. International
Workshop on Efficient and Experimental Algorithms, C. C. Ribeiro, Ed. Lecture Notes in Computer

Science, vol. 3059. Springer-Verlag, New York. 513–528.

SINHA, R. AND ZOBEL, J. 2004a. Cache-conscious sorting of large sets of strings with dynamic tries.

ACM Jour. of Experimental Algorithmics 9, 1.5.

SINHA, R. AND ZOBEL, J. 2004b. Using random sampling to build approximate tries for efficient

string sorting. In Proc. International Workshop on Efficient and Experimental Algorithms, C. C.

Ribeiro, Ed. Lecture Notes in Computer Science, vol. 3059. Springer-Verlag, New York. 529–544.

WICKREMESINGHE, R., ARGE, L., CHASE, J., AND VITTER, J. S. 2002. Efficient sorting using registers

and caches. ACM Jour. of Experimental Algorithmics 7, 9.

XIAO, L., ZHANG, X., AND KUBRICHT, S. A. 2000. Improving memory performance of sorting algo-

rithms. ACM Jour. of Experimental Algorithmics 5, 3.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 1.2, 2006.


