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Algorithms for sorting large datasets can be made more efficient with careful use of memory hi-

erarchies and reduction in the number of costly memory accesses. In earlier work, we introduced

burstsort, a new string-sorting algorithm that on large sets of strings is almost twice as fast as

previous algorithms, primarily because it is more cache efficient. Burstsort dynamically builds a

small trie that is used to rapidly allocate each string to a bucket. In this paper, we introduce new

variants of our algorithm: SR-burstsort, DR-burstsort, and DRL-burstsort. These algorithms use

a random sample of the strings to construct an approximation to the trie prior to sorting. Our

experimental results with sets of over 30 million strings show that the new variants reduce, by

up to 37%, cache misses further than did the original burstsort, while simultaneously reducing

instruction counts by up to 24%. In pathological cases, even further savings can be obtained.
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1. INTRODUCTION

In-memory sorting is a basic problem in computer science. However, sorting
algorithms face new challenges because of changes in computer architecture.
Processor speeds have been increasing at 50% per year, while speed of access to
main memory has been increasing at only 7% per year [Hennessy and Patterson
2002], a growing processor-memory performance gap that appears likely to con-
tinue. An architectural solution has been to introduce one or more levels of fast
memory, or cache, between the main memory and the processor. Small volumes
of data can be sorted entirely within cache—typically a few megabytes of mem-
ory in current machines—but, for larger volumes, each arbitrary memory access
involves a delay of up to hundreds of clock cycles.
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Much of the research on algorithms has focused on complexity and effi-
ciency, assuming a nonhierarchical RAM model [Aho et al. 1974], but these
assumptions are not realistic on modern computer architectures, where the
levels of memory have different latencies. While algorithms can be made more
efficient by reducing the number of instructions, current research [LaMarca
and Ladner 1999; Sinha and Zobel 2004; Xiao et al. 2000] shows that an algo-
rithm can afford to increase the number of instructions if doing so improves
the locality of memory accesses and thus reduces the number of cache misses.
In particular, recent work [LaMarca and Ladner 1999; Rahman and Raman
2001; Xiao et al. 2000] has successfully adapted algorithms for sorting integers
to memory hierarchies.

According to Arge et al. [1997] “string sorting is the most general formulation
of sorting because it comprises integer sorting (i.e., strings of length one), mul-
tikey sorting (i.e., equal-length strings), and variable-length key sorting (i.e.,
arbitrarily long strings).” String sets are typically represented by an array of
pointers to locations where the variable-length strings are stored. Each string
reference incurs at least two cache misses, one for the pointer and one or more
for the string itself, depending on its length and how much of it needs to be read.

In our previous work [Sinha and Zobel 2004], we introduced burstsort, a
new cache-efficient string-sorting algorithm. It is based on the burst trie data
structure [Heinz et al. 2002], where a set of strings is organized as a collection of
buckets indexed by a small access trie. In burstsort, the trie is built dynamically
as the strings are processed. During the first phase, at most the distinguishing
prefix—but usually much less—is read from each string to construct the access
trie and place the string in a bucket, which is a simple array of pointers. The
strings in each bucket are then sorted using an algorithm that is efficient both in
terms of the space and the number of instructions for small sets of strings. There
have been several recent advances made in the area of string sorting, but our
experiments [Sinha and Zobel 2004] showed burstsort to be much more efficient
than previous methods for large string sets. (In this paper, for reference we
compare three of the best previous string-sorting algorithms: MBM radixsort
[McIlroy et al. 1993], multikey quicksort [Bentley and Sedgewick 1997], and
adaptive radixsort [Andersson and Nilsson 1998].) However, a shortcoming of
burstsort is that individual strings must be reaccessed as the trie grows, to
redistribute them into sub-buckets. If the trie could be constructed ahead of
time, this cost could be largely avoided, but the shape and size of the trie strongly
depends on the characteristics of the data to be sorted.

Here, we propose new variants of burstsort: SR-burstsort, DR-burstsort, and
DRL-burstsort. These use random sampling of the string set to construct an ap-
proximation to the trie that is built by the original burstsort. Prefixes that are
repeated in the random sample are likely to be common in the data; thus, it in-
tuitively makes sense to have these prefixes as paths in the trie. As an efficiency
heuristic, rather than thoroughly process the sample, we simply process them
in order, using each string to add one more node to the trie. In SR-burstsort, the
trie is then fixed. In DR-burstsort, the trie can, if necessary, continue to grow as
in burstsort, necessitating additional tests but avoiding inefficiency in patho-
logical cases. In DRL-burstsort, total cache size is used to limit initial trie size.
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We have used several small and large sets of strings, as described in our ear-
lier work [Sinha and Zobel 2004], for our experiments, which we ran on several
machines of differing architecture. SR-burstsort is, in some cases, slightly more
efficient than burstsort, but in other cases is much slower. DR-burstsort and
DRL-burstsort are more efficient than burstsort in almost all cases, although
with larger collections the amount of improvement decreases. In addition, we
have used a cache simulator to examine individual aspects of the performance,
and have found that in the best cases both the number of cache misses and the
number of instructions falls dramatically compared to burstsort. These new
algorithms are the fastest known way to sort a large set of strings.

2. BACKGROUND

In our earlier work [Sinha and Zobel 2004], we examined previous algorithms
for sorting strings. The most efficient of these were adaptive radixsort, multikey
quicksort, and MBM radixsort.

Adaptive radixsort was introduced by Andersson and Nilsson [1998]; it is an
adaptation of the distributive partitioning scheme [Dobosiewicz 1978] to stan-
dard most-significant-digit-first radixsort. The alphabet size is chosen based
on the number of keys to be sorted, switching between 8 and 16 bits. In our
experiments, we used the implementation of Nilsson [1996].

Multikey quicksort was introduced by Bentley and Sedgewick [1997]. It is a
hybrid of ternary quicksort and MSD radixsort. It proceeds character-wise and
partitions the strings into buckets, based upon the value of the character at
the position under consideration. The partitioning stage proceeds by selecting
a random pivot and comparing the first character of the strings with the first
character of the pivot. As in ternary quicksort, the strings are then partitioned
into three sets—less than, equal to, and greater than—which are then sorted
recursively. In our experiments, we used an implementation by Bentley and
Sedgewick [1997].

MBM radixsort (our nomenclature) is one of several high-performance MSD
radixsort variants tuned for strings that were introduced by McIlroy et al.
[1993] in the early 1990s. We used programC, which we found experimentally
to be the most efficient of these variants and the fastest array-based, in-place
sorting algorithm for strings.

2.1 Burstsort

Any data structure that maintains the data in order can be used as the basis of
a sorting method. Burstsort is based on this principle. A trie structure is used
to place the strings in buckets by reading, at most, the distinguishing prefix;
this structure is built incrementally as the strings are processed. There are two
phases; first is insertion of the strings into the burst trie structure; second is
an in-order traversal, during which the buckets are sorted.

The trie is built by bursting a bucket once it becomes too large; a new
node is created and the strings in the bucket are inserted into the node,
creating new child buckets. A fixed threshold—the maximum number of
strings that can be held in a bucket—is used to determine whether to burst.
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Fig. 1. A burst trie of four nodes and five buckets.

Strings that are completely consumed are managed in a special “end-of-string”
structure.

During the second, traversal phase, if the number of strings in the bucket is
more than one, then a sorting algorithm that takes the depth of the character
of the strings into account is used to sort the strings in the bucket. We have
used multikey quicksort [Bentley and Sedgewick 1997] in our experiments.

The set of strings is recursively partitioned on their lead characters. When
a partition is sufficiently small, it is then sorted by a simple in-place method.
However, there is a key difference between radixsorts and burstsort. In the
first, trie-construction phase the standard radixsorts proceed character-wise,
processing the first character of each string, then reaccessing each string to
process the next character, and so on. Each trie node is handled once only, but
strings are handled many times. In contrast, burstsort proceeds string-wise,
accessing each string once only to allocate it to a bucket. Each node is handled
many times, but the trie is much smaller than the data set, and thus the nodes
can remain resident in cache.

Figure 1 shows an example of a burst trie containing eleven records whose
keys are “backup,” “balm,” “base,” “by,” “by,” “by,” “by,” “bypass,” “wake,” “walk,”
and “went,” respectively. In this example, the alphabet is the set of letters from
A to Z and, in addition, an empty string symbol ⊥ is shown; the bucket structure
used is an array. The access trie has four trie nodes and five buckets in all. The
left-most bucket has three strings, “backup,” “balm,” and “base,” the second
bucket has four identical strings “by,” the fourth bucket has two strings—“wake”
and “walk,” the right-most bucket has only one string “went.”

Experimental results comparing burstsort to previous algorithms are shown
later. As can be seen, for sets of strings that are significantly larger than the
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available cache, burstsort is up to twice as fast. The gain is largely because of
significantly reduced numbers of cache misses compared to previous techniques.

2.2 Randomized Algorithms

A randomized algorithm is one that makes random choices during its execu-
tion. According to Motwani and Raghavan [1995], “two benefits of randomized
algorithms have made them popular: simplicity and efficiency. For many ap-
plications, a randomized algorithm is the simplest available, or the fastest, or
both.”

One application of randomization for sorting is to rearrange the input in
order to remove any existing patterns, to ensure that the expected running
time matches the average running time [Gupta et al. 1994]. The best-known
example of this is in quicksort, where randomization of the input lessens the
chance of quadratic running time. Input randomization can also be used in
cases, such as binary search trees, to eliminate the worst case when the input
sequence is sorted.

Another application of randomization is to process a small sample from a
larger collection. In simple random sampling, each individual key in a collection
has an equal chance of being selected. According to Olken and Rotem [1995],

Random sampling is used on those occasions when processing the entire dataset
is unnecessary and too expensive . . . The savings generated by sampling may
arise either from reductions in the cost of retrieving the data . . . or from subse-
quent postprocessing of the sample. Sampling is useful for applications which
are attempting to estimate some aggregate property of a set of records.

3. BURSTSORT WITH RANDOM SAMPLING

In earlier work [Sinha and Zobel 2004], we showed that burstsort is efficient in
sorting strings because of the low rate of cache miss compared to other string-
sorting methods. Cache misses occur when the string is fetched for the first
time, during a burst, and during the traversal phase when the bucket is sorted.
Our results indicated that the threshold size should be selected such that the
average number of cache misses per key during the traversal phase is close to
one.

Most cache misses occur while the strings are being inserted into the trie.
One way in which cache misses could be reduced during the insertion phase is
if the trie could be built beforehand, avoiding bursts and allowing strings to be
placed in the trie with just one access, giving—if everything has gone well—a
maximum of two accesses to a string overall, once during insertion and once
during traversal. This is an upper bound, as some strings need not be referenced
in the traversal phase and, as the insertion is a sequential scan, more than one
string may fit into a cache line.

We propose building the trie beforehand using a random sample of the
strings, which can be used to construct an approximation to the trie. The goal
of the sampling is to get as close as possible to the shape of the trie constructed
by burstsort, so the strings evenly distribute in the buckets, which can then
be efficiently sorted in the cache. However, the cost of processing the sample
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should not be too great, or it can outweigh the gains. As a heuristic, we make
just one pass through the sample, and use each string to suggest one additional
trie node.

3.1 Sampling Process

(1) Create an empty trie root node r, where a trie node is an array of pointers
(to either trie nodes or buckets).

(2) Choose a sample size R and create a stack of R empty trie nodes.

(3) A random sample of R strings is drawn from the input data.

(4) For each string c1 . . . cn in the sample,

(a) Use the string to traverse the trie until the current character corre-
sponds to a null pointer. That is, set p ← r, and i ← 1, and, until p[ci]
is null, continue by setting p ← p[ci] and incrementing i. For example,
on insertion of “michael,” if “mic” was already a path in the trie; a node
is added for “h.”

(b) If the string is not exhausted, that is, i ≤ n, take a new node t from the
stack and set p[ci] ← t.

The sampled strings are not stored in the buckets; to maintain stability, they
are inserted when encountered during the main sorting process. The minimum
number of trie nodes created is 1 if all the strings in the collection are identical
and of length 1. The maximum number of trie nodes created is equal to the size
of the sample and is more likely in collections such as the random collection.

The intuition behind this approach is that, if a prefix is common in the data,
then there will be several strings in the sample with that prefix. The sampling
algorithm will then construct a branch of trie nodes corresponding to that
prefix.

For example, in an English dictionary (from the utility ispell) of 127,001
strings, seven begin with “throu,” 75 with “thro,” 178 with “thr,” 959 with “th,”
and 6713 with “t.” Suppose we sample 127 times with replacement, correspond-
ing to an expected bucket size of 1000. Then the probability of sampling “throu”
is only 0.01, of “thro” is 0.07, of “thr” is 0.16, of “th” is 0.62, and of “t” is 0.999.
With a bucket size of 1000, a burst trie would allocate a node corresponding to
the path “t” and would come close to allocating a node for “th.” Under sampling,
it is almost certain that a node will be allocated for “t”—there is an even chance
that it would be one of the first 13 nodes allocated—and likely that a node would
be allocated for “th.” Nodes for the deeper paths are unlikely.

3.2 SR-burstsort

In burstsort, the number of trie nodes created is roughly linear in the size of the
set to be sorted. It is, therefore, attractive that the number of nodes allocated
through sampling be a fixed percentage of the number of keys in the set; by the
informal statistical argument above, the trie created in the initial phase should
approximate the trie created by applying standard burstsort to the same data.
In static randomized burstsort, or SR-burstsort, the trie structure created by
sampling is then static. The structure grows only through addition of strings
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to buckets. The use of random sampling means that common prefixes will in
the great majority of runs be represented in the trie and strings will distribute
well among the buckets.

For a set of N strings, we need to choose a sample size. We use a relative trie
size parameter S. For our experiments, we used S = 8192, because this value
was an effective bucket-size threshold in our earlier work. Then the sample size
and the maximum number of trie nodes that can be created, is R = N/S.

SR-burstsort proceeds as follows: use the sampling procedure above to build
an access trie; insert the strings in turn into buckets; then, traverse the trie
and buckets to give the sorted result. No bursts occur. Buckets are a linked list
of arrays of a fixed size (an implementation decision derived from preliminary
experiments). The last element in each array is a pointer to the next array. In
our experiments, we have used an array size of 32.

SR-burstsort has several advantages compared to the original algorithm. The
code is simpler, with no thresholds or bursting, thus requiring far fewer instruc-
tions during the insertion phase. Insertion also requires fewer string accesses.
The nodes are allocated as a block, simplifying dynamic memory management.

However, bucket size is not capped and some buckets may not fit entirely
within the cache. The bucket-sorting routine is selected mainly for its instruc-
tion and space efficiency for small sets of strings and not for cache efficiency.
Moreover, small changes in the trie shape can lead to large variations in bucket
size: omitting a single crucial trie node because of sampling error may mean
that a very large bucket is created.

3.3 DR-burstsort

An obvious next step is to eliminate the cases in SR-burstsort when the buckets
become larger than cache and bucket sorting is not entirely cache resident. This
suggests dynamic randomized burstsort, or DR-burstsort. In this approach,
an initial trie is created through sampling as before, but as in the original
burstsort, a limit is imposed on bucket size and buckets are burst if this limit is
exceeded. DR-burstsort avoids the bad cases that arise in SR-burstsort because
of sampling errors. The number of bursts should be small, but, compared to
SR-burstsort, additional statistics must be maintained.

Thus, DR-burstsort is as follows: using a relative trie size S, select a sample
of R = N/S strings and create an initial trie; insert the strings into the trie
as for burstsort; then traverse as for burstsort or SR-burstsort. Buckets are
represented as arrays of 16, 128, 1024, or 8192 pointers, growing from one size
to the next as the number of strings to be stored increases, as we have described
elsewhere for burstsort [Sinha and Zobel 2004].

3.4 DRL-burstsort

For the largest sets of strings, the trie is much too large to be cache resident.
That is, there is a trade-off between whether the largest bucket can fit in cache
and whether the trie can fit in cache. One approach is to stop bursts at some
point, especially as bursts late in the process are not as helpful. We have not
explored this approach, as it would be unsuccessful with sorted data.
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Table I. Statistics of the Data Collections Used in the Experiments

Data Set

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Duplicates

Size MB 1.013 3.136 7.954 27.951 93.087 304.279

Distinct Words (×105) 0.599 1.549 3.281 9.315 25.456 70.246

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

No duplicates

Size MB 1.1 3.212 10.796 35.640 117.068 381.967

Distinct Words (×105) 1 3.162 10 31.623 100 316.230

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

Genome

Size MB 0.953 3.016 9.537 30.158 95.367 301.580

Distinct Words (×105) 0.751 1.593 2.363 2.600 2.620 2.620

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

Random

Size MB 1.004 3.167 10.015 31.664 100.121 316.606

Distinct Words (×105) 0.891 2.762 8.575 26.833 83.859 260.140

Word Occurrences (×105) 1 3.162 10 31.623 100 316.230

URL

Size MB 3.030 9.607 30.386 96.156 304.118 —

Distinct Words (×105) 0.361 0.923 2.355 5.769 12.898 —

Word Occurrences (×105) 1 3.162 10 31.623 100 —

Another approach is to limit the size of the initial trie to fit in cache,
to avoid the disadvantages of extraneous nodes being created. This variant,
DR-burstsort with limit or DRL-burstsort, is tested below. The limit used in our
experiments depends on the size of the cache and the size of the trie nodes. In
our experiments, we chose R so that R times node size is equal to the cache size.

4. EXPERIMENTS

For realistic experiments with large sets of strings, we are limited to sources
for which we have sufficient volumes of data. We have drawn on web data and
genomic data. For the latter, we have parsed nucleotide strings into overlapping
nine-grams. For the former, derived from the TREC project [Harman 1995;
Hawking et al. 1999], we extracted both words—alphabetic strings delimited
by nonalphabetic characters—and URLs. For the words, we considered sets with
and without duplicates, in both cases in order of occurrence in the original data.

For the word data and genomic data, we created six subsets, of approximately
105, 3.1623 × 105, 106, 3.1623 × 106, 107, and 3.1623 × 107 strings each. We call
these SET 1, SET 2, SET 3, SET 4, SET 5, and SET 6, respectively. For the URL data,
we created SET 1–SET 5. In each case, only SET 1 fits in cache. The statistics of
the data sets used are shown in Table I. In detail, the data sets are as follows.

� Duplicates. Words in order of occurrence, including duplicates. The statis-
tical characteristics are those of natural language text; a small number of
words are frequent, while many occur once only.

� No duplicates. Unique strings based on word pairs in order of first occur-
rence in the TREC web data.
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� Genome. Strings extracted from a collection of genomic strings, each typ-
ically thousands of nucleotides long. The strings are parsed into shorter
strings of length 9. The alphabet is comprised of four characters, “a,” “t,”
“g,” and “c.” There is a large number of duplicates and the data shows little
locality.

� Random. An artificially generated collection of strings whose characters are
uniformly distributed over the entire ASCII range. The length of each string
is random in the range 1–20.

� URL. Complete URLs, in order of occurrence and with duplicates, from the
TREC web data. Average length is high compared to the other sets of strings.

� Artificial A. A collection of identical strings on an alphabet of one character.
Each string is one hundred characters long and the size of the collection is
one million.

� Artificial B. A collection of strings with an alphabet of nine characters. The
length of strings are varied randomly from one to hundred and the size of the
collection is ten million.

� Artificial C. A collection of strings whose length ranges from one to hundred.
The alphabet size is one and the strings are ordered in increasing length
arranged cyclically. The size of the collection is one million.

The cost of bursting increases with the size of the bucket as more strings
need to be fetched from memory, leading to increases in the number of cache
misses and of instructions. Each correct prediction of a trie node removes the
need to burst a bucket. Another situation where bursting could be expensive is
use of inefficient data structures, such as binary search trees or linked lists as
buckets. Traversing a linked list could result in two memory accesses for each
bucket element, one access to the string and one access to the list node. To show
how sampling can be beneficial as bursting becomes more expensive, we have
measured the running time, instruction count, and cache misses as the size of
the bucket is increased from 1024 to 131,072, or, for the artificial collections,
up to 262,144.

The aim of the experiments is to compare the performance of our algorithms,
in terms of the running time, number of instructions, and number of L2 cache
misses.

The time measured is to sort an array of pointers to strings; the array is
returned as the output. We, therefore, report the CPU times, not elapsed times,
and exclude the time taken to parse the collections into strings.

The experiments were run on a Pentium III Xeon 700 MHz computer with
2 GB of internal memory, 1-MB L2 cache with block size of 32 bytes, eight-
way associativity, and a memory latency of about 100 cycles. We also tested
the methods on two newer architectures, a Pentium IV and a PowerPC. The
details of the machine configurations are as shown in Table II. We have used
the highest compiler optimization O3 in all our experiments. The total number
of milliseconds of CPU time has been measured; the time taken for I/O or to
parse the collection are not included as these are in common for all algorithms.
For the cache simulations, we have used valgrind [Seward 2001].
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Table II. Architectural Parameters of the Machines Used for Experiments

Workstation Pentium Power Mac G5 Pentium

Processor type Pentium IV PowerPC 970 Pentium III Xeon

Clock rate 2000 MHz 1600 MHz 700 MHz

L1 data cache (KB) 8 32 16

L1 line size (bytes) 64 128 32

L1 associativity 4-way 2-way 4-way

L1 miss latency (cycles) 7 8 6

L2 cache (KB) 512 512 1024

L2 block size (bytes) 64 128 32

L2 associativity 8-way 8-way 8-way

L2 miss latency (cycles) 285 324 109

Data TLB entries 64 256 64

Entries TLB associativity full 4-way 4-way

Pagesize (KB) 4 4 4

Memory size (MB) 2048 256 2048

Table III. Duplicates: Sorting Time for Each Method (ms)

Data Set

Threshold Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Multikey quicksort 62 272 920 3,830 14,950 56,070

MBM radixsort 58 238 822 3,650 15,460 61,560

Adaptive radixsort 74 288 900 3,360 12,410 51,870

SR-burstsort 60 200 560 2,010 7,620 31,040

8192 Burstsort 58 218 630 2,220 7,950 29,910

DR-burstsort 60 200 560 2,030 7,390 28,530

DRL-burstsort 60 200 560 2,030 7,510 29,030

16384 Burstsort 60 210 630 2,270 7,970 28,490

DR-burstsort 60 200 550 2,020 7,280 27,310

32768 Burstsort 60 210 630 2,380 8,250 28,530

DR-burstsort 60 200 560 2,010 7,160 27,400

65536 Burstsort 60 210 640 2,480 8,590 29,620

DR-burstsort 60 200 560 2,010 7,150 26,640

131072 Burstsort 60 220 660 2,550 9,190 31,260

DR-burstsort 60 200 560 2,010 7,140 27,420

5. RESULTS

We present results in three forms: time to sort each data set, instruction counts,
and L2 cache misses.

Times for sorting are shown in Tables III–VII. Instruction counts are shown
in Figures 3 and 5. L2 cache misses are shown in Figures 2, 4, and 6; the trends
for the other data sets are similar.

On duplicates, the sorting times for the burstsort methods are, for all
cases but SET 1, faster than for the previous methods. These results are as
observed in our previous work. The performance gap steadily grows with
dataset size, and the indications from all the results—instructions, cache
misses, and timings—are that the improvements yielded by burstsort will
continue to increase with both changes in computer architecture and growing
data volumes. Figure 2 shows the L2 cache misses in comparison to the best
algorithms found in our earlier work.
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Table IV. Genome: Sorting Time for Each Method (ms)

Data Set

Threshold Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Multikey quicksort 72 324 1,250 4,610 16,670 62,680

MBM radixsort 72 368 1,570 6,200 23,700 90,700

Adaptive radixsort 92 404 1,500 4,980 17,800 66,100

SR-burstsort 70 240 780 2,530 10,320 44,810

8192 Burstsort 70 258 870 2,830 8,990 31,540

DR-burstsort 70 240 770 2,470 7,960 30,870

DRL-burstsort 70 240 770 2,460 8,410 30,680

16384 Burstsort 70 290 910 2,760 8,720 30,280

DR-burstsort 70 240 780 2,390 7,520 27,850

32768 Burstsort 80 280 940 3,000 9,520 31,140

DR-burstsort 60 240 770 2,390 7,560 28,780

65536 Burstsort 70 310 1,010 3,130 9,820 32,860

DR-burstsort 70 240 770 2,400 7,520 28,710

131072 Burstsort 80 300 1,070 3,400 10,940 36,630

DR-burstsort 70 230 770 2,400 7,570 28,740

Table V. URLs: Sorting Time for Each Method (milliseconds)a

Data Set

Threshold Set 1 Set 2 Set 3 Set 4 Set 5

SR-burstsort 100 360 1,310 5,350 19,420

8192 Burstsort 110 390 1,530 5,080 17,860

DR-burstsort 110 370 1,450 4,860 17,130

DRL-burstsort 100 370 1,450 4,850 17,610

16384 Burstsort 110 390 1,630 5,280 18,800

DR-burstsort 110 380 1,530 4,890 17,350

32768 Burstsort 130 420 1,510 6,710 21,560

DR-burstsort 110 370 1,380 5,890 18,670

65536 Burstsort 170 440 1,540 6,290 24,010

DR-burstsort 110 370 1,380 5,410 19,360

131072 Burstsort 140 480 1,550 6,310 27,120

DR-burstsort 110 370 1,340 5,330 19,830

aThe fastest times in the burstsort family are shown in bold.

Figures 3 and 4 show the number of instructions and L2 cache misses for
a bucket size of 32768. Several overall trends can be observed. The number
of instructions per string does not vary dramatically for any of the meth-
ods, although it does have perturbations because of characteristics of the
individual data sets. SR-burstsort consistently uses fewer instructions than
the other methods, while the original burstsort requires the most. Among
the burstsorts, SR-burstsort is consistently the slowest for the larger sets
because of more L2 cache misses than burstsort, despite requiring fewer
instructions.

For most collections, either DR-burstsort or DRL-burstsort is the fastest
sorting technique and usually yield similar results. Compared to burstsort,
DR-burstsort uses up to 24% fewer instructions and incurs up to 37% fewer
cache misses. However, there are exceptions. In particular, DRL-burstsort has
done much better than DR-burstsort on the random data. Based on this data,
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Table VI. Artificial Sets: Sorting Time for Each Method (ms)

Collection

Threshold Artificial A Artificial B Artificial C

SR-burstsort 2,650 9,220 1,600

8192 Burstsort 2,740 10,130 1,430

DR-burstsort 2,340 9,080 1,300

16384 Burstsort 2,510 10,110 1,460

DR-burstsort 2,320 8,890 1,340

32768 Burstsort 2,910 10,540 1,880

DR-burstsort 2,320 8,110 1,430

65536 Burstsort 3,760 11,210 2,610

DR-burstsort 2,340 8,010 1,540

31072 Burstsort 5,190 11,820 3,810

DR-burstsort 2,320 7,890 1,670

262144 Burstsort 7,900 13,200 5,660

DR-burstsort 2,290 7,930 1,570

Table VII. Random: Sorting Time for Each Method (ms)

Data Set

Threshold Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

SR-burstsort 50 170 570 1,930 7,060 29,410

8192 Burstsort 50 180 650 2,100 6,450 23,040

DR-burstsort 50 180 580 2,050 6,910 30,790

DRL-burstsort 50 180 570 2,050 6,470 23,340

burstsort is by a small margin the fastest method tested. The heuristic in DRL-
burstsort of limiting the initial trie to the cache size has led to clear gains, in
this case, in which the sampling process is error-prone.

Some of the data sets have individual characteristics that affect the trends.
In particular, with the fixed length of the strings in the genome data, increasing
the number of strings does not increase the number of distinct strings. Thus,
the relative costs of sorting under the different methods changes with increas-
ing dataset size. In contrast, with duplicates, the number of distinct strings
continues to steadily grow.

The sorting times shown in Tables III to VII shows that as the size of the
bucket increases, burstsort becomes more expensive. On the other hand, the
cost of DR-burstsort does not vary much with increasing bucket size. Table VI
shows DR-burstsort can be as much as 3.5 times faster than burstsort.

As shown in Figure 5, the number of instructions incurred by DR-burstsort
can be up to 30% less than burstsort. Also, interestingly, the number of instruc-
tions do not appear to vary much as the size of the bucket increases. Figure 6
similarly shows that the number of misses incurred by DR-burstsort can be up
to 90% less than burstsort.

All of the new methods require fewer instructions than the original burstsort.
More importantly, in most cases, DR-burstsort and DRL-burstsort require fewer
cache misses. This trend means that, as the hardware performance gap grows,
the relative performance of our new methods will continue to improve.
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Fig. 2. L2 cache misses for the most efficient sorting algorithms, burstsort has a threshold of 8192.

Upper, duplicates, lower, genome.

Fig. 3. Instructions per key on each data set, for each variant of burstsort for a threshold of 32768.
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Fig. 4. L2 cache misses per key on each data set, for each variant of burstsort for a threshold of

32768.

Fig. 5. Instructions per key for the largest data set, for each variant of burstsort. K = 1024.

5.1 Other Architectures

We tested the performance of our algorithms on newer architectures, a
Pentium IV and a PowerPC. The performance characteristics are similar to
those found on the Pentium III. As the cost of bursting increases because of
increase in bucket size, the sampling variants are effective across all machines
and across all collections.

Figures 7 and 8 shows the performance of the algorithms with increasing
threshold size on the Pentium IV and PowerPC, respectively. The algorithmic
parameters used for the experiments are identical on both PowerPC and
Pentium IV, as both have the same cache size. Because of limits on available
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Fig. 6. L2 cache misses per key for the largest data set, for each variant of burstsort. K = 1024.

main memory, the size of the collection on the Pentium IV was 10 million
strings, while on the PowerPC it was about 3 million strings. On both the Pen-
tium IV and PowerPC, for most thresholds, the performance of DR-burstsort is
better than that of that of burstsort for all collections. On the Pentium IV, the
performance improvements of DR-burstsort over burstsort ranges from 13%
for URLs to up to 42% for the random collection. Similarly, the performance
improvements in PowerPC ranges from 12% for URLs to up to 42% for the
random collection.

As the size of the buckets increases for the random collection, the bucket-
sorting phase becomes increasingly expensive as the strings are no longer cache-
resident. This is because of the strings being uniformly distributed across the
buckets and not reaching the threshold size. Sampling helps by creating more
trie nodes and thus smaller buckets, helping to reduce the cost for bucket,
sorting.

6. CONCLUSIONS

We have proposed new algorithms—SR-burstsort, DR-burstsort, and DRL-
burstsort—for fast sorting of strings in large data collections. They are variants
of our burstsort algorithm and are based on construction of a small trie that
rapidly allocates strings to buckets. In the original burstsort, the trie was con-
structed dynamically; the new algorithms are based on taking a random sample
of the strings and using them to construct an initial trie structure before any
strings are inserted.
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Fig. 7. Sorting time for varying thresholds on Pentium IV architecture. The vertical scale is time

in seconds divided by n log n. The size of the dataset for each collection was 10 million strings.

K = 1024.

SR-burstsort, where the trie is static, reduces the need for dynamic memory
management and simplifies the insertion process, leading to code with a lower
instruction count than the other alternatives. Despite promising performance in
preliminary experiments and the low instruction count, however, it is generally
slower than burstsort, as there can easily be bad cases where a random sample
does not correctly predict the trie structure, which leads to some buckets being
larger than expected.

DR-burstsort and DRL-burstsort improve on the worst case of SR-burstsort
by allowing the trie to be modified dynamically, at the cost of additional checks
during insertion. They are faster than burstsort in all experiments with real
data, because of elimination of the need for most of the bursts. The use of a
limit in DRL-burstsort avoids poor cases that could arise in data with a flat
distribution.

Our experimental results show that the new variants reduce cache misses
even further than does the original burstsort, by up to 37%, while simultane-
ously reducing instruction counts by up to 24%. As the cost of bursting grows,
the new variants reduce cache misses by up to 90%, while simultaneously re-
ducing instruction counts by up to 30% and the time to sort is reduced by up
to 72%, as compared to burstsort.

Other machines have been used to check whether the performance gains
are observed in architectures with different characteristics. The results are
consistent across all these machines. On both the PowerPC and Pentium IV,
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Fig. 8. Sorting time for varying thresholds on PowerPC architecture. The vertical scale is time in

seconds divided by n log n. The size of the dataset for each collection was about 3 million strings.

K = 1024.

DR-burstsort is more efficient than burstsort, with improvements ranging from
about 11 to 42%.

There is further scope for improving the performance by tuning the parame-
ters for each machine. Preanalysis of collections to see whether the alphabet is
restricted showed an improvement of 16% for genomic collections. Preanalysis
would be of value for customized sorting applications. Another variation is to
choose the sample size based on analysis of collection characteristics. A further
variation is to recursively apply SR-burstsort to large buckets. We are testing
these options in current work.

Even without these improvements, however, burstsort and its variants are
a significant advance, dramatically reducing the costs of sorting a large set of
strings. Cache misses and running time are as low as one-half that required
by any previous method. With the current trends in computer architecture, the
performance gains given by our methods will continue to improve.
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