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Ongoing changes in computer architecture are affecting the efficiency of string-sorting algorithms.
The size of main memory in typical computers continues to grow but memory accesses require
increasing numbers of instruction cycles, which is a problem for the most efficient of the exist-
ing string-sorting algorithms as they do not utilize cache well for large data sets. We propose a
new sorting algorithm for strings, burstsort, based on dynamic construction of a compact trie in
which strings are kept in buckets. It is simple, fast, and efficient. We experimentally explore key
implementation options and compare burstsort to existing string-sorting algorithms on large and
small sets of strings with a range of characteristics. These experiments show that, for large sets of
strings, burstsort is almost twice as fast as any previous algorithm, primarily due to a lower rate
of cache miss.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms]: Sorting; E.5 [Files]: Sorting;
E.1 [Data Structures]: Trees; B.3.2 [Memory Structures]: Cache Memories; D.1.0 [Program-
ming Techniques]: General

1. INTRODUCTION

Sorting is one of the fundamental problems of computer science. In many cur-
rent applications, large numbers of strings may need to be sorted. There have
been several recent advances in fast sorting techniques designed for strings. For
example, many improvements to quicksort have been described since it was first
introduced, an important recent innovation being the introduction of three-way
partitioning by Bentley and McIlroy [1993]. Splaysort, an adaptive sorting algo-
rithm introduced by Moffat et al. [1996], is a combination of the splaytree data
structure and insertionsort. Improvements to radixsort for string data were
proposed by Mcllroy et al. [1993]; forward and adaptive radixsort for strings
were introduced by Andersson and Nilsson [1998] and Nilsson [1996]; a hybrid
of quicksort and MSD radixsort named three-way radix quicksort [Sedgewick
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1998] was introduced by Bentley and Sedgewick [1997]; and, as an extension to
keys that are made up of components, three-way radix quicksort was extended
by Bentley and Sedgewick [1997] to give multikey quicksort.

While these algorithms are theoretically attractive, they have drawbacks.
In particular, they show poor locality of memory accesses, a problem that is
of increasing significance. A standard desktop computer now has a processor
running at over 1 GHz and 256 Mb or more of memory. However, memory and
bus speeds have not increased as rapidly, and a delay of 20—200 clock cycles
per memory access is typical. For this reason, current processors have caches,
ranging from 64 or 256 kilobytes on a Celeron to 8 megabytes on a SPARC;
however, these are tiny fractions of typical memory volumes, of 128 to 256
megabytes on the former and many gigabytes on the latter. On a memory access,
a line of data (32 or 128 bytes say) is transferred from memory to the cache,
and adjacent lines may be proactively transferred until a new memory address
is requested. The paging algorithms used to manage cache are primitive, based
on the low-order bits of the memory address.

Thus, some years ago, the fastest algorithms were those that used the least
number of instructions. Today, an algorithm can afford to waste instructions if
doing so reduces the number of memory accesses [LaMarca and Ladner 1997]:
an algorithm that is efficient for sorting a megabyte of data, or whatever the
cache size is on that particular hardware, may rapidly degrade as data set size
increases. Radixsorts are more efficient than older sorting algorithms, due to
the reduced number of times each string is handled, but are not necessarily
efficient with regard to cache. The degree to which algorithms can effectively
utilize cache is increasingly a key performance criterion [LaMarca and Ladner
1997; Xiao et al. 2000].

Addressing this issue for string sorting is the subject of our research. Accord-
ing to Arge et al. [1997], “string sorting is the most general formulation of sort-
ing because it comprises integer sorting (i.e., strings of length one), multikey
sorting (i.e., equal-length strings) and variable-length key sorting (i.e., arbi-
trarily long strings).” Cache misses are a significant problem for string sorting.
String sets are typically represented by an array of pointers to locations in mem-
ory where the variable-length strings are held. Each string reference incurs at
least two cache misses, one for the pointer and one or more for the string itself
depending on its length and how much of the string needs to be read. However,
in practice, current algorithms incur many more—in our experiments, for the
largest data sets from 5 to 10 misses per string is typical.

We propose a new sorting algorithm, burstsort, which is based on the burst
trie [Heinz et al. 2002]. A burst trie is a collection of small data structures, or
buckets, that are accessed by a conventional trie. The first few characters of
strings are used to construct the trie, which indexes buckets containing strings
with shared prefixes. The trie is used to allocate strings to buckets, the suffixes
of which are then sorted using a method more suited to small sets. In principle,
burstsort is similar to MSD radixsort, as both recursively partition strings
into small sets, character position by character position, but there are crucial
differences. Radixsort proceeds positionwise, inspecting the first character of
every string before inspecting any subsequent characters; only one branch of
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the trie is required at a time, so it can be managed as a stack. Burstsort proceeds
stringwise, completely consuming one string before proceeding to the next; the
entire trie is constructed during the sort. However, the trie is small compared
to the set of strings and is typically mostly resident in cache, and the stream-
oriented processing of the strings is also cache friendly.

Using several small and large sets of strings derived from real-world data,
such as lexicons of web collections and genomic strings, we compared the speed
of burstsort to the best existing string-sorting algorithms. Burstsort has high
initial costs, making it no faster than the best of the previous methods for small
sets of strings. For large sets of strings, however, we observed that burstsort
is much the fastest, typically by almost a factor of two. Using artificial data,
we found that burstsort is insensitive to adverse cases, such as all characters
being identical or strings that are hundreds of characters in length.

For large sets of strings, burstsort is the best sorting method. Using a cache
simulator, we show that the gain in performance is due to the low rate of cache
misses. Not only is it more efficient for the data sets tested, but the trend in
performance is to further gains as data volumes grow and processors become
faster and memory latency increases.

We review existing methods for internal sorting of strings in Section 2, and
introduce our burstsort in Section 3. Implementation options and their likely
impact are explored in Section 4. We describe our experiments in Section 5 and
present results in Section 6, with outcomes summarized in Section 7.

2. EXISTING APPROACHES TO STRING SORTING

Many sorting algorithms have been proposed, but most are not particularly well
suited to string data. Here we review string-specific methods. In each case, the
input is an array of pointers to strings, and the output is the same array with
the strings in lexicographic order.

Quicksort. Described by Hoare [1962], the Bentley and McIlroy [1993] vari-
ant of quicksort has become the dominant sort routine used in most libraries
since the early 1990s. Quicksort was originally intended for arbitrary input
and hence has some overhead for specific data-types. For our experiments, we
use a stripped-down version by Nilsson [1996] that is specifically tailored for
character strings, designated as Quicksort.

Multikey quicksort. Introduced by Bentley and Sedgewick [1997], it is a
hybrid of quicksort and MSD radixsort. Instead of taking the entire string
and comparing with another string in its entirety, at each stage it considers
only a particular position within each string. The strings are then partitioned
according to the value of the character at this position, into sets less than, equal
to, or greater than a given pivot. Then, like radixsort, it moves onto the next
character once the current input is known to be equal in the given character.

Such an approach avoids the main disadvantage of many sorting algorithms
for strings, namely, the wastefulness of a string comparison. With a conven-
tional quicksort, for example, as the search progresses it is clear that all the
strings in a partition must share a prefix. Comparison of this prefix is redundant
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[Sedgewick 1998]. With the characterwise approach, the length of the shared
prefix is known at each stage. However, some of the disadvantages of quicksort
are still present. Each character is inspected multiple times, until it is in an
“equal to pivot” partition. Each string is re-accessed each time a character in it
is inspected, and after the first partitioning these accesses are effectively ran-
dom. For a large set of strings, the rate of cache misses is likely to be high. In
our experiments, we have used an implementation by Bentley and Sedgewick
[1997], designated as Multikey quicksort.

Radixsort. A family of sorting methods where the keys are interpreted as a
representation in some base (often a power of 2) or as strings over a given small
alphabet. Instead of comparing keys in their entirety, they are decomposed into
a sequence of fixed sized pieces, typically bytes. There are two, fundamentally
different approaches to radix sorting: most significant digit (MSD) and least
significant (LSD) [Sedgewick 1998]. It is difficult to apply the L.SD approach to
a string-sorting application because it is unsuitable for variable-length keys.
Another drawback is that LSD algorithms inspect all characters of the input,
which is unnecessary in MSD approaches. We do not explore LSD methods in
this paper.

MSD radixsort. It examines only the distinguishing prefixes, working with
the most significant characters first, an attractive approach because it uses
the minimum amount of information necessary to complete the sorting. The
algorithm has time complexity Q(n + S), where S is the total number of char-
acters of the distinguishing prefixes; amongst n distinct strings, the minimum
value of S is approximately nlog 4 n, where |A| is the size of the alphabet. The
basic algorithm proceeds by iteratively placing strings in buckets according to
their prefixes, then using the next character to partition a bucket into smaller
buckets.

The algorithm switches to insertionsort or another simple sorting mechanism
for small buckets. In our experiments we have used the implementation of
Nilsson [1996], designated as MSD radixsort.

MBM radixsort. Early high-performance string-oriented variants of MSD
radixsort were presented by Mcllroy et al. [1993]. Of the four variants, we found
program C to be typically the fastest for large data sets. It is an array-based
implementation of MSD radixsort that uses a fixed 8-bit alphabet and performs
the sort in place. In agreement with Bentley and Sedgewick [1997], we found
it to be the fastest array-based string sort. In our experiments it is designated
as MBM radixsort.

Forward radixsort. Developed by Andersson and Nilsson [1994] and Nilsson
[1996], it combines the advantages of LSD and MSD radixsort and is a simple
and efficient algorithm with good worst-case behavior. It addresses a problem of
MSD radixsort, which has a bad worst-case performance due to fragmentation
of data into many sublists. Forward radixsort starts with the most significant
digit, performs bucketing only once for each character position, and inspects
only the significant characters. A queue of buckets is used to avoid the need to
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allocate a stack of trie nodes, but even so, in our experiments this method had
high memory requirements. In our experiments we have used the implementa-
tions of Nilsson [1996], who developed 8-bit and 16-bit versions, designated as
Forward-8 and Forward-16.

Adaptive radixsort. Developed by Nilsson [1996], the size of the alphabet
is chosen adaptively based on a function of the number of elements remaining,
switching between two character sizes, 8 bits and 16 bits. In the 8-bit case,
it keeps track of the minimum and maximum character in each trie node. In
the 16-bit case, it keeps a list of which slots in the node are used, to avoid
scanning large numbers of empty buckets. In our experiments we have used
the implementation of Nilsson [1996], designated as adaptive radixsort.

3. CACHE FRIENDLY SORTING WITH TRIES

A recent development in data structures is the burst trie, which has been
demonstrated to be the fastest structure for maintaining a dynamic set of
strings in sort order [Heinz et al. 2002; Heinz and Zobel 2002]. It is thus attrac-
tive to consider it as the basis of a sorting algorithm. Burstsort is a straight-
forward implementation of sorting based on burst trie insertion and traversal.
We review the burst trie, then introduce our new sorting technique.

Burst tries. A form of trie that is efficient for handling sets of strings of
any size [Heinz et al. 2002; Heinz and Zobel 2002], it resides in memory and
stores strings in approximate sort order. A burst trie comprises three distinct
components: a set of strings, a set of buckets, and an access trie. A bucket is
a small set of strings, stored in a simple data structure such as an array or a
binary search tree. (Choice of bucket structure is considered later.) The strings
that are stored in a bucket at depth d are at least d characters in length, and
the first d characters in the strings are identical. An access trie is a trie whose
leaves are buckets. Each node consists of an array (whose length is the size of
the alphabet) of pointers, each of which may point to another trie node or to a
bucket, and a single empty-string pointer to a bucket. A burst trie using lists
and arrays for buckets is shown in Figures 1 and 2 respectively. Strings in the
burst trie are “bat”, “barn”, “bark”, “by”, “by”, “by”, “by”, “byte”, “bytes”, “wane”,
“way”, and “west”.

A burst trie can increase in size in two ways. First is by insertion when a
string is added to a bucket. Insertion is straightforward. Let the string to be
inserted be ¢y, ..., ¢, of n characters. The leading characters of the string are
used to identify the bucket in which the string should reside. If the bucket is at
adepth ofd = n+1, the bucket is under the empty-string pointer. The standard
insertion algorithm for the data structure used in the bucket is used to insert
the strings into the buckets. For an array, a pointer to the string is placed at
the leftmost free slot.

The second way to increase in size is by bursting, the process of replacing a
bucket at depth d by a trie node and a set of new buckets at depth d + 1; all the
strings in the original bucket are distributed in the buckets in the newly created
node. A bucket is burst whenever it contains more than a fixed number L of
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Fig. 1. Burst trie using lists, with four trie nodes, five buckets, and twelve strings. Upper: before
any bursts. Lower: after all bursts.

strings. That is, when the number of strings in a bucket exceeds L, a new trie
node is created, which is linked into the trie in place of the bucket. The (d + 1)th
character of the strings in the bucket is used to partition the strings into buckets
pointed to by the node. (In our implementation the string is not truncated, but
doing so could save considerable space, allowing much larger sets of strings to
be managed [Heinz et al. 2002].) Repetitions of the same string are stored in
the same list, and do not subsequently have to be sorted as they are known to
be identical. Though the bucket may be an unordered structure, the buckets
themselves are in sort order, and due to their small size can be sorted rapidly.

Burstsort. Our burstsort algorithm is based on the general principle that
any data structure that maintains items in sort order can be used as the basis
of a sorting method, simply by inserting the items into the structure one by one
then retrieving them all in-order in a single pass.!

The data structures used in burstsort are a source array of strings, source
array of pointers to strings, array-based trie nodes, and buckets that are an
array of pointers to strings. Burstsort uses the burst trie data structure to

10ur implementations is available under the heading “String sorting”, at the URL www.cs.rmit.
edu.au/~ jz/resources.
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Fig. 2. Burst trie using arrays, with four trie nodes, five buckets, and twelve strings. Upper: before
any bursts. Lower: after all bursts.

divide the strings into buckets, which are then sorted using other methods. As
for other trie sorts, placing the string in a bucket requires reading of at most the
distinguishing prefix, and the characters in the prefixes are inspected once only.
Also, in many data sets the most common strings are short; these strings are
typically stored at an empty-string pointer and are collected while traversing
the access trie without being involved in bucket sorting.

Burstsort has similarities to MSD radixsort, but there are crucial differences.
The main one is that memory accesses are more localized. During the insertion
phase, a string is retrieved to place it in a bucket, then again when the bucket is
burst (a rare event once a reasonable number of strings have been processed).
Trie nodes are retrieved at random, but there are relatively few of these and
thus most can be simultaneously resident in the cache. In contrast to this depth-
first style of sorting, radixsort is breadth-first. Each string is refetched from
memory per character in the string.

Burstsort proceeds as follows:

(1) Each stringisinserted in turn into a burst trie, which is grown as necessary
to maintain the limit L on bucket size. Strings are referenced by pointers.
—A pointer to each string that is entirely consumed by trie traversal is

placed in an end-of-string bucket and not accessed again until the traver-
sal phase.
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—Other strings are placed in buckets, the management of which is dis-
cussed in the next section.

—When a bucket overflows (that is, capacity limit L is exceeded), it is burst
as described above.

(2) When all strings have been inserted, the burst trie is traversed depth first
and from left-to-right in each node, observing the following conditions:
—If the size of a bucket is one, the string can be output immediately.

—If the bucket is under the empty-string pointer, all strings in the bucket
are identical, so it can be traversed and output immediately.

—Other buckets with more than one string must be sorted, starting at
character position d for a bucket at depth d, and can then be output.
We have used multikey quicksort in our experiments; it is not tightly
integrated with burstsort and there is scope for further improvement.

With a typical set of strings, most leaf nodes in the access trie would be
expected to have a reasonable number of buckets, in the range 10-100 for an
alphabet of 256 characters.

Considering the asymptotic computational cost of burstsort, observe that
standard MSD radixsort uses a similar strategy. Trie nodes are used to parti-
tion a set of strings into buckets. If the number of strings in a bucket exceeds
a limit L, it is recursively partitioned; otherwise, a simple strategy such as
insertionsort is used. The order in which these operations are applied varies
between the methods, but the number of them does not.

Thus burstsort and MSD radixsort have the same asymptotic computational
cost. That is, both algorithms are O(nlogn), which is the cost of inspecting the
characters in the distinguishing prefix of every string. This is also the cache
complexity of radixsort and burstsort, but in practice for burstsort this worst
case is unlikely to be observed, as we now discuss.

The efficiency of burstsort is due to the way it uses cache, and in particu-
lar due to the number of L2 cache misses. The principle kinds of cache miss
are L1 (level 1), which involve only a few machine cycles; L2 (level 2), which
involve many more cycles; and TLB (translation lookaside buffer), which are
less frequent and, on many machines, less costly than an L2 miss. Of these, L2
misses are the most significant factor in processing time, and in the following
discussion we focus on L2 misses. Some cache characteristics of machines used
in our experiments are listed in Table I.

The number of active locations that need to be cached is dependent on the
pattern of accesses to the trie nodes and the buckets; typically this pattern
is skew. Assuming that all active locations fit in cache, which is a reasonable
assumption for most collections, cache misses in the initial phase of sorting are
due to a scan traversal of the strings, scan traversal of the pointers to strings,
and, in insignificant numbers, initial accesses to nodes and buckets; the number
of cache misses per string during scan traversal is low. Bursting involves further
cache misses due to scan traversal of source and destination buckets and due to
accesses to strings. In the largest collections, these accesses to strings during
bursting account for around one cache miss per key. During the final, traversal
phase, the strings in nonempty string buckets are reaccessed, resulting in up
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Table I. Architectural Parameters of the Machine Used for the Experiments

Workstation Pentium Pentium  UltraSPARC  Power Mac G5
Processor type P III Xeon PIV USPARC III PowerPC 970
Clock rate (MHz) 700 2000 750 1600
L1 cache (KB) 16 8 64 32
L1 block size (Bytes) 32 64 32 64
L1 associativity 4 4 4 2
L1 miss latency (cycles) 6 7 12 8
L2 cache (KB) 1,024 512 8,192 512
L2 block size (Bytes) 32 64 512 128
L2 associativity 8 8 1 8
L2 miss latency (cycles) 109 285 174 324
Memory Size (MB) 2,048 2,048 4096 256

to one cache miss each, and there is a scan traversal of the buckets and source
array of pointers. In total, the expected number of cache misses is around 2-3
when the active locations fit within cache.

In contrast, radixsort involves cache misses for all of these reasons, but in
addition incurs a potential cache miss for each character in the prefix of each
string. The burst trie is small and may well be largely cache resident; thus trie
traversal does not tend to incur cache misses; the set of strings is large, and
thus each access to a string in radixsort may well have a cache penalty.

Moreover, string sorting using pointers to strings—as is necessary with
radixsort—is not TLB efficient as each access to a string may be a TLB miss.
Burstsort does well, as it reduces the number of accesses to the strings. In the
worst case it is possible that each access to a trie node or a bucket could be a TLB
miss, but it is not easy to construct an example in which such behavior occurs.

To demonstrate the generality of our algorithms, in our experiments we in-
clude results from several machines with varying cache architectures. As these
results show, burstsort gives improvements over previous algorithms under all
of these architectures.

4. IMPLEMENTATION OPTIONS

The implementation of burstsort used for our original work [Sinha 2002] was
strongly influenced by design choices that had proven effective for burst tries.
However, these are not necessarily ideal for sorting, where for example random
access to stored strings is not required. We therefore identified and evaluated
a range of implementation options. These were

—data structure used to represent buckets;
—size of the root trie node;

—bucket capacity;

—bucket sorting method.

In detail, these options are as follows.

Bucket representation. In our original work, we used linked lists to repre-
sent buckets. During the insertion phase, linked lists are highly efficient. First,
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the list nodes for all the strings can be allocated as a single array, and the array
of pointers can be copied to the array of nodes in one pass. The strings them-
selves are not accessed during this process, which requires only a tiny fraction
of the total sorting time. Second, during the insertion phase a linked list need
only be accessed when a bucket is burst, which is a relatively rare occurrence;
the great majority of strings do not participate in a burst operation. As each
inserted string can be placed at the start of a linked list representing a bucket,
the existing nodes in the list are not accessed. That is, there are few random
accesses, and a linked list allows extremely cheap insertion.

However, in subsequent experiments it became apparent that linked lists
lead to inefficiencies in the traversal phase. In particular, sorting a bucket re-
quires that the list be traversed and the string pointers copied to an array (a
fragment of the original array of pointers can be used). With a bucket capac-
ity of 8,192—a figure that gave the greatest overall efficiency in preliminary
experiments—a large fraction of total time was spent in bucket sorting. Also,
the “insert at start of list” strategy means that burstsort is not stable.

Alternatives to linked lists were considered in the context of burst tries; for
string management, it was found that a binary tree is the most efficient option.
However, these options are not of value for sorting, as searching is not a factor.
(Burst tries are used for management of distinct strings; for sorting, copies
must be kept, as additional data may be associated with each string.)

Another alternative is to use arrays. In the simplest implementation of this
approach, when the first string is to be placed in a bucket, an array of pointers
is dynamically created. Additional strings are placed sequentially in the array.
When it is full, it is burst as before. However, such an approach has serious
drawbacks. If buckets are small, the size of the trie becomes unacceptable.
If they are large, vast quantities of space are consumed: most buckets never
approach the fixed capacity. A variation of this approach is to grow the arrays
dynamically, up to the capacity, before bursting. These issues are discussed
further below.

Managing buckets in this way is more costly than with linked lists: insertion
into a bucket requires that both the start and the last-used position in the
array must be accessed, or that counters be maintained within trie nodes; and,
as the bucket grows, reallocation of memory and copying of pointers is required,
leading to possible memory fragmentation. However, bucket sorting during the
traversal phase is likely to be significantly more efficient, and the sort is stable.

An issue with the array representation is how to manage sets of identical
strings, as there is no bound on the number of such strings and reallocating
arrays is potentially an O(n?) costs. We chose to use linked lists of arrays, with
a tail pointer to avoid traversal. The strings are only added at the end in each
of the arrays, so stability is maintained.

Size of root node. In adaptive radixsort, the size of nodes dynamically
switches between 28 and 2! pointers, depending on the number of strings to be
managed. With the larger node, pairs of letters are consumed at once, saving
some operations, and the cost of inspecting null pointers can be avoided; the ad-
ditional pointer at each level is required when end-of-string is observed. In our
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experiments we observed that this strategy was only occasionally successful,
as it could lead to costly stack operations that had little benefit if the number of
observed pairs of letters was small. However, the simple heuristic of allowing
the root node to be 2! pointers has the potential to yield some benefit: this node
can be maintained statically in the sort routine, and at run time the number of
nodes allocated dynamically is somewhat reduced.

Bucket capacity. The bucket capacity is a parameter that balances the size
of the trie against the cost of bucket sorting. A large trie—the consequence
of small buckets—incurs memory management costs and poor cache behavior;
large buckets are expensive to sort. We test a range of bucket capacities (from
16 to 32768 strings) in our experiments.

The impact of the bucket capacity depends on the data structure used to rep-
resent buckets. Varying the capacity for a linked-list representation is straight-
forward. For an array representation, how the array grows also needs to be
considered. There are several possibilities. One is to allocate all at once: all
nonempty buckets are the size of the threshold. This results in dramatic mem-
ory wastage for a large threshold, though it may reduce dynamic memory man-
agement. We found that this approach is not effective.

Another possibility is to grow buckets linearly: the bucket size is increased by
one, or a small constant size, for each element placed in that bucket. This scheme
in principle minimizes memory use, but in practice leads to fragmentation and
O(m?) reallocation costs, due to copying, for a bucket of m slots.

A compromise option is to grow buckets exponentially: initially the buckets
are small, then are multiplied in size until the threshold size is reached. The
overhead per string is capped by the size multiplier, and in practice should be
much less than this theoretical limit. Only a small number of distinct bucket
sizes are created, reducing fragmentation, and dynamic memory management
costs should not be excessive. Compared to the all-at-once approach, however,
an extra check is required at each insertion.

In this approach, empty buckets are represented by a null pointer. When an
item is inserted, an array of 16 pointers is created. When this overflows, the
array is grown, using the realloc system call, by a factor of 8. The bucket is
burst when the capacity L = 8192 is reached. These parameters were chosen
by hand tuning on a set of test data, but the results are highly insensitive to
the exact values.

In our experiments, we use the exponential approach. The memory require-
ments were no more than 10% greater than the memory requirements needed
for the list version, and, as can be seen in the experimental results reported
below, the method is extremely efficient. In our implementation, a level counter
was added to each pointer in the trie structure to keep track of the bucket size.
A static array was maintained which had the amount of elements to allocate at
each level. Two exponential schemes were tested: starting at 16 pointers and
growing by a factor of 8; and starting at 8 and growing by a factor of 4.

Bucket-sorting mechanism. Once all the strings have been placed in the
buckets in the trie nodes, the buckets must be sorted. In this phase, the strings
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Table II. Statistics of the Data Collections Used in the Experiments

Data set

Set1 Set2 Set 3 Set 4 Set 5 Set 6
Duplicates
Size M b 1.013 3.136 7.954 27.951 93.087 304.279
Distinct words (x105) 0.599 1.549 3.281 9.315 25.456 70.246
Word occurrences (x10%) 1 3.162 10 31.623 100 316.230
No duplicates
Size Mb 1.1 3.212 10.796 35.640 117.068 381.967
Distinct words (x105) 1 3.162 10 31.623 100 316.230
Word occurrences (x10%) 1 3.162 10 31.623 100 316.230
Genome
Size Mb 0.953 3.016 9.537 30.158 95.367 301.580
Distinct words (x105) 0.751 1.593 2.363 2.600 2.620 2.620
Word occurrences (x10%) 1 3.162 10 31.623 100 316.230
Random
Size M b 1.004 3.167 10.015 31.664 100.121 316.606
Distinct words (x105) 0.891 2.762 8.575 26.833 83.859  260.140
Word occurrences (x10%) 1 3.162 10 31.623 100 316.230
URL
Size M b 3.03 9.607 30.386 96.156 304.118 —
Distinct words (x105) 0.361 0.924 2.355 5.769 12.898 —
Word occurrences (x10%) 1 3.162 10 31.623 100 —

in each bucket are copied back to the original array and sorted using an al-
gorithm that is suited to small numbers of strings. We have tested a range of
sorting routines, including insertionsort, shellsort, MBM radixsort, and multi-
key quicksort. We found that multikey quicksort and MBM radixsort were the
most efficient. Multikey quicksort is used in all our experiments; the compari-
son to MBM radixsort is reported below.

Other issues. Some implementation details have unpredictable impact on
performance. Consider the fact that a bucket is burst when it reaches a certain
size: this means that it is necessary to know bucket size. If the size is not stored,
the bucket must be fully traversed at each string, an unacceptable cost; thus a
counter must be held. If space is created for an array of counters in each trie
node, the nodes occupy more space, but if they are stored in a header node in
each bucket, as would be required with the list representation of buckets, an
extra pointer access is required. It is not clear which approach is likely to be
more efficient, and in practice it is likely to depend on the data set size and the
relative cost of a memory access. We do not believe that experiments on a single
machine or even single architecture can identify which approach is superior.

5. EXPERIMENTS

We have used three kinds of data in our experiments, words, genomic strings,
and web URLs.2 The words are drawn from the large web track in the TREC

2Some of these data sets are available under the heading “string sets,” at the URL www.cs.rmit.
edu.au/~ jz/resources.
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project [Harman 1995; Hawking et al. 1999], and are alphabetic strings delim-
ited by nonalphabetic characters in web pages (after removal of tags, images,
and other nontext information). The web URLs have been drawn from the same
collection. The genomic strings are from GenBank. For word and genomic data,
we created six subsets, of approximately 10?, 3.1623 x 10°, 108, 3.1623 x 108,
107, and 3.1623 x 107 strings each. We call these Set 1, Set 2, Set 3, Set 4, Set 5,
and Set 6 respectively. For the URL data we created Set 1 to Set 5. Only the
smallest of these sets fits in cache. In detail, the data sets are as follows.

Duplicates. Words in order of occurrence, including duplicates. Most large col-
lections of English documents have similar statistical characteristics, in that
some words occur much more frequently than others. For example, Set 6 has
just over 30 million word occurrences, of which just over 7 million are distinct
words.

No duplicates. Unique strings based on word pairs in order of first occurrence
in the TREC web data.

Genome. Strings extracted from genomic data, a collection of nucleotide strings,
each typically thousands of nucleotides long. The alphabet size is four char-
acters. It is parsed into shorter strings by extracting n-grams of length nine.
There are many duplications, and the data does not show the skew distribu-
tion that is typical of text.

Random. An artificially generated collection of strings whose characters are
uniformly distributed over the entire ASCII range and the length of each
string is randomly generated but less than 20. The idea is to force the algo-
rithms to deal with a large number of characters where heuristics of visiting
only a few buckets would not work well. This is the sort of distribution many
of the theoretical studies deal with [Rahman and Raman 2000], although
such distributions are not especially realistic.

URL. Complete URLs, in order of occurrence and with duplicates, from the
TREC web data, average length is high compared to the other sets of strings.

Some other artificial sets were used in limited experiments, as discussed later.

The aim of our experiments is to compare the performance of our algorithms
to other competitive algorithms, in terms of running time and L2 cache misses.
The results for L2 cache misses include the three kinds of misses: compulsory,
conflict, and capacity. We primarily report results on a small-cache machine but
show that other machines lead to similar results.

The implementations of sorting algorithms described earlier were gathered
from the best source we could identify, and all of the programs were written
in C. We are confident that these implementations are of high quality. In prelim-
inary experiments, we tested many sorting methods that we do not report here
because they are much slower than methods such as MBM radixsort. These
included UNIX quicksort, splaysort, and elementary techniques such as inser-
tionsort.

The time measured in each case is to sort an array of pointers to strings; the
array is returned as output. Thus an in-place algorithm operates directly on
this array and requires no additional structures. For the purpose of comparing
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Table III. Running Time (Milliseconds) to Sort with Each Method on
Duplicates, no Duplicates, and URLs

Data set
Set1 Set2 Set3 Set4 Set 5 Set 6

Duplicates

Burstsort-List 68 267 830 2,800 10,040 36,250
Burstsort-Array 58 218 630 2,220 7,950 29,910
No duplicates

Burstsort-List 71 272 1,000 3,360 11,340 43,080
Burstsort-Array 61 221 790 2,670 9,280 35,210
URL

Burstsort-List 121 452 1,730 5,580 21,190 —
Burstsort-Array 110 395 1,630 5,070 17,950 —

the algorithms, it is not necessary to include the parsing time or the time used to
retrieve data from the disk, since it is the same for all algorithms. We therefore
report the CPU times, not elapsed times, and exclude the time taken to parse
the collections into strings. The internal buffers of our machine are flushed prior
to each run in order to have the same starting condition for each experiment.
We have used the GNU gec compiler and the Linux operating system on a 700
MHz Pentium computer with 2 Gb of fast internal memory and a 1 Mb L2 cache
with block size of 32 bytes and 8-way associativity with a memory latency of
about 100 cycles. In all cases the highest compiler optimization level 03 has been
used. The total number of milliseconds of CPU time consumed by the kernel on
behalf of the program has been measured, but for sorting only; I/O times are not
included. The standard deviation was low. The machine was under light load,
that is, no other significant I/O or CPU tasks were running. For small data sets,
times are averaged over a large number of runs, to give sufficient precision. For
the larger data sets, times are the minimum of 10 runs—that is, the time that
is most likely to be free of interference—and the standard deviation was very
low. Thus occasional variations due to page faults were not included in the
timing. We primarily report experiments on a specific small-cache machine but
use results obtained on other machines, with different cache architectures, to
explore the extent to which the improvements are machine dependent.

6. RESULTS

All timings are in milliseconds, of the total time to sort an array of pointers to
strings into lexicographic order. In the tables, these times are shown unmod-
ified. In the figures, the times are divided by nlogn where n is the number
of strings. With such normalization, suggested by Johnson [2002], the perfor-
mance of an ideal sorting algorithm is a horizontal line.

Bucket representation. The time required to sort no duplicates, duplicates,
and URL from Set 1 to Set 6 is shown in Table III. In these results, the size of the
root node is 28 slots, buckets grow exponentially by a factor of 8, and capacity is
8192 strings. The results clearly separate the two versions of burstsort. Using
arrays for buckets is more efficient than using lists, despite the space wastage
implicit in the earlier.
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Table IV. Bucket-Sorting Methods: Impact on Running Time
(Milliseconds) of Different Algorithms for Sorting Buckets, in
Array-Based Burstsort

Data set
Set1 Set2 Set3 Set4 Set 5 Set 6

Duplicates

MBM radixsort 63 249 760 2,860 10,420 38,620
Multikey quicksort 64 221 630 2,250 8,000 29,710
No duplicates

MBM radixsort 64 240 930 3,290 11,590 43,360
Multikey quicksort 61 221 790 2,670 9,280 35,210

However, using lists instead of arrays for burstsort is more stable for varying
thresholds, as can be seen from Tables V and VI for thresholds 16 and 128.
(These tables are considered below.) Also, burstsort using arrays uses more
instructions than does burstsort using linked lists, due to simpler code, but the
former is more cache efficient as discussed later.

Bucket-sorting mechanism. Using the array implementation, we tested a
range of methods for sorting bucket, including insertionsort, quicksort, MBM
radixsort, multikey quicksort, and adaptive radixsort. MBM radixsort and mul-
tikey quicksort were significantly more efficient than the others for all data sets.

Timings are reported in Table IV. In contrast to MBM radixsort, multikey
quicksort is not a stable sorting algorithm. As can be seen, however, multikey
quicksort is by a significant margin the more efficient approach—despite the
fact that it is slightly less efficient, for small data sets, in our other experiments.

Bucket capacity. In our first experiment with capacity, we tested the effi-
ciency of four bucket sizes: 16, 128, 1024, and 8192 pointers; for the array im-
plementation, we used factor-of-8 bucket growth. Results are shown in Tables V
and VI. Note that Set 6 is omitted in some cases, and Set 5 in one case, because
for small capacities the total space requirements (due to growth in the trie)
exceed physical memory. Note also that these results are based on smaller
numbers of runs than in the other tables, hence the reduced precision. The size
8192 was consistently the most efficient, except for the largest data sets, and
we have used this value in all remaining experiments. These results suggest
that there may be further improvement available by adapting the capacity to
the size of the set of strings; doing so in a principled way is a subject for further
research.

In our second experiment with capacity, we varied the way in which the
buckets grew in the array version. In one case, the buckets grew over 4 levels
and the size of each successive level differed by powers of 8, whereas in the
other case, the buckets grew over 6 levels and the size of each successive level
differed by powers of 4. As can be seen in Table VII, we did not observe any
significant difference between the two approaches.

Size of root node. We tested the effect of using either 1 byte or 2 bytes to
index the root node, that is, the node could consist of either 28 or 21¢ pointers.
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Table V. Bucket Capacities: Impact on Running Time (Milliseconds), List Implementation

Data set
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Duplicates
16 190 660 1,560 5,970 23,050 —
128 70 300 860 3,440 12,560 51,340
1024 70 260 770 2,900 10,540 40,660
8192 68 267 830 2,800 10,040 36,250
16384 80 260 840 2,980 10,390 36,280
32768 70 250 790 2,920 10,110 34,760
No duplicates
16 180 570 1,920 6,680 24,930 -
128 70 280 1,120 4,100 14,410 53,950
1024 70 260 950 3,410 12,280 46,440
8192 71 272 1,000 3,360 11,340 43,080
16384 70 270 1,030 3,420 11,410 41,190
32768 70 260 970 3,380 11,420 39,810
URL
16 610 1,970 5,890 19,410 — —
128 170 780 3,600 12,770 43,820 —
1024 140 480 1,710 7,720 35,590 —
8192 121 452 1,730 5,580 21,190 —
16384 120 440 2,000 6,090 22,020 —
32768 130 440 1,630 6,930 22,640 —
Genome
16 210 770 2,610 8,750 27,980 74,430
128 920 350 1,380 4,890 17,500 64,850
1024 110 330 1,120 3,790 12,780 49,520
8192 81 316 1,120 3,740 11,710 43,350
16384 90 370 1,170 3,530 11,330 40,700
32768 120 340 1,120 3,580 11,550 40,510

The latter was consistently the most efficient, with improvements observed
across all the collections of about 5%—10%.

Comparison to Previous Algorithms

Table VIII shows the running times for a wide range of sorting algorithms
on duplicates. These are startling results. The previous methods show only
moderate performance gains in comparison with each other, and there is no clear
winner amongst the four best techniques. In contrast, burstsort is the fastest
for all but the smallest set size tested, of 100,000 strings, where it is second
only to MBM radixsort. For the larger sets, the improvement in performance
is dramatic: it is more than twice as fast as MBM radixsort, and almost four
times as fast as an efficient quicksort.

The rate of increase in time required per key is shown in Figure 3, where
as discussed the time is normalized by n logn. As can be seen, burstsort shows
a low rate of growth compared to the other efficient algorithms. For example,
the normalized time for MBM radixsort grows from approximately 0.00014 to
approximately 0.00025 from Set 1 to Set 6, whereas burstsort does not grow
at all.
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Table VI. Bucket Capacities: Impact on Running Time (Milliseconds), Array Implementation

Data set
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Duplicates
16 248 882 2,290 13,560 167,880 —
128 78 292 820 3,690 20,970 214,800
1024 63 223 630 2,430 9,840 45,840
8192 58 218 630 2,220 7,950 29,910
16384 60 220 640 2,290 8,080 30,390
32768 60 220 640 2,380 8,210 28,290
No Duplicates
16 243 818 3,610 33,520 507,960 —
128 79 284 1,160 5,280 37,430 476,550
1024 66 225 800 2,970 12,190 64,110
8192 61 221 790 2,670 9,280 35,210
16384 60 220 820 2,730 9,390 33,120
32768 60 220 790 2,820 9,370 32,590
URL
16 779 2,219 6,880 30,900 — —
128 173 705 2,960 11,160 41,710 —
1024 139 456 1,580 6,430 27,580 —
8192 110 395 1,530 5,070 17,950 —
16384 110 390 1,760 5,420 19,080 —
32768 130 400 1,510 6,600 21,630 —
Genome
16 220 850 3,310 17,960 171,280 —
128 100 340 1,170 4,430 17,120 67,620
1024 80 270 900 2,860 10,890 45,710
8192 70 258 870 2,830 8,990 31,540
16384 80 290 920 2,770 8,760 30,180
32768 80 280 940 2,980 9,410 30,840

There are several reasons that burstsort is efficient. In typical text the most
common words are small, and so are placed under the empty-string pointer
and do not have to be sorted. Only buckets with more than one string have
to be sorted, and the distinguishing prefix does not participate in the sorting.
Most importantly, the algorithm is cache friendly: the strings are accessed in se-
quence and (with the exception of bursting, which only involves a small minority
of strings) once only; the trie nodes are accessed repeatedly, but are collectively
small enough to remain in cache. The data structure used for buckets and the
trie nodes is arrays, which are the most cache-efficient data structure. Burst-
ing is more efficient using arrays rather than lists. Traversing a list bucket
involves two random accesses for each node, one for the string and the other for
the node. A bucket is traversed twice, once on bursting and once in the traversal
phase.

The first line is a conventional quicksort, optimized for strings; as can be seen,
it is around halfthe speed of multikey quicksort at all data sizes. The radixsorts
and multikey quicksort are of similar efficiency, but the relative performance
varies with data set size: of these methods, MBM radixsort is the fastest for
Set 1, while adaptive radixsort is the fastest for Set 6.
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Table VII. Bucket Growth Strategies: Impact on Running Time
(Milliseconds). For “Powers of 4,” the Stages are 8, 32, 128, 512, 2048,
and 8192. For “Powers of 8,” the Stages Are 16, 128, 1024, and 8192

Data set
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Duplicates

powers of 8 64 221 630 2,250 8,000 29,710
powers of 4 59 219 630 2,250 8,030 29,780
No duplicates

powers of 8 61 221 790 2,670 9,280 35,210
powers of 4 61 222 790 2,680 9,300 35,320
URL

powers of 8 110 395 1,530 5,070 17,950 —
powers of 4 110 396 1,530 5,030 17,760 —
Genome

powers of 8 70 256 870 2,840 8,970 30,550
powers of 4 70 257 880 2,890 9,140 31,810

Table VIII. Duplicates, Sorting Time for Each Method (Milliseconds)

Data set
Set1 Set2 Set3 Set4 Set 5 Set 6
Quicksort 122 528 1,770 17,600 30,100 114,440
Multikey quicksort 62 272 920 3,830 14,950 56,070
MBM radixsort 58 238 822 3,650 15,460 61,560
MSD radixsort 72 290 1,000 3,870 14,470 56,790
Adaptive radixsort 74 288 900 3,360 12,410 51,870
Forward-8 146 676 2,030 7,590 28,670 113,540
Forward-16 116 486 1,410 5,120 19,150 74,770
Burstsort 58 218 630 2,220 7,950 29,910

An alternative view of these results is shown in Figure 3, where the time to
sort the data is normalized for data set size by dividing by n log nn. The burstsorts
show much the best asymptotic behavior, with relative time barely growing with
data set size.

Similar results are shown in Tables IX and X, for no duplicates and URL,
respectively. For the former, relative performance is almost identical to dupli-
cates. Figure 4 shows the normalized running times for the algorithms on no
duplicates. Burstsort is again the fastest for all but the smallest data set, and
almost twice as fast as the next best method for the largest data set. Elimina-
tion of duplicates has had little impact on relative performance. However, the
results on URL are surprisingly different. Conventional and multikey quick-
sort have both outperformed MBM radixsort, which was in many cases the most
efficient of the existing methods on the other data. The burstsorts have shown
even better performance for the small data sets than previously, and again have
good asymptotic behavior, as illustrated in Figure 5.

Table XI shows the results for genome, a data set with very different proper-
ties: strings are fixed length, the alphabet is small (though all implementations
allow for 256 characters), and the distribution of characters is close to uniform
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Table IX. No Duplicates. Running Time (Milliseconds) to Sort with Each Method

Data set
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Quicksort 141 561 2,380 9,600 35,890 138,790
Multikey quicksort 67 267 1,090 4,240 15,790 60,260
MBM radixsort 61 230 940 4,080 15,680 61,340
MSD radixsort 73 290 1,120 4,110 16,250 65,200
Adaptive radixsort 77 275 1,060 3,850 14,590 59,630
Forward-8 149 654 2,540 8,920 34,020 135,280
Forward-16 124 465 1,860 6,420 25,930 100,370
Burstsort 62 219 790 2,650 9,040 33,950

Table X. URL. Running Time (Milliseconds) to Sort with Each Method

Data set
Set 1 Set 2 Set 3 Set 4 Set 5
Quicksort 202 802 3,090 11,160 39,760
Multikey quicksort 134 504 1,970 8,100 32,540
MBM radixsort 206 808 3,140 13,450 53,650
MSD radixsort 156 591 2,690 11,300 48,120
Adaptive radixsort 151 544 2,280 8,290 33,580
Forward-8 459 1,986 6,980 23,750 91,330
Forward-16 315 1,207 4,300 14,330 55,860
Burstsort 110 395 1,530 5,000 17,740

19

random. Burstsort is relatively even more efficient for this data than for the
words drawn from text, and is the fastest on all data sets. For burstsort, as
illustrated in Figure 6, the normalized cost per string declines with data set
size; for all other methods, the cost grows.

The URL data presents yet another distribution. The strings are long and
their prefixes are highly repetitive. As illustrated in Figure 5, burstsort is much
the most efficient at all data set sizes. Taking these results together, relative be-
havior is consistent across all sets of text strings—skew or not, with duplicates
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Fig. 5. URL sorting time. The vertical scale is time in milliseconds divided by n logn.

or not. For all of these sets of strings drawn from real data, burstsort is consis-
tently the fastest method.

We used the random data to see if another kind of distribution would yield
different results. The behavior of the methods tested is shown in Figure 7. On
one hand, burstsort is the most efficient method only for the largest three data
sets, and by a smaller margin than previously. On the other hand, the normal-
ized time per string does not increase at all from Set 1 to Set 6, while there is
some increase for all of the other methods. (As observed in the other cases, there
are several individual instances in which the time per string decreases between
set x and set x + 1, for almost all of the sorting methods. Such irregularities
are due to variations in the data.)

Memory requirements are a possible confounding factor: if burstsort required
excessive additional memory, there would be circumstances in which it could
not be used. For Set 6 of duplicates we observed that the space requirements for
burstsort are 790 Mb, between the in-place MBM radixsort’s 546 Mb and MSD
radixsort’s 907 Mb. (The space overhead of the trie is around 1 bit per string.)
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Table XI. Genome, Sorting Time for Each Method (Milliseconds)

Data set
Set1 Set2 Set3 Set 4 Set 5 Set 6
Quicksort 156 674 2,580 9,640 35,330 129,720
Multikey quicksort 72 324 1,250 4,610 16,670 62,680
MBM radixsort 72 368 1,570 6,200 23,700 90,700
MSD radixsort 102 442 1,640 5,770 20,550 79,840
Adaptive radixsort 92 404 1,500 4,980 17,800 66,100
Forward-8 246 1,074 3,850 12,640 41,110 147,770
Forward-16 174 712 2,380 7,190 23,290 86,400
Burstsort 70 258 870 2,830 8,990 31,540

0.0006 —

oo ,.m —a— Burstsort

: —e— Multikey quicksort

—*— Adaptive radixsort

-->-- MSD radixsort
MBM radixsort

--a-- Forward 16

—a— Forward 8

----- Quicksort

Time (normalised)

0.0000 r .
100000 1000000 10000000

Size of dataset

Fig. 6. Genome sorting time. The vertical scale is time in milliseconds divided by n logn.

The highest memory usage was observed by forward-16, at 953 Mb, followed by
forward-8 at 941 Mb and adaptive radixsort at 908 Mb. We therefore conclude
that only the in-place methods show better memory usage than burstsort.

Other data. In previous work, a standard set of strings used for sorting ex-
periments is of library call numbers [Bentley and Sedgewick 1997],% of 100,187
strings (about the size of our Set 1). For this data, burstsort was again the fastest
method, requiring 100 ms. The times for multikey quicksort, MBM radixsort,
and adaptive radixsort were 106, 132, and 118 ms, respectively; the other meth-
ods were much slower.

We have experimented with several other artificially created data sets, hop-
ing to bring out the worst cases in the algorithms. We generated three collections
ranging in size from 1 to 10 million strings, as follows.

(A) The length of the strings is 100, the alphabet has only one character, and
the size of the collection is 1 million.

(B) The length of the strings ranges from 1 to 100, the alphabet size is small
(nine), and the characters appear randomly. The size of the collection is
10 million.

3 Available from www.cs.princeton.edu/"rs/strings.
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Table XII. Artificial Data, Sorting Time for
Each Method (Milliseconds)

Data set
A B C
Quicksort 1,040 34,440 3,900
Multikey quicksort 11,530 18,750 5,970
MBM radixsort 18,130 40,220 19,620
MSD radixsort 10,580 26,380 5,630
Adaptive radixsort 7,870 20,060 4,270
Forward-8 12,290 38,800 6,580
Forward-16 8,140 27,890 4,450
Burstsort 2,730 10,090 1,420

(C) The length of the strings ranges from 1 to 100, and strings are ordered in
increasing size in a cycle. The alphabet has only one character and the size
of the collection is 1 million.

Table XII shows the running times. In each case, burstsort is dramatically
superior to the alternatives, with the single exception of quicksort on Set A;
this quicksort is particularly efficient on identical strings. In Set B, the data
has behaved rather like real strings, but with exaggerated string lengths. In
Set C, MBM radixsort—in the other experiments, the only method to ever do
better than burstsort—is extremely poor.

Cache Efficiency

To test our hypothesis that the efficiency of burstsort was due to its ability to
make better use of cache, we measured the number of cache misses for each al-
gorithm and sorting task. We have used valgrind, an open-source simulator for
investigating cache effects in programs [Seward 2001]; the cache parameters of
our hardware were used. To measure the number of misses in UltraSPARC III,
we have used the CPU-track utility, which uses CPU performance counters to
monitor the behavior of a process. The configurations of the machine used for
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the experiments are presented in Table I; calibrator? was used to measure
some of the machine configurations. Figures 8, 9, and 10 show the rate of cache
misses per key for the collections no duplicates, duplicates, genome, random,
and URL. Figures 8, 9, and 10 are normalized by n (not nlogn as in Figure 4)
to show the number of cache misses per string.

For small data sets in the no duplicates case, burstsort and MBM radixsort
show the greatest cache efficiency, while for large data sets burstsort is clearly
superior, as the rate of cache miss grows relatively slowly across data set sizes.

For the URL data, the difference in cache efficiency is remarkable. For all
set sizes, burstsort has less than a quarter of the cache misses of the next
best method. The URL collection has a large distinguishing prefix, as most of
the strings have the same first few characters. Let us assume 1 million URL
strings need to be sorted. The first four characters in each string are identical,

4See homepages . cwi.nl/ manegold/Calibrator.
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Fig. 10. Cache misses for random collection, 1 Mb cache, 8-way associativity, 32 bytes block size.
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Fig. 11. Instructions per element. Upper: no duplicates. Lower: genome.

say “http”. With conventional radixsorts, they would have to be accessed once
for each of these characters, whereas in burstsort, as the number of strings
in the bucket reaches the threshold (say 8192), the bucket is burst creating
another level and all the strings end up in another bucket in the second level
and it is burst again; this occurs four times in a loop. Only the 8192 strings
are involved and they are fetched just once. The remaining 991,808 strings are
directly inserted into the 4th level of the trie, reading four characters of each
string in just one access.

We then investigated each of the sorting methods in more detail. For quick-
sort, the instruction count is high, for example, 984 instructions per key on Set 6
of duplicates; the next highest count was 362, for multikey quicksort. Similar
results were observed on all data sets. As with most of the methods, there is a
steady logarithmic increase in the number of cache misses per key. For multikey
quicksort, the number of instructions per key is always above the radixsorts,
by about 100 instructions. Although relatively cache efficient in many cases, it
deteriorates most rapidly with increase in data set size.
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Fig.12. Architecture used: Pentium IV; The vertical scale is time in milliseconds divided by n log ..
Upper: duplicates. Lower: genome.

For smaller string sets, MBM radixsort is efficient, but once the set of point-
ers to the strings is too large to be cached, the number of cache misses rises
rapidly. MSD radixsort is very efficient in terms of the number of instructions
per key, next only to adaptive radixsort, and for no duplicates the number of
cache misses rises relatively slowly compared to the other radixsorts, again next
only to adaptive radixsort. Adaptive radixsort is the most efficient of the pre-
vious methods in terms of the number of instructions per key in all collections
except random. The rate of cache miss rises slowly. Thus, while MBM radix-
sort is more efficient in many of our experiments, adaptive radixsort appears
asymptotically superior. In contrast, forward 8 and 16 are the least efficient
of the previous radixsorts, in cache misses, instruction counts, and memory
usage.

Burstsort is by far the most efficient in all large data sets, primarily be-
cause it uses the CPU cache effectively—indeed, it uses around 25% more in-
structions than adaptive radixsort. Instruction counts per string for each algo-
rithms are shown in Figure 11. Quicksort is omitted due to very high number
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Fig. 13. Architecture used: UltraSPARC III; the vertical scale is time in milliseconds divided by
nlogn. Upper: duplicates. Lower: genome.

of instructions; burstsort with lists is included because it has a low-instruction
count, despite being slower than burstsort with arrays. As discussed above, all
other burstsort results in this section are for burstsort with arrays.

These results demonstrate that cache misses are a key determinant of per-
formance. We showed earlier that burstsort is around twice as fast as the best of
the other algorithms, yet it is far from the best method by instruction count. For
small sets, where most of the data fits in the cache, the effect of cache misses
is small, but as the data size grows they become crucial. It is here that the
strategy of only referencing each string once is so valuable.

Recent work on cache-conscious sorting algorithms for numbers [LaMarca
and Ladner 1997; Rahman and Raman 2000, 2001; Xiao et al. 2000] has shown
that, for other kinds of data, taking cache properties into account can be used
to accelerate sorting. However, these sorting methods are based on elementary
forms of radixsort, which do not embody the kinds of enhancements used in
MBM radixsort and adaptive radixsort. The improvements cannot readily be
adapted to variable-sized strings.
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Fig. 14. Architecture used: PowerPC; The vertical scale is time in milliseconds divided by nlogn.
Upper: duplicates. Lower: genome.

Other Architectures

Most of the experiments reported so far were undertaken on a Pentium III.
Other machines have different cache architectures, and it is reasonable to sup-
pose that the relative performance of the algorithms will change.

To explore this possibility, we ran the algorithms—using the same
parameters—on three other machines, a Pentium IV, an UltraSPARC III, and
a PowerPC. Typical results are shown in Figures 12, 13, and 14. As can be seen,
relative efficiency is little different to that observed on the Pentium III.

L2 cache misses on the Pentium IV and the UltraSPARC III are illustrated
in Figure 15. Despite the fact that the cache architectures of the two machines
have significant differences, the relative rates of cache miss are virtually indis-
tinguishable. These results are dramatic confirmation that a cache-conscious
algorithm can be significantly more efficient than the alternatives, independent
of the cache design.
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Fig. 15. L2 cache misses for the largest set size for each collection. Upper: UltraSPARC III. Lower:
Pentium IV.

7. CONCLUSIONS

We have proposed a new algorithm, burstsort, for fast sorting of strings in
large data collections. It is based on the burst trie, an efficient data structure for
managing sets of strings in sort order. To evaluate the performance of burstsort,
we have compared it to a range of string-sorting algorithms. Our experiments
show that it is about as fast as the best algorithms on smaller sets of keys—of
100,000 strings—and is the fastest by almost a factor of 2 on larger sets, and
shows much better asymptotic behavior.

The main factor that makes burstsort more efficient than the alternatives is
the low rate of cache miss on large data sets. The trend of current hardware is
for processors to get faster and memories to get larger, but without substantially
speeding up, so that the number of cycles required to access memory contin-
ues to grow. In this environment, algorithms that make good use of cache are
increasingly more efficient than the alternatives. It is reasonable to suppose
that burstsort could be further improved by being tuned to the parameters of
a specific cache architecture but, as our experiments show, it is substantially
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faster than other sorting methods on a variety of processors. Our work shows
that burstsort is by a significant margin the most efficient way to sort a large
set of strings.
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