
Matching Techniques for Large Music Databases

Alexandra Uitdenbogerd and Justin Zobel
Department of Computer Science, RMIT University

GPO Box 2476V, Melbourne 3001, Australia
{alu,jz}@cs.rmit.edu.au

Abstract

With the growth in digital representations of music, and of

music stored in these representations, it is increasingly at-

tractive to search collections of music. One mode of search

is by similarity, but, for music, similarity search presents

several difficulties: in particular, deciding what part of the

music is likely to be perceived as the theme by a listener,

and deciding whether two pieces of music with different se-

quences of notes represent the same theme. In this paper

we propose a three-stage framework for matching pieces of

music. We use the framework to compare a range of tech-

niques for determining whether two pieces of music are

similar, by experimentally testing their ability to retrieve

different transcriptions of the same piece of music from a

large collection of MIDI files. These experiments show that

different comparison techniques differ widely in their effec-

tiveness; and that, by instantiating the framework with ap-

propriate music manipulation and comparison techniques,

pieces of music that match a query can be identified in a

large collection.

1 Introduction

Historically, the principal representations of music
have been by written score and, for the last century,
by recorded performance. In recent years a third form
has also become important: the MIDI format, a digi-
tal representation of music designed for replay through
electronic instruments. The three formats are not in-
terchangeable: a MIDI file cannot capture the subtlety
of a human performance, nor does it include the direc-
tives such as time given in a written score. In contrast
to a score, however, MIDI includes duration and in-
tensity of each note. Music is increasingly being tran-
scribed into the MIDI format, and with the growth of
the internet tens of thousands of MIDI transcriptions
are publicly available.

Composers and musicians could search for pieces of
music by their theme, for reasons such as copyright
checks and interest in music they can recall by theme
or melody alone. These searches are currently only
supported by incipits of major themes in music library
catalogues. However, it is reasonable to suppose that

digital representations of music, and searching tech-
niques for music collections, will eventually replace
these catalogues, and public-domain transcriptions of
music are likely to be an important component of such
collections. In recent years there has been consider-
able interest in retrieval from such music collections,
with for example prototype query-by-humming sys-
tems already implemented by Kageyama et al. [16],
Ghias et al. [10], McNab et al. [18], and Borchers and
Mühlhauser [2].

In this paper our aim is to identify a practical way
of locating particular melodies in collections of MIDI
files. The melodies and themes are not clearly delin-
eated in these files as each consists of several tracks,
many instrument types can be involved, and some of
these can play greater than one note simultaneously—
that is, it is not immediately obvious what sequence
of notes in the music constitutes the melody. Pre-
vious systems working with MIDI files, including
those listed above, have typically used either melody
contour or short sequences of notes for matching
melodies, but have been based on collections such as
folk melodies that consist of a single non-chordal in-
strument. With the richer MIDI files available for
many forms of music, it is not immediately obvious
how these methods would be applied or how effective
they would be.

We propose a three-stage framework for matching
pieces of music. Melody extraction is used to reduce
a MIDI representation to a sequence of non-chordal
notes [25]. Standardisation is used to rewrite the se-
quence in a standard form that preserves the “feel” of
the melody but eliminates performance-specific char-
acteristics; melody extraction and standardisation are
applied to both query and corpus. A similarity func-
tion is then used to numerically score each piece in
the collection against the query.

Using our framework we have experimentally com-
pared a range of extraction, standardisation, and simi-
larity techniques, by exhaustively combining them and
measuring their effectiveness on a test data set of just
over 10,000 MIDI files garnered from the internet.
Amongst these files there are many pieces of music
with multiple distinct transcriptions; our experiments

1

test the ability of matching techniques to correctly
identify different transcriptions of the same piece of
music. The experiments show that, given appropriate
music manipulation and comparison techniques, our
framework can be used to effectively retrieve match-
ing pieces of music from a large collection.

The experiments also show that choice of extrac-
tion, standardisation, and similarity technique all
have a dramatic impact on effectiveness. For example,
similarity based on local alignment is much superior
to that based on n-grams; and standardisation should
preserve pitch intervals between notes, because a sim-
ple pitch contour does not allow effective retrieval.

2 Music databases

Music publishing is a major industry: each year over
10,000 new albums of recorded music are released and
over 100,000 new pieces are registered for copyright.
Lawyers need to know that each registered piece is
indeed new; composers could search music databases
to confirm that their inspiration is novel, and to ex-
plore forms of music; performers could search for mu-
sic remembered by melody. Music databases have the
potential to greatly aid the process of matching by
melody, but are currently only used by musicologists
and music librarians.

Currently the commonest digital representation of
music is as recorded performance information, stored
as a series of amplitude measurements taken at a fixed
rate such as 44.1 kilohertz. However, such information
is extremely space-intensive, and it is difficult to trans-
form it to an abstract, note-based form that might
allow melody matching.

Another common representation is the MIDI for-
mat. Each MIDI file contains one or more tracks of
note events (and other information); each track can
consist of note events for multiple channels. Each
channel is normally assigned to an instrument. Typi-
cally, two methods of organising MIDI files are used.
In the first method, each instrument is allocated a
separate track containing events for one channel only.
In the second, there may be only one track contain-
ing note information within the file. In this case,
note events for many channels are within the single
track. Channels can contain multiple simultaneous
notes, representing a chord. A MIDI file is similar
to a score, in that it describes which notes should be
played and by which instruments, but is intended for
mechanical rather than human perusal. We use MIDI
files throughout this paper, because they are readily
available and because they contain much of the ab-
stract information necessary for music similarity com-
putation.

However, music similarity is a human judgement.
Research into perception of music has shown that two

pieces of music can seem alike even after substantial
transformation, such as transposition into a different
key, interpolation or omission of some notes, changing
the pitch intervals between notes but preserving the
contour, replacement of notes by appropriate chords,
and addition or deletion of parts [6].

Any technique for matching pieces of music needs to
consider that melody may be preserved by such trans-
formations, and will inevitably be error-prone. For
this reason a music retrieval system should be evalu-
ated by its ability to highly rank the pieces of music
that are similar to a query, over a collection of test
queries where there has been some human evaluation
of the similarity of each query to the stored pieces
of music. That is, music retrieval systems need to be
evaluated with the same methodology as that used for
text retrieval systems [20].

3 Matching pieces of music

We propose a framework for matching pieces of mu-
sic based on three stages: melody extraction, melody
standardisation, and similarity measurement. We now
describe each of these in detail, discussing why each
stage is essential to the process of music matching.

Melody extraction

As discussed above, MIDI files usually consist of mul-
tiple tracks and channels, each representing a sepa-
rate instrument. The perceived melody, however, is
rarely played by a single channel: it can move from in-
strument to instrument. Some channels, on the other
hand, consist of percussion, which has no pitch. When
many parts are playing simultaneously, only some of
the notes are perceived as part of the melody; for the
purpose of matching music by similarity, it is neces-
sary to automatically select these notes and discard
the remainder.

There has been only a little previous work on
melody extraction. Besides our previous experiments,
described below, to our knowledge there has been
no comparison of approaches to melody extraction.
There have been several papers on splitting poly-
phonic music into parts using rules such as note prox-
imity, but these have generally been designed for mu-
sic with fairly uniform style [3, 17]. Another approach
has been to use use the lowest of simultaneous notes,
keeping all parts [1], or to simply discard percus-
sion [10].

In previous work we developed a series of melody
extraction algorithms, and evaluated them by asking
listeners to rate them when applied to a series of pieces
of music [25]. These algorithms were based on music
perception research, which suggests that, where there

2

are multiple parts, the notes of highest pitch are of-
ten perceived as the melody; but that a sequence of
notes that form an interesting pattern are more likely
to be the melody than a repetition of a simple pat-
tern, in which case low notes can be preferred over
high notes [9]. There is only a little published work
on other factors that may affect melody perception.
Volume is of less importance in the grouping of notes
into parts than is their relative pitch [4], but may de-
termine what captures the listener’s attention. In the
case of MIDI files, many of the parts will have equal
volume. Also there is no clear relationship between
the specified volume and the perceived loudness for
different instruments. Handel describes devices that
allow soloists to be heard over other instruments [13].

We proposed several melody extraction techniques:

1. Combine all channels and keep the highest note
from all simultaneous note events. In this paper,
we refer to this method as all-mono.

2. Keep the highest notes from each channel, then
select the channel with the highest first-order
predictive entropy, that is, with—by a simple
measure—the most complex sequence of notes.
This is referred to as entropy-channel .

3. Use heuristics to split each channel into parts,
then choose the part with the highest entropy.
This is referred to as entropy-part .

4. Keep only the channel with highest average pitch,
then keep only the highest notes as before. This
is referred to as top-channel .

The first melody extraction algorithm (all-mono) is
demonstrated in Figure 1. The example shows the
situations in which extra and incorrect notes would
be included. If each staff is a representation of the
notes of a single channel, the upper staff would be
extracted when using the top-channel method, the
highest notes of the lower staff would be the choice
of entropy-channel, and entropy-part would split the
lower staff into several parts and choose the one with
highest entropy.

The most successful of these algorithms was the
simplest: the melody was best represented by choos-
ing the highest note starting at any instance. The re-
sulting sequence includes many more notes than those
generated by the other methods, but usually suc-
ceeds in containing a significant proportion of melody
notes. The larger number of notes makes the melodies
more recognisable for human assessors, but potentially
can make matching more difficult when using string
matching techniques.

In this paper we again compare extraction tech-
niques, as part of a music retrieval process.

Melody standardisation

Music perception research suggests that matching
melodies on their exact sequences of notes is not ap-
propriate: pieces of music can seem similar even if
the notes are transformed in various ways. Contour—
whether each note is of the same, higher, or lower pitch
than its predecessor—can be more important than ex-
act pitch [5], although exact pitch intervals between
notes usually do help listeners to distinguish between
melodies [8]. Transposition of the melody, within key
or to a closely related key, has little effect on similar-
ity perception. Melody standardisation is necessary
to allow matching of pieces that have these kinds of
variations.

With pitch contour , melody standardisation con-
sists of replacing each note by up, down, or same, rep-
resenting the change in pitch from the previous note.
For example, the familiar first phrase of Beethoven’s
Fifth Symphony would be represented by same-same-
down-up-same-same-down. There has been much dis-
cussion as to whether pitch contour strings are ade-
quate for locating melodies in databases [1, 7, 10, 18,
25], Previous work suggests that contour is probably
not discriminating enough. Blackburn et al. [1] ob-
served that contour would only be sufficient if strings
were more than twelve characters long, with exper-
iments on MIDI file database containing 8000 files.
They discovered that while 60,000 of the possible
531,441 contours identify exactly two files, there are
some contours that occur in over 1000 files. This
agrees with McNab’s results that show an average of
about eleven notes to retrieve a unique melody using
exact contours in a database of 9600 folk songs [18].

Note that contour strings, despite their simplicity,
do not eliminate the possibility of error. If the melody
extraction technique includes incorrect notes, these
may be reflected in the contour.

An alternative to contour strings is to represent the
melody as a sequence of changes in pitch; in this rela-
tive pitch or interval method, each note is represented
as a change in pitch from the prior note. In the stan-
dard Western musical scale of twelve semitones to the
octave, such changes in pitch are readily represented
as small integers. For accurately transcribed melodies
the intervals should be relatively small [5]. A variant
on this technique is modulo interval , in which changes
of more than an octave are reduced by twelve; for ex-
ample, a transition of 17 semitones (from say A to D
in the octave above) is reduced to 5. The range of
possible pitch changes is 23 values, −11 to +11. This
approach was used by Downie [7].

Another alternative represents notes relative to the
key note or tonic. This is difficult with MIDI files,
as key information is not present, adding a source of
unreliability. Further, many pieces of music change

3

a)

I

G

4
4

4
4 � � ����

2

� �
� � � � � �

� ��
-�

H

3

� �
�́́ �
� �
�́́ �

� � �

b)

G 4
4 � � ��
�� 2 � � � � � � � �

3 � � �
��� � �

����

Figure 1: The most successful of four melody extraction algorithms (all-mono) is shown. The original piece
of music (a) contains the melody on the upper staff and accompaniment on the lower staff and the extracted
melody (b) contains the highest note starting at any time. In the third bar, the accompaniment has changed
clef and is occasionally above the melody in pitch. As a result, the melody notes in bar three have been replaced
with higher accompanying notes in the extracted melody. Bars two and three show extra notes added to the
extracted melody.

key several times, adding extra problems for compar-
isons. Some research has used diatonic information,
which is a special case of the representation of notes
relative to the key note [19, 21]. In this case, notes
may be represented by the note number of the scale,
where the scale is the major or minor (or other) scale
associated with the key of the composition.

In addition to pitch, rhythm information can be im-
portant for identifying a melody. Melodies are most
easily identifiable by listeners when both pitch and
rhythm are used, followed by pitch only and then
rhythm only. Use of intervals and rhythm has been
shown to improve melody retrieval [16] and increases
the uniqueness of melody strings [18]. We are cur-
rently exploring use of rhythm. Another aspect of
rhythm is the presence or absence of rests, or periods
in music at which no note is sounded. We test the
effect of rests in the experiments described below.

The stress or emphasis given to notes can also affect
how the melody is perceived. For example, shifting a
melody by one beat and adding an accompaniment
that enforces the new beats completely changes its
feel. Some MIDI files have time signature (or bar
and beat) information explicitly provided but many
do not. Volume can be used to determine note stress,
but many MIDI files have all notes of equal volume
making this unhelpful. Where rhythm or volume vari-
ation are available, they can be used to refine a melody
matching scheme to place more emphasis on stressed
note matching and less on unstressed notes. There

are other situations that lead a listener to perceive a
note as stressed, such as a large pitch interval between
notes or a change in contour direction [15, 22, 23, 24]
that may also be used to fine-tune melody matching.

McNab [18] compared contour and exact intervals,
optionally combining both with rhythm contour. The
combination of exact intervals and rhythm contour
gave the best discrimination, tested by the number of
notes required to uniquely identify a single-part piece
of music. Inexact matching was also tested, but was
less discriminating than exact matching. However, it
is not clear what the implications are for a practical
retrieval system—as we discuss below, error is inher-
ent in music retrieval, so exact matching is unlikely to
be an option.

Similarity measures

For music matching, for each piece in a music database
it is necessary to apply melody extraction and stan-
dardisation, yielding a string against which queries
can be compared. Queries must be transformed into
strings of the same type. We assume that queries are
entered as a series of notes, in which case they must
be standardised; if the query is in some richer for-
mat, such as a multi-part representation, it will also
be necessary to extract the melody.

Since melody extraction is inaccurate, and since—
even with standardisation—the same melody can be
represented by different sequences of notes, two strings

4

representing the same melody will not necessarily be
identical. Matching must therefore be based on some
measure of the similarity of query and piece. Given
a standardised query string and a collection of stan-
dardised piece strings, matching involves computing
a numerical score for each piece with respect to the
query. The pieces can then be sorted by their score,
and the highest-ranked pieces returned to the user as
potential matches.

The edit distance family of string matching tech-
niques is suitable for this task [11, 12], and have been
widely applied in related applications including ge-
nomics and phonetic name matching [27, 28]. Three
kinds of edit distance are applicable. The first is
longest common substring: pieces are ranked accord-
ing to the length of the longest contiguous sequence
that is identical to a sequence in the query. This ap-
proach has the disadvantage, however, that a piece
that matches well overall but has intermittent differ-
ences will not score highly. A more flexible method,
successfully used in string matching and genomic re-
trieval [27], is to use n-grams : count the number of
matching substrings of some fixed length n. The n-
gram count should be normalised by string length, be-
cause long pieces are statistically more likely to have
an n-gram match.

Two n-gram measures were used. In the first ver-
sion, for every distinct n-gram in the query we counted
the number of occurrences of the n-gram in the stored
piece, in effect counting the number of n-grams in
common between query and piece. For example, the
query ssdussd represents the contour version of the
opening phrase of Beethoven’s Fifth symphony. The
4-grams it contains are shown in the upper part of the
first column of Table 1. The third column shows the
frequencies of these 4-grams in the contour for part of
“Old MacDonald Had a Farm”: ssdusdusdsdduss-
dusdusdsd. The score is the sum of these frequencies,
in this case 6.

The other version of n-gram counting is based on
the Ukkonen measure [26]:

∑
v∈Σn

|G(x)[v] −G(y)[v]|

where Σn is the set of possible n-grams, x and y rep-
resent the strings being compared and G(x)[v] is the
number of occurrences of the n-gram v in string x.
In the above example, the Ukkonen measure results
in a score of 15, which is the sum of the differences
between query and piece shown in the last column of
Table 1.

The second kind of edit distance is the longest com-
mon subsequence: in this case the query is matched
against pieces with no penalty for gaps of any size be-
tween the matching symbols. Longest common sub-
sequence has potential for this task because melody

No. times No. times Diff.
4-gram in query in melody
ssdu 1 2 1
sdus 1 2 1
duss 1 1 0
ussd 1 1 0
dusd 0 4 4
usdu 0 2 2
usds 0 2 2
sdsd 0 2 2
dsdd 0 1 1
sddu 0 1 1
ddus 0 1 1

Table 1: Frequency of each distinct contour 4-gram
in the Beethoven’s 5th query ssdussd and matched
against the first phrase of “Old MacDonald Had a
Farm” ssdusdusdsddussdusdusdsd. The 4-grams
above the horizontal dividing line are those occurring
in the query. Their frequencies in the melody being
matched are summed to determine its similarity score
(which is 6). The Ukkonen measure uses the sum of
the difference in n-gram frequencies in the two strings
(which is 15).

extraction often yields additional non-melody notes.
For example, consider the sequence of intervals below
for the Beethoven’s Fifth Symphony fragment used
earlier, represented as the number of semitones, with
positive numbers meaning an increase in pitch.

0 0 −4 2 0 0 −3

Suppose this is to be matched against the start of “Au
Clair de la Lune”, which is represented as:

0 0 2 2 −2

By visual inspection it can be seen that they both
contain the subsequence:

0 0 2

A dynamic programming approach is used to calculate
the length of this maximal subsequence [14].

The third kind of edit distance is local alignment :
dynamic programming is used to determine the best
match of the two strings on a local basis. For example,
using the two melody fragments above, we would fill a
two-dimensional array of values according to the fol-
lowing formula, where a represents the array, q and p
represent the query melody string and piece to match
against respectively, and array index i ranges from 0
to query length and index j ranges from 0 to piece
length:

5

0 0

0

0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0 0

0

0

0

0

0

0

0

0

0

1 1 1 1

1 1

1 1

1

0 02

2

2

0 0 0 0

0

0

2

2

2

-2

-4 -3

Figure 2: Local alignment of fragments (0 0 −4 2 0
0 −3) and (0 0 2 2 −2). Once the array has been
filled, the arrows, representing how the value pointed
to was calculated, are followed to determine the parts
that have been aligned.

a[i, j] = max




a[i− 1, j] + d (i ≥ 1)
a[i, j − 1] + d (j ≥ 1)

a[i− 1, j − 1] + e (q(i) = p(j)
and i, j ≥ 1)

a[i− 1, j − 1] + m (q(i) 6= p(j))
0

where d is the cost of an insert or delete, e is the value
of an exact match, and m is the cost of a mismatch.
We used d = −2, e = 1 and m = −1.

The resulting array for our example melody frag-
ments is shown in Figure 2. This has a maximum
value of 2, which occurs in three locations. Tracing
the path that led to the local maxima results in the
following three matches of the strings: the first 0 0
sequence of (0 0 −4 2 0 0 −3) is matched to the 0 0 of
(0 0 2 2 −2); the second occurrence of 0 0 in (0 0 −4
2 0 0 −3) is matched to the 0 0 in (0 0 2 2 −2); the
sequence (0 0 −4 2) is matched with (0 0 2 2) with
one mismatch.

Musical information is multi-dimensional, however,
so the techniques can be extended to capture more
information for comparison. For example, Mongeau
and Sankoff extended their edit distance computations
to use two dimensions—pitch and rhythm [19]. The
pitches are relative to the key of the melody. A set
of weights was devised to distinguish between conso-
nant and dissonant intervals. Other techniques used
were fragmentation and consolidation. This involves
matching a single long note to repeated short notes
with only a small penalty score. The method was
tested on two compositions by Mozart and success-
fully grouped similar variations.

Longest common subsequence and local alignment
are against a series of note transitions, so that a wrong
note introduces two errors. This would not happen if
absolute pitch was used, where, however, a score of

0 would be calculated for two identical melodies in
different keys.

4 Experimental design

Our aim in this paper is twofold: first, to confirm that
the three-stage framework can be used to find match-
ing melodies in a large corpus of musical works; and
second, to identify appropriate techniques for each
stage of the retrieval process.

For the measurement of a retrieval system we
need [20]: a collection of melodies, a collection of
queries, and, for each query, human relevance judge-
ments as to which of the melodies are similar to which
of the queries. When a system determines a ranking of
melodies for a given query, the relevance judgements
can be used to assign a score to the retrieval system;
a system should get a high score if it is good at highly
ranking similar melodies. A standard measurement
technique for this task is to use recall (the propor-
tion of the relevant melodies that have been retrieved)
and precision (the proportion of the retrieved melodies
that are relevant); recall and precision can be averaged
at fixed recall levels to compute an overall eleven-point
recall-precision average [20]. Alternatively, a system
can be measured by the number of relevant melodies
amongst the first k retrieved, for say k = 20; this is
the precision-at-twenty measure.

We use both measures in the experiments described
below. To our knowledge this is the first use of this
standard system measurement technique for music re-
trieval.

Test collection and query set

The collection of musical works used for our experi-
ment were obtained from a large collection of MIDI
files kept at an internet archive site.1 This collec-
tion consists of approximately 15,000 files, but con-
tains many in non-standard formats. After excluding
these, the number in our experimental collection was
10,466. Duplicates were retained.

The experiment used query melodies that were au-
tomatically extracted from pieces of music, using the
algorithms described above. The 28 pieces of music
chosen were randomly selected from a sub-collection of
about one hundred pieces that we identified as having
more than one distinct arrangement in the collection.
An arrangement was considered to be distinct from
other arrangements if one of the following conditions
held: it was in a different key; there was a different
number of parts in the arrangement; or there were
differences in rhythm, dynamics or structure. All ar-
rangements were designated as the relevant pieces for
each of the queries. Some arrangements may not have

1ftp://trantor.student.utwente.nl/pub/midi/

6

been identified, where non-obvious names had been
chosen for the files.

Typically there were two to six relevant pieces of
music for each query, on the assumption that all other
pieces are not similar—a reasonable assumption if the
retrieval task is to find variant forms of the same piece
of music. While the assumption may not be valid
for other retrieval tasks, it should not discriminate
between the retrieval methods.

This query set contains melodies from a range of
music genres, including pop and rock music from ev-
ery decade since the fifties, some jazz works, classi-
cal compositions, country music, a Christmas carol,
and several TV or movie themes. After the queries
were chosen, the various extraction and standardisa-
tion techniques were applied. To simulate queries of
varying lengths, each string was truncated to 10, 30,
and 100 notes, thus giving three versions of the col-
lection of queries.

We believe that this query set provides an excellent
test of a music retrieval system, not least because the
data originated elsewhere. A common experimental
methodology for a retrieval system is to ask users to
specify queries, but it is difficult to eliminate the possi-
bility that the experimenter has influenced the query
development process. For example, for a query-by-
contour system an experimenter may encourage less
accurate queries than those that might be specified in
other contexts.

Matching techniques

For our experiment, we used each of the four melody
extraction techniques in turn for both the queries
and the collection. In addition, we used an all-
channels technique that generated a separate melody
from each channel, so that each piece could be rep-
resented several times. This reduces the chance of
missing melodies but increases the chance of false
matches—that is, recall should improve at some cost
to precision. Use of all-channels increases the size of
the collection to about six times the original. In this
case, the collection contained 69,032 separate parts.

The melody standardisation methods tested were
melodic contour, modulo intervals, and exact inter-
vals. In each case we tested inclusion and omission
of rests. When rests were included, they were repre-
sented as a single symbol. Intervals following a rest
were calculated using the note that occurred before
the rest. Rests were inserted if there was a break of at
least 5 time units between notes. This is a fairly short
value whose actual duration varies between pieces, de-
pending on the speed of the music.

The similarity measures were local alignment,
longest common subsequence, and the two versions
of n-gram counting, for n = 4. Varying n trades re-

call against precision—high n provides closer match-
ing but is more likely to miss variations with omit-
ted or additional notes. Our experience with use of
n-grams in genomic and string matching suggested
n = 4 as a good compromise, but we will test other
values in further work. The scores calculated using lo-
cal alignment, longest common subsequence and the
first n-gram scoring method, were normalised by di-
viding by the log of the melody length plus one, to
compensate for varying piece length.

The experiment itself was factorially exhaustive.
We combined every melody extraction technique with
every standardisation method and every edit distance,
over the database as well as over each of the three
query sets. We ran all possible experiments in which
queries processed with one extraction technique were
run against a version of the database processed with
another extraction technique. This design is intended
to allow complete analysis of which factors are impor-
tant for music similarity measurement.

5 Results

Results are shown in Tables 2, 3, 4, and 5. Ta-
ble 2 shows the effect of varying query length,
melody extraction technique, standardisation tech-
nique, and similarity measure, where queries and the
database are identically processed, measured by a
recall-precision average. Perhaps the most impor-
tant result in this table is that it demonstrates that
the framework is effective: matching melodies can be
found using the appropriate combination of extrac-
tion, standardisation, and similarity measure, with, in
the best case, even for short queries one in three re-
trieved melodies being correct (and, in the top 20 as
shown in Table 3, three of five melodies being correct).
By the performance standards of document retrieval
systems, these are excellent results.

Table 2 shows that contour is always the worst stan-
dardisation technique and is almost certainly not us-
able in practice. Modulo and exact intervals have
similar performance to each other, with modulo bet-
ter for long queries and exact interval better for short
queries. Only for queries of 30 notes or more does con-
tour have any success at finding matches—but a query
of 30 notes is much longer than would be expected for
practical retrieval. Note that in many cases 30 notes
is more or less the whole melody; extending to 100
notes often just introduces repetition of the theme.

Another clear result is that local alignment is the
best similarity measure, followed by n-gram counting.
Both longest common subsequence and the Ukkonen
measure performed poorly. Local alignment has al-
lowed good matching with all melody extraction tech-
niques, even for short queries. However, normalisation
was an important factor with which we only conducted

7

Table 2: Eleven-point recall-precision averages (as percentages) for matching without rests.

similarity extraction contour modulo interval exact interval
measure method 10 30 100 10 30 100 10 30 100

local all mono 0.68 20.37 35.72 26.83 44.58 49.66 31.17 44.01 45.60
alignment ent. chan. 1.14 20.25 29.84 21.71 36.24 38.71 25.70 37.09 35.83

ent. part 2.94 18.83 23.28 12.33 23.51 25.99 12.77 23.53 26.17
top chan. 1.00 21.05 29.82 21.85 37.02 39.55 21.17 36.40 39.69

longest all mono 0.03 0.08 1.84 0.15 2.65 31.81 0.34 7.64 36.91
common ent. chan. 0.19 0.90 4.59 1.49 7.75 25.74 1.89 11.45 28.88
subseq ent. part 0.19 3.08 8.43 1.35 7.33 21.81 1.60 9.54 22.93

top chan. 0.16 2.32 16.14 3.27 16.26 26.73 2.29 17.96 28.37

ngram all mono 0.05 0.04 0.07 15.75 20.18 21.22 23.95 25.48 28.31
count ent. chan. 0.12 0.08 0.08 16.08 14.65 15.74 18.11 16.92 16.73
commons ent. part 0.21 0.36 0.05 7.25 9.24 9.80 7.43 10.28 10.91

top chan. 1.57 1.61 0.20 18.49 18.80 17.79 18.82 19.44 19.75

ngram all mono 0.04 0.04 1.10 0.04 0.05 1.67 15.77 18.78 15.13
Ukkonen ent. chan. 0.15 0.79 4.68 0.14 0.69 5.62 0.15 0.87 5.65
measure ent. part 0.16 3.02 7.69 0.17 3.16 9.51 0.18 3.18 9.52

top chan. 0.10 2.50 15.99 0.05 2.59 15.80 0.06 2.53 16.00

limited experiments; we already had many variables
to consider. We plan to refine normalisation in fur-
ther work. The n-gram count method may have been
penalised because some n-grams, such as when the
same note is repeated several times, are very common,
thus favouring long pieces of music when queries con-
tained these common n-grams. Shorter queries are
less likely to contain the common n-grams and per-
form about as well as long queries. It may be ap-
propriate to use n-gram frequencies within the col-
lection to determine a contributory weight for each
n-gram, just as words are differentially weighted in
document retrieval. The Ukkonen measure was prob-
ably poor because it is a global measure rather than
a local one: longer compositions are penalised if they
contain many n-grams that don’t occur in the query,
even if the query matches a portion of the longer com-
positions well.

Of the melody extraction techniques, the entropy-
part method (the most complex technique tried) was
the weakest; the others have all worked well, with all-
mono and entropy-channel both giving good results.
All-mono was clearly the best technique in conjunc-
tion with n-grams and was usually the best in con-
junction with local alignment. In results not reported
here, we found that using the same melody extraction
method as that used for the database melodies is al-
ways the better than matching queries processed one
way against a database processed in another.

Table 3 concerns the same experiments and vari-
ables as in Table 2, but using precision at 20—
the number of correct answers in the first 20 pieces
retrieved—instead of recall-precision. (In this and

subsequent tables the Ukkonen and longest common
subsequence results are omitted because performance
is very poor; however, these results do exhibit the
same trends as the reported figures.) This table shows
that the results are independent of the performance
measure. Note that, if all relevant pieces are retrieved
in say the top 12, precision is calculated at that point
rather than at 20.

Table 4 shows the results of experiments where rests
are included in the melody standardisation; in all
other respects the experiments are identical to those
reported in Table 2. Comparing these two tables, it
can be seen that rests are only helpful with short
queries, and the best performance with rests is not
as good as the best performance without. Rests have
helped contour, but not enough to make it useful.

Table 5 shows the results of experiments where each
piece in the data set was represented several times, by
the highest-note sequences from each channel, while
the queries were processed as before. The performance
of the channel-based extraction methods is much im-
proved, particularly for longer queries, while the all-
mono method has not worked as well. Overall results
are not quite as good as the best reported in Table 2.
The fall in performance is probably because, while
use of all-channels eliminates the need to guess which
channel contains the melody, the addition of “noise”
channels increases the likelihood of false matching.

We would expect that manual queries (in contrast
to our queries derived from variant transcriptions)
would most resemble those produced by entropy-
channel and top-channel methods, which contain
fewer extra notes from other parts of the composition.

8

Table 3: Precision at 20 values for matching without rests.

similarity extraction contour modulo interval exact interval
measure method 10 30 100 10 30 100 10 30 100

local all mono 0.71 8.21 12.32 11.96 15.71 15.89 12.32 15.18 15.89
alignment ent. chan. 0.89 9.29 11.25 11.25 12.68 13.39 10.89 12.86 13.39

ent. part 2.32 8.75 10.71 6.43 9.64 10.89 6.79 9.82 10.89
top chan. 1.07 9.29 12.32 10.36 13.75 14.11 10.00 13.75 14.29

ngram all mono 0.00 0.00 0.00 8.21 9.29 10.54 11.07 10.89 10.71
count ent. chan. 0.18 0.00 0.00 7.32 5.89 6.61 7.32 7.50 7.14
commons ent. part 0.18 0.18 0.18 5.54 5.89 6.25 5.71 6.43 6.96

top chan. 0.36 0.36 0.00 8.39 9.11 7.86 8.04 9.11 9.11

Table 4: Eleven-point recall-precision averages (as percentages) for matching with rests.

similarity extraction contour modulo interval exact interval
measure method 10 30 100 10 30 100 10 30 100

local all mono 1.88 24.04 26.04 20.78 32.40 32.35 13.03 16.27 15.60
alignment ent. chan. 6.47 19.16 23.15 18.00 27.04 26.24 19.87 27.02 26.24

ent. part 4.48 16.35 21.32 14.30 20.78 20.93 13.70 21.09 20.68
top chan. 4.90 23.81 27.00 24.11 31.14 29.98 24.35 30.92 30.25

ngram all mono 0.15 0.11 0.09 7.96 9.30 12.15 14.37 17.56 20.02
count ent. chan. 0.18 0.04 0.03 8.01 4.81 2.26 8.55 9.70 9.40
commons ent. part 0.15 0.07 0.04 4.92 3.62 2.18 4.15 4.50 4.24

top chan. 2.53 2.45 0.23 17.28 13.63 8.99 16.61 17.82 14.62

It follows that for manual queries the use of all chan-
nels from each composition may be valuable. Manual
queries to a music retrieval system are likely to con-
sist of a phrase, and thus will usually be less than
10 notes, and therefore good performance for short
queries is vital.

6 Conclusions

We have proposed a methodology for matching pieces
of music according to whether they are likely to be
perceived as similar by a listener. We argued that
a minimal matching process must involve at least
melody extraction, to reduce each piece to a linear
sequence of notes; standardisation, to represent each
piece in a form that is independent of variables such
as key that do not affect similarity perception; and
a similarity measure, for scoring the similarity of two
pieces of music. Using a large number of multiphonic
pieces in the MIDI format extracted from a public-
domain collection of music, we have shown that this
methodology effectively finds pieces that are similar
to each other.

The success of the matching requires effective ex-
traction, standardisation, and similarity techniques.
We selected a variety of such techniques for experi-

mental evaluation, many of which had been previously
proposed for this task. Combining simple melody ex-
traction (taking the highest note starting at any time),
relative pitch intervals, and local alignment gave ex-
cellent effectiveness: for even short queries, the top 20
answers contained 12 correct matches on average.

Some options, however, were highly unsuccessful,
finding virtually no answers at all. For example,
melody contour standardisation—used in some “query
by humming” systems—does not work with queries of
reasonable length, and longest common subsequence
is a poor similarity function. Rests appeared to be
unhelpful in matching.

Some questions remain unanswered and we will in-
vestigate them in future work. For example, we did
not fully explore the use of normalisation to give long
and short pieces equal probability of matching a query,
nor did we make use of rhythm information. Both
have the potential to further improve effectiveness.
We are also working on efficiency issues, in particular
the use of indexing to allow rapid matching. However,
our results clearly answer the key question for music
databases: use of the three-stage framework allows
effective retrieval of music by theme.

9

Table 5: Eleven-point recall-precision averages (as percentages) for matching against all channels without
rests.

similarity extraction contour modulo interval exact interval
measure method 10 30 100 10 30 100 10 30 100

local all mono 0.53 7.14 9.09 10.57 38.04 38.38 13.72 38.35 36.23
alignment ent. chan. 0.10 15.53 35.79 9.15 43.65 47.65 11.61 45.33 48.77

ent. part 0.12 5.92 17.80 3.86 20.02 25.99 4.41 19.91 24.13
top chan. 0.36 20.58 35.22 18.64 42.58 46.69 19.56 42.53 47.05

ngram all mono 0.12 0.04 0.33 8.79 13.53 14.07 14.04 16.52 15.56
count ent. chan. 0.08 0.08 0.06 8.60 10.58 13.87 13.78 13.75 14.35
commons ent. part 0.08 0.08 0.02 4.64 5.75 3.08 5.05 5.85 3.33

top chan. 0.95 0.94 0.09 11.87 11.78 9.75 14.19 12.78 10.88

Acknowledgements

We are grateful to John Harnett for his help with the
experiments and to Hugh Williams for his comments.
This work was supported by the Australia Research
Council.

References

[1] S. Blackburn and D. DeRoure. A tool for content-
based navigation of music. In Proceedings: ACM Mul-
timedia 98, September 11–15, 1998 Bristol, England.
ACM, 1998.

[2] J. Borchers and M. Muhlhauser. Design patterns
for interactive musical systems. IEEE Multimedia,
5(3):36–46, 1998.

[3] H. Charnasse and B. Stepien. Automatic transcrip-
tion of german lute tablatures: an artificial intelli-
gence application. In Computer Representations and
Models in Music, pages 143–170. Academic Press,
1992.

[4] D. Deutsch. Grouping mechanisms in music. In The
Psychology of Music, chapter 4, pages 99–134. Aca-
demic Press, Inc., 1982.

[5] W.J. Dowling. Scale and contour: Two components
of a theory of memory for melodies. Psychological
Review, 85(4):341–354, 1978.

[6] W.J. Dowling. Melodic information processing and its
development. In The Psychology of Music, chapter 13,
pages 413–429. Academic Press, Inc., 1982.

[7] J.S. Downie. The musifind music information re-
trieval project, phase iii: evaluation of indexing op-
tions. In Canadian Association for Information Sci-
ence proceedings of the 23rd Annual Conference, Con-
nectedness: Information, Systems, People, Organisa-
tions, pages 135–46. CAIS, 1995.

[8] J. Edworthy. Interval and contour in melody process-
ing. Music Perception, 2(3):375–388, 1985.

[9] R. Frances. La Perception de la Musique. L. Erl-
baum, Hillsdale, New Jersey, 1958. Translated by
W.J. Dowling (1988).

[10] A. Ghias, J. Logan, D. Chamberlin, and B. Smith.
Query by humming — musical information retrieval
in an audio database. In ACM Multimedia 95 — Elec-
tronic Proceedings, 1995.

[11] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences. Cambridge, USA, 1997.

[12] P.A.V. Hall and G.R. Dowling. Approximate string
matching. ACM Computing Surveys, 12(4):381–402,
1980.

[13] S. Handel. Listening: An introduction to the percep-
tion of auditory events. MIT Press, 1989.

[14] D.S. Hirschberg. Serial computations of levenshtein
distances. In A. Apostolico and Z. Galil, editors, Pat-
tern Matching Algorithms, chapter 4, pages 123–141.
Oxford University Press, 1997.

[15] D. Huron and M. Royal. What is melodic accent?
converging evidence from musical practice. Music
Perception, 13(4):489–516, 1996.

[16] T. Kageyama, K. Mochizuki, and Y. Takashima.
Melody retrieval with humming. In ICMC Proceed-
ings 1993, 1993.

[17] A. Marsden. Modelling the perception of musical
voices: a case study in rule-based systems. In Com-
puter Representations and Models in Music, pages
239–263. Academic Press, 1992.

[18] R.J. McNab, L.A. Smith, I.H. Witten, C.L. Hender-
son, and S.J. Cunningham. Towards the digital music
library: Tune retrieval from acoustic input. In Digital
Libraries Conference, 1996.

[19] M. Mongeau and D. Sankoff. Comparison of musical
sequences. Computers and the Humanities, 24:161–
175, 1990.

[20] G. Salton and M.J. McGill. Introduction to Mod-
ern Information Retrieval. McGraw-Hill, New York,
1983.

[21] H. Schaffrath. The retrieval of monophonic melodies
and their variants: Concepts and strategies for
computer-aided analysis. In A. Marsden and
A. Pople, editors, Computer Representations and
Models in Music, pages 95–110. Academic Press,
1992.

10

[22] H.G. Tekman. Interactions of perceived intensity, du-
ration and pitch in pure tone sequences. Music Per-
ception, 14(3):281–294, 1997.

[23] H.G. Tekman. Effects of melodic accents on percep-
tion of intensity. Music Perception, 15(4):391–401,
1998.

[24] J.M. Thomassen. Melodic accent: experiments and a
tentative model. Journal of the acoustical society of
America, 71(6):1596–1605, June 1982.

[25] A.L. Uitdenbogerd and J. Zobel. Manipulation of mu-
sic for melody matching. In Proceedings: ACM Mul-
timedia 98, September 11–15, 1998 Bristol, England.
ACM, ACM Press, 1998.

[26] E. Ukkonen. Approximate string-matching with q-
grams and maximal matches. Theoretical Computer
Science, 92:191–211, 1992.

[27] H. Williams and J. Zobel. Indexing nucleotide
databases for fast query evaluation. In Proceedings of
Advances in Database Technology (EDBT’96), pages
275–288, Avignon, France, March 1996.

[28] J. Zobel and P. Dart. Finding approximate matches
in large lexicons. Software—Practice and Experience,
25(3):331–345, March 1995.

11

