
1092 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 3, MAY 2005

Optimal Multistage Linear Multiuser Receivers
Louis G. F. Trichard, Member, IEEE, Jamie S. Evans, Member, IEEE, and Iain B. Collings, Senior Member, IEEE

Abstract—In this paper, we analyze a linear multiuser receiver
for code-division multiple-access systems that is based on a ma-
trix polynomial expansion. We focus on the receiver where the
polynomial coefficients are chosen to minimize the mean squared
error at the output and observe that the resultant coefficients
are also signal-to-interference ratio maximizing. We present a
simple derivation for the (known) large system coefficients and
signal-to-interference ratio of this optimal multistage receiver and
make a significant step toward a direct derivation of Honig and
Xiao’s recursive expression for this large system signal-to-inter-
ference ratio. Finally, we extend these results to take into account
arbitrary power distributions.

Index Terms—Large system analysis, multistage receivers, mul-
tiuser detection, random spreading, reduced-rank filtering.

I. INTRODUCTION

THERE has recently been an increase in the popularity
of linear multistage multiuser (MSMU) receivers for

code-division multiple-access (CDMA) communications. In
some cases, these receivers are also known as partial parallel
interference cancellation (PPIC) receivers. The main attractive
feature is their simple structure and ability to achieve close-to
linear minimum mean squared error (LMMSE) performance,
but do so with less computational complexity [1]–[11].

This paper focuses on an optimal linear MSMU receiver
based on a weighted polynomial expansion. By “optimal,” we
mean the linear MSMU receiver which minimizes the MSE
between the data symbol and the data estimate for user at
the output of a particular stage with respect to the poly-
nomial coefficients. We shall focus on synchronous CDMA
systems with users, and spreading gain . In this case,
the weighted polynomial expansion is given in terms of the

-dimensional cross-correlation matrix of the form , where

Manuscript received April 3, 2003; revised February 19, 2004; accepted April
11, 2004. The editor coordinating the review of this paper and approving it for
publication is K. B. Lee. This work was supported in part by the Australian
Research Council. The material in this paper was presented in part at the IEEE
International Conference on Communications, New York, April 2002; the IEEE
International Symposium on Information Theory, Lausanne, Switzerland, June
2002; and the IEEE International Symposium on Information Theory, Yoko-
hama, Japan, June 2003.

L. G. F. Trichard was with the Kohno Laboratory, Division of Physics, Elec-
trical and Computer Engineering, Graduate School of Engineering, Yokohama
National University, Kanagawa 240–8501, Japan. He is now with is with R.G.C.
Jenkins & Co., London SW1H 0RJ, U.K. (e-mail: ltrichard@jenkins-ip.com).

J. S. Evans is with the ARC Special Research Centre for Ultra-Broadband
Information Networks (CUBIN), Department of Electrical and Electronic
Engineering, University of Melbourne, Victoria 3010, Australia (e-mail:
jse@ee.unimelb.edu.au).

I. B. Collings is with the Telecommunications Laboratory, School of Elec-
trical and Information Engineering, University of Sydney, NSW 2006, Australia
(e-mail: i.colllings@ee.usyd.edu.au).

Digital Object Identifier 10.1109/TWC.2005.847004

the columns of are the spreading sequences of each user1.
Linear MSMU receivers based on this form may approximate
the LMMSE receiver depending on the choice of polynomial
coefficients (for examples, see [2], [9]). It can be shown by the
Cayley-Hamilton Theorem (along similar lines as in [2]) that
when, stages, then the polynomial coefficients
may be chosen appropriately so that LMMSE performance is
achieved. There is a greater interest though in the optimal linear
MSMU receiver which can achieve near-LMMSE performance
for which translates to significant computational
savings, especially when the number of users in the system is
large.

The optimal linear MSMU receiver is intimately related to
the reduced-rank Wiener filter for this problem. In fact, both
receivers produce the minimum MSE estimate in a subspace of
dimension lower than . For further details on this
equivalence, see [12]. It is shown in [13] that this receiver also
maximizes the signal-to-interference plus noise ratio (SIR) for
a particular stage and user .

In this paper, we perform a large system analysis of the
optimal linear MSMU receiver. We define a large system by
taking and to infinity while keeping their ratio held
fixed [14]–[17]. Recently, large system analysis has been
applied to other linear CDMA receivers such as the LMMSE,
decorrelating, and matched filter receivers where expressions
such as the SIR were determined [16], [17]. Closely related
large system analysis of multistage and related reduced-rank
receivers has been carried out in [9], [11]. It is important to
observe that numerous papers have compared the large system
results with corresponding results for finite sized systems (see,
for example, [17]–[19]). These papers have found the large
system performance predictions to be very useful for gaining
insights into the operation of systems of realistic size and
especially for optimising design parameters.

The following are the main contributions of this paper.

1) We give a simple expression for the large system op-
timal MSMU receiver coefficients and corresponding
large system SIR, using a straightforward derivation.

2) We take a significant step toward a direct proof of
an open problem in [11, p. 1934]. This problem re-
volves around a direct derivation of the recursive (in
the number of stages) expression for the large system
SIR.

3) In the case of unequal power users, we give the large
system SIR expression for unequal user powers as a
continued fraction expansion.

This paper is organized as follows. In Section II, the CDMA
system model is described. We describe and optimize the linear
MSMU receiver structure, (this optimal linear MSMU receiver

1Here, (�) is the matrix transpose.
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is called the optimal MSMU receiver), in Section III, and de-
rive the quadratic form of the large system SIR of the optimal
MSMU receiver. In Section IV, we prove the large system SIR
has a continued fraction expansion. In Section V, we derive the
large system SIR of the optimal MSMU receiver for an arbitrary
power distribution. Finally, in Section VI, we illustrate some
performance results.

II. SIGNAL MODEL

In this paper, we consider a synchronous direct sequence
CDMA channel with users and a processing gain of . We
assume that users employ binary antipodal modulation and
consider a real baseband model [3]. The -dimensional chip
matched filter vector for each symbol interval is given by

(1)

where is the data bit of user taking on values of , is the
received power for user , is the -dimensional spreading
sequence of user , and is additive white Gaussian noise
(AWGN) with zero mean and covariance . The
spreading sequence matrix is and we define the

spreading sequence matrix excluding the spreading
sequence of user as . We
assume a random spreading model where the elements of are
independent and identically distributed random variables taking
values of with equal probability. We assume that the
spreading sequences are known at the receiver and that we have
perfect estimation of the received user powers and the noise vari-
ance . We also denote the diagonal matrix of received user
powers, by the matrix .

At the receiver, a linear filter for user produces the soft
estimate (with denoting the matrix transpose) for
the filter coefficients . The SIR for this estimate is

SIR (2)

where is a
diagonal matrix of received user powers excluding the

power of user . The superscript indicates the dependence
on the processing gain. In Sections III–IV, we shall concentrate
on an equal power regime, where , . In
Section V, we generalize our results to the case where the users
have unequal powers.2

III. LINEAR MULTISTAGE RECEIVER STRUCTURES

In this paper, we consider the class of MSMU receivers
which, when appropriately designed, converge to the LMMSE
receiver as the number of stages increase. We shall first review
the dimensional MSMU receiver of [2] (see also [1] and

2Note: For the remainder of this paper we generally omit the word “linear”
when discussing linear MSMU receiver structures.

[9]), and then present the dimensional MSMU receiver that
we use in our analysis.

A. Constrained LMMSE Receiver

Consider the LMMSE receiver matrix filter for users which
is found by minimizing

(3)

with respect to the matrix of filter coefficients . In
this expression, is the vector of user data
symbols and is the received vector given in (1). The resulting
matrix filter is

(4)

and the output of this LMMSE receiver are the data estimates
, given by

(5)

We now restrict attention to the equal power case so that
. With this restriction, we observe that the matrix in-

verse in (4) may be written in the form of a weighted matrix
polynomial expansion in terms of the dimensional cross-cor-
relation matrix (via the Cayley Hamilton Theorem as in
[2]). We have

(6)

(7)

where the coefficients are functions of , , and the eigen-
values of .

Motivated by the representation in (7), we consider the
-stage MSMU receiver

(8)

where are polynomial coefficients and the th column of
is the MSMU filter coefficient vector

for the th user. In [2], this -stage receiver is optimized by
minimizing the MSE

(9)

with respect to the polynomial coefficients . This
weighting ensures that this receiver attains full-rank LMMSE
performance when . It is for this particular type of
constrained optimization that we use the term “optimal linear
MSMU receiver.” This MSMU receiver is also known as the
constrained LMMSE receiver [2] as it is the LMMSE receiver
constrained by the structure of (8).
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Now, consider the receiver for user after stages, denoted
by , which is simply the th column of in (8). More
conveniently, we rearrange (8) to give

so that

We now generalize the receiver by allowing the coefficients
to depend on the user of interest, and, thus

(10)

where is the vector of poly-
nomial coefficients for stage and user , and

. Thus, we see that the receiver for
user is constrained to lie in the column space of the matrix

.
An equivalent form to (10) that greatly simplifies our perfor-

mance analysis can be obtained by observing that the column
spaces of and

are identical. This allows us to write

(11)

where is a new vector of polynomial
coefficients. We observe that

(12)

where is a linear mapping that relates the coefficients of
to . We previously showed in [13, Corollary 1], that
is given by

. . .
...

. . .
. . .

...
(13)

where .

B. Receiver Optimization

Consider the linear receiver as given in
(11), and note that there are two natural ways to optimize the
coefficients . The first is to choose to minimize the
MSE . Alternatively, we could attempt to max-
imize the SIR

SIR

In [13], we showed that both problems are solved by choosing

(14)

where . The constant of proportionality
is irrelevant for maximizing SIR, but for interest sake, we note
that for minimizing the MSE, it is equal to

From this point on, we will take the constant of proportionality
to be unity as it is not important in our analysis. The SIR of this
receiver is given by

SIR (15)

C. Large System SIR

In this section, we analyze the SIR of the optimal MSMU
receiver as the spreading gain ( ) and number of users ( ) get
large with held fixed. Related large system results for
linear multistage receivers are also presented in [9] and [11].

In deriving the large system SIR and the large system filter
coefficients the key terms of interest are random variables of
the form for ( ), consequently, the
following Lemma is useful.

Lemma 1: If we take with fixed, the
random variable converges in probability to the
deterministic moment

where is the limiting empirical distribution function of
the eigenvalues of (see [11], [14], [16], and [17]). The
th moment of the limiting empirical distribution function

can be calculated recursively as

(16)

where and .
Proof: See [10] and [11].

The following theorem gives the large system SIR of the op-
timal MSMU receiver (which minimizes the MSE and maxi-
mizes the SIR) for a given stage .

Theorem 1: Let , with held fixed.
Then, the SIR of the optimal MSMU receiver, (15), converges in
probability to a deterministic scalar SIR given by

SIR (17)

and the elements of the coefficient filter vector of (14) con-
verge in probability to deterministic scalars given by the ele-
ments of the vector

(18)
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where the elements of the vector are ,
the elements of the matrix are

for , , and where is given in
Lemma 1.

Proof: Consider the elements of the vector , which
can be written

for . From Lemma 1 it follows that

In addition, the elements of the matrix can be
written

for and . Again, from Lemma 1, we have

Now, considering (14) and (15) and taking limits, we have

SIR SIR

NOTE: Observe that the large system values of the SIR
and the filter coefficients given in (17) and (18)
depend only on the system load ( ), the number
of stages ( ), and the signal-to-noise ratio (SNR)
( ). The large system expressions do not de-
pend on the particular realization of the spreading
sequences which allow the large system filter co-
efficients to be calculated offline, even in systems
employing long spreading sequences.

One might also be interested in the large system expression
for the coefficient vector in (10) when it is chosen to min-
imize MSE or to maximize SIR. The development is similar to
that just undertaken except that the “moments” of interest are of
the form and these are not as easy to handle as terms
of the form . However, in [13], we showed that in
the large system limit converges in probability to

where and is given in Lemma 1. This result allows
us to directly determine an expression for the optimal coeffi-
cient vector in a large system. An alternative approach is to use
the transformation of (12) to write
and take limits. Observe that the elements of above the
main diagonal, denoted by (with ), converge
in probability to, . We then have

providing a connection between
the (large system) optimal coefficients of the two receiver
implementations in (10) and (11).

IV. CONTINUED FRACTION SIR EXPRESSION

In this section, the SIR of the optimal MSMU receiver is given
as a continued fraction. Performing large system analysis sim-
plifies the continued fraction expression to a simple recursion
in terms of the system loading and the SNR. This recursion ex-
presses the SIR at each stage directly as a function of the SIR at
the previous stage and provides a simple and elegant method for
calculating the key performance measure of the optimal multi-
stage receiver. It was first derived in [11]—we provide an alter-
native derivation of the result in this section.

The optimal MSMU receiver’s filter vector subspace
given by the columns of can be replaced with an equiv-
alent orthonormal filter vector subspace. A set of orthonormal
vectors may be found using a method derived in [11]. The
orthonormal set of vectors can be
generated by

...
...

(19)

where are normalization constants.
In [11, Th. 2, p. 1933], the Multistage Reduced Rank Wiener

filter receiver forms a filter vector subspace which was defined
by in , and was shown to span the set of vectors

, where .
The equivalence of the set of vectors and is shown

in the following lemma, the proof of which is straightforward
and is omitted.

Lemma 2: Let and
be two sets of vectors in

the vector space , then, .
With this in mind, the orthonormal set of vectors defined in

(19) is now used to give the optimal MSMU receiver for user
and stage as

(20)

where is the vector of optimal filter
coefficients [cf. in (10) and in (11)], and

.
The following theorem presents the first main contribution of

this section, namely, the SIR of the optimal MSMU receiver in
terms of a continued fraction expansion.3

3The continued fraction notation a=(b+ c=(d+ � � �)) � a=b+ c=d+ � � �

is used to ease readability where possible.
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Theorem 2: The SIR of the optimal MSMU receiver is given
by

SIR

where and .
Proof: Following similar lines as before, it can be shown

that the SIR of the optimal MSMU receiver for user and stage
is

SIR

(21)

where and is the element in the first row
and first column.

Due to the orthonormal set of filter vectors it can be shown
that is, in fact, tridiagonal, and we need to solve
the following set of linear equations:

. . .
. . .

. . .
...

...
(22)

where SIR .
Now, let and . Then, solving for
[20, p. 213] gives

(23)

back-substituting the equations in (23) gives SIR as a con-
tinued fraction

SIR (24)

In order to examine the asymptotic performance, we now
make use of some large system results derived in [11, Th. 1].
First, from Theorem 2, we can see that the linear filter for the
th stage of the optimal MSMU receiver for user is , defined

in (19). The filter for stage produces the soft data estimate

(25)

Now, considering and [defined in (23)], and taking the limit
as with held fixed, we have the following
two expressions (derived in [11]):

(26)

for and , and

(27)

The following theorem gives the large system SIR of The-
orem 1 expressed as a continued fraction expansion in terms of
only , the SNR and the large system SIR of the pre-
vious stage.

Theorem 3: Let , with
held fixed. Then, the SIR of the optimal -stage MSMU receiver
converges in probability to a deterministic scalar given by

SIR
SIR

(28)

where SIR , and are given in The-
orem 1.

Proof: Taking the limit of SIR (from Theorem 2) as
with held fixed, and using (26) and (27),

the SIR of the optimal MSMU receiver for stage converges
in probability to

SIR SIR

(29)

where the term is repeated times.
Now, for and , clearly

SIR (30)

SIR (31)

Factoring out in the denominator and letting
gives

SIR

SIR
(32)

where SIR .
Now assume for that the following holds:

SIR
SIR

(33)

Now, let

(34)
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where the term in the square brackets
is repeated times, and from (29) SIR . Then,
for , SIR is

SIR

(35)
where the term is repeated times.
Factoring out in the denominator gives

SIR

(36)

where the term is repeated times.
Substituting into (36) gives

SIR

SIR
(37)

NOTE: In Theorem 2, we established a direct connection
between the standard quadratic form of the SIR and
the continued fraction form. This is an important
step, and provides a partial solution to the open
problem stated in [11, p. 1934]. The open problem is
to prove directly that the quadratic form is equal to
the continued fraction form using only properties of
the large system moments. In Theorem 3, however,
we have relied on results from [11] to complete the
proof.

V. UNEQUAL POWER USERS

In this section, we extend our developments to account for
systems where the users have unequal powers. We are able to
derive a continued fraction expansion for the SIR and take the
large system limit however we do not obtain a recursive expres-
sion for the large system SIR in this unequal power case. This
is consistent with [11], where it was shown that, in the unequal
power case, the large system SIR does not satisfy the obvious
extension of the recursive expression.

The -dimensional MSMU receiver for stages and user
is4

UEP (38)

where UEP UEP , and
.

In this section on unequal power, users we will focus our at-
tention on the continued fraction expansion of the SIR. As in

4The superscript UEP denotes unequal power users.

the previous section, we first change the filter vector subspace
to an orthogonal filter vector subspace. The optimal MSMU re-
ceiver’s filter vector subspace, is now given by the set of vectors

, with its equiv-
alent orthogonal filter vector subspace, denoted by

. In the unequal user power case, it is simpler to
use the Gram Schmidt Orthogonalization (GSO) algorithm to
find a set of orthogonal vectors, in place of the approach in
(19). Performing the GSO algorithm on to get a set of or-
thogonal vectors gives and the th vector is

, where .

Now, for the filter coefficient vector of
the optimal MSMU receiver for user and stage is

(39)

where it can be shown that
minimizes the MSE (and also maximizes the corresponding SIR
by direct extension of [13, Th. 1]) for a given stage and user ,
and , with

.

A. Continued Fraction SIR—Unequal Powers

We now give the SIR of the optimal MSMU receiver for un-
equal power users. First, by substituting (39) into (2) results in
the SIR of the form

SIRUEP

(40)

It can be shown for , that

for and ,
otherwise.

(41)
As well, is also equal to

(42)

for . Observe that is tridiagonal. Then,

is found by solving the following linear
equations:

(43)

The SIR can be written as SIRUEP .
Now, from (41) and (42), we can define

and

and

(44)
where . Similarly, we can define

.
(45)
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where is given in (44). This gives,
and for with .
Solving (43) with respect to [20, p. 213] gives

(46)

back-substituting the equations in (46) gives SIRUEP as a
continued fraction expansion

SIRUEP

(47)

B. Large System SIR—Unequal Power Users

In the large system, we are primarily interested in terms of
the form for ( ). By taking the
limit as with fixed, this corresponds to
finding the th moment of the limiting empirical distribution of
the eigenvalues of , which we denote by ,
where is the limiting empirical distribution of . A tech-
nique for finding these moments was suggested in [11] and [21],
however, we will use an alternate method given in [22] where it
was shown that where

(48)

where , , and .
The inner summation of (48) is over all nonnegative solutions

to the equations

Now, the SIR of the optimal MSMU receiver given in (47) con-
verges in probability to

SIRUEP SIRUEP

(49)

where taking the limit of (44) and (45) gives
for , where

and for , and
for , where .

Here, convergence in probability holds since and are
finite sums and products of terms of the form
where in the limit each term converges in probability to

.
We have now given the large system SIR of the optimal

MSMU receiver for both equal and unequal power users. In the
following section, we will illustrate the use of these expressions.

Fig. 1. Average empirical squared error versus processing gain (m = 4,
SNR = 12 dB and � = 0:75).

VI. NUMERICAL RESULTS

In this section, we empirically show that the variance of the
SIR of the optimal MSMU receiver decreases proportionally
to , as increases. We then illustrate the usefulness of
the equal power large system SIR by estimating the number of
stages needed for the optimal MSMU receiver’s bit-error rate
(BER) to come within 5% of the LMMSE receiver’s BER. Fi-
nally, we examine two examples of using the large system SIR
expression of the optimal MSMU receiver for unequal power
users.

A. Average Empirical Squared Error

We have proved in Theorem 1 that SIR converges in prob-
ability to the large system SIR of the optimal MSMU receiver,
SIR , as , increases with held fixed. We shall
now show this convergence in another manner with the empir-
ical mean square error, which is the MSE between SIR and

SIR , denoted SIR SIR . This gives an
indication of the relationship between the variance of the SIR
and . An example of this convergence is illustrated in Fig. 1.
In this plot, we have plotted using 1000 samples of SIR
for each value of in the range 8 512 (incrementing
in steps of 4). For each sample of SIR , we randomly gener-
ated the spreading sequences. This plot uses , ,
8 512, and SNR dB. We empirically found that

providing evidence that the empir-
ical MSE of the SIR decreases as . We have also shown
similar results for MSMU receivers based on iterative solution
methods, for examples, see [10] and [23]. Further, this result
for the optimal MSMU receiver complements those results and
that presented in [24], where it has been proven for the decorre-
lator and LMMSE receiver that the fluctuations around the large
system SIR are proportional to .

B. LMMSE BER Convergence

It has recently been shown that as the system size increases,
the BER of the direct LMMSE receiver converges almost surely
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Fig. 2. Minimum required number of stages versus � = K=N versus SNR for equal user powers (within 5% of LMMSE BER).

to SIR (constrained to antipodal signalling, equal

power users in synchronous CDMA), where SIR is
the large system SIR of the LMMSE receiver and is the
Gaussian –function, see [17] and [25]. This result has also
been found to be applicable for linear multistage receivers [26].
Therefore, we may couple these results with our large system
SIR expression to calculate the BER of the optimal MSMU

receiver for equal power users, giving SIR .
Fig. 2 shows the number of stages required for the op-

timal MSMU receiver’s BER performance to come within
5% of the BER performance of the LMMSE receiver, that is

SIR SIR . This plot
uses, and SNR 18. We
can see that as the SNR increases and as the number of users
increases, more stages are necessary to achieve near-LMMSE
performance.

C. Unequal Power Users

This section illustrates the performance of the optimal
MSMU receiver using (47) for various user power distribu-
tions. Fig. 3 shows results for a system loading of ,
SNR dB, for up to 15 stages. The corresponding LMMSE
and single user matched filter (SUMF) receiver’s large system
SIR for each group is indicated by the arrows. We verify our
large system SIR expression showing that it of course matches
that of the Multistage Reduced Rank Wiener (MSWF) filter
receiver given by [11] where the large system SIR is indicated
by the dashed line and marks. In this case, the optimal MSMU
receiver can attain near-LMMSE performance by Stage 8.

Fig. 3. SIR versus stages for equal user powers (SNR = 10 dB, � = 0:75
and m = 15).

A multiple data rate scenario such as in third–generation (3G)
and future standards, can be modeled using a discrete power
distribution where users are grouped by their data rate, for ex-
ample higher data rates require higher powers. The performance
of the optimal MSMU receiver attained in each group is shown
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Fig. 4. SIR versus stages for multiple data rages (SNR = 10 dB, � = 0:75,
and m = 10).

in Fig. 4. This plot uses a system loading of , the de-
sired user in Group 1 has an SNR dB and

dB. The fraction of users in Groups 1, 2, and 3
are 0.7, 0.2, and 0.1 respectively. It can be seen that at least 10
stages are needed to attain near-LMMSE performance.

The increase in the number of stages compared to the equal
rate case can be explained by the higher power users causing
more multiple access interference. Another reason has been
discussed in [2] where they noted that by applying an eigen-
value-eigenvector decomposition to , then the eigen-
values of (38), ( ) form a polynomial
which approximates the eigenvalues of . If

is the th eigenvalue of , then the th eigenvalue
of is . As well,
the th eigenvalue of the matrix polynomial for stage is

which approximates when
is chosen appropriately. However, it was shown in [2] that
there is a limited ability for to approximate for
very small (as well as very large values) of without
increasing . In an unequal user power scenario, then the
possibility that is very small (or large) results in the need for
more stages in order for to approximate . This is
reflected in our large system SIR results.

We now show the effect of the frequency nonselective
Rayleigh-fading channel. The performance of the optimal
MSMU receiver for this channel is shown in Fig. 5. This plot
uses and dB, and it was assumed that the
average received power was . As the received am-
plitudes, , are Rayleigh distributed this results in the user
power distribution being the simple exponential distribution.
Once again, the eigenvalue spread, (ratio between maximum
and minimum eigenvalues of ), has increased and

Fig. 5. SIR versus stages for frequency flat Rayleigh fading (SNR = 10 dB,
� = 0:75, and m = 15).

more stages are necessary to attain near-LMMSE performance
compared with the equal power scenario in Fig. 3.

We have shown some simple examples of the various user
power distributions that can be considered using the unequal
large system SIR expression. The analysis of the large system
SIR for the optimal MSMU receiver in multipath-fading chan-
nels and incorporating channel estimation uncertainty is an on-
going topic of research.

VII. CONCLUSION

In this paper, we analyzed the MSMU receiver based on a
weighted matrix polynomial expansion. We presented an alter-
native derivation of the large system SIR of the optimal MSMU
receiver, and made significant steps toward a direct proof of the
recursive large system SIR expression. Finally, we derived the
SIR and the large system SIR for the optimal MSMU receiver
in an unequal user power regime.
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