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Large System Performance of Second-Order
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Abstract—In this paper, we analyze the performance of a
second-order linear multistage multiuser code-division multiple-
access receiver. The receiver’s filtered output is designed to con-
verge to that of the linear minimum mean-squared error solution
as the number of stages increase. Our analysis is based on a related
second-order stationary iterative solution method. We derive the
large system output signal to interference-plus-noise ratio for each
stage. We use this result to perform a numerical optimization with
respect to the two second-order parameters of our receiver. Within
this iterative framework, we can achieve performance extremely
close to the optimal linear multistage multiuser receiver.

Index Terms—Large system analysis, linear iterative multiuser
detection, linear minimum mean-squared error (MMSE) detec-
tion, random spreading.

I. INTRODUCTION

L INEAR iterative solution methods provide a host of useful
results for designing linear iterative multiuser receiver

structures for code-division multiple-access (CDMA) systems
[1]–[3]. These receiver structures are of great interest due to
their ability to asymptotically attain linear minimum mean-
squared error (LMMSE) performance. The popularity of the
LMMSE and related receivers is due to their vastly reduced
complexity compared with the optimal maximum-likelihood
receiver [4], and to their ability to suppress multiple-access
interference, especially compared with the conventional single-
user matched filter (SUMF) receiver [5]. Unfortunately, even
the direct LMMSE receiver can often be too computationally
demanding, paving the way for linear multistage multiuser
receivers with even less computational complexity. Our paper
focuses on a second-order linear multistage multiuser (MSMU)
receiver.

Linear MSMU receivers fall within the wider class of
multistage interference cancellation (IC) multiuser receivers,
for which there are numerous linear and nonlinear implemen-
tations [2], [3], [6]–[19]. They are of particular interest even
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though nonlinear MSMU receivers have been shown to perform
better in certain situations. This is due to many nonlinear
proposals employing the LMMSE receiver as a frontend filter
(for examples, see [20]–[22]), where efficient implementations
of the LMMSE receiver are desirable. As an example, the
direct LMMSE receiver in a -user-long spreading sequence
CDMA system, (where adaptive receivers are not applicable)
with processing gain has a typical computational cost of

or per symbol.1 In contrast, linear multistage
IC receivers will have a computational cost of or

per symbol, where is the number of stages. We
are interested in finding linear MSMU receivers which attain
near-LMMSE performance for .

In this paper, we make use of the theory of linear iterative
solution methods which are commonly used to numerically
solve systems of linear equations [1], [2]. In particular, we
consider the second-order stationary linear iterative solution
method [1], [2]. This is an important extension on our previous
work which considered a first-order stationary linear iterative
solution method (for more details, see [3], [19], and [23]). It
turns out that in the second-order case, the data estimates at the
output of each stage of the receiver converge significantly faster
to the LMMSE solution when compared with data estimates
from the first-order receiver of [3] and [23] as the number of
stages increase (see also [24]).

In order to analyze the performance of the second-order linear
MSMU receiver, we will utilize so-called large system anal-
ysis. We define a large system by taking the CDMA system
parameters and to infinity but keeping their ratio

held fixed. By doing this, a range of useful mathemat-
ical results can be applied (see [25] and [26]). In related work,
large system analysis has previously been used to determine the
signal-to-interference plus noise ratio (SIR) of linear CDMA re-
ceivers including the conventional SUMF, the decorrelator and
the direct LMMSE receiver [27], [28]. As well, there also exist
many other useful analytical techniques such as random ma-
trix analysis, (for more details see [29] and [30]), which can
be useful in the analysis of multiuser receivers [31]. This paper
focuses on large system analysis.

The main contribution in this paper is the use of large system
analysis to derive an expression for the large system SIR of the
second-order linear MSMU receiver considered. We show that
the large system SIR expression only depends on the system
loading , the signal-to-noise ratio (SNR), the two second-
order receiver parameters, and the number of stages. Impor-
tantly, the large system SIR is independent of the realizations of

1If K users are detected jointly, then the per-user, per-symbol cost is a factor
ofK less for both the LMMSE receiver and linear MSMU receivers.
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the signature sequences. In addition, we also give empirical evi-
dence which suggests that for any particular realization the fluc-
tuations around the large system SIR are proportional to,
(a similar result has recently been proved for the decorrelator
and the LMMSE receiver [32]).

Further, we numerically maximize the large system SIR of
the second-order linear MSMU receiver with respect to the two
second-order receiver parameters. We will show the surprising
result, namely, that the optimized second-order linear MSMU
receiver can, for a practical range of stages, achieve perfor-
mance with order close to the linear MSMU receiver given in
[7] and [33] often called the optimal linear MSMU receiver.
This optimal linear MSMU receiver is “optimal” in the sense
of maximizing the total large system SIR over all users for a
particular stage [33]. In contrast to the two parameters of our
second-order receiver, it requires anth-order optimization at
each stage .

This paper is organized as follows. The CDMA signal model
is described in Section II. We describe the optimal linear MSMU
receiver followed by the second-order linear MSMU receiver
in Sections III and IV. We derive the large system SIR for our
receiver in Section V. We show that the second-order linear
MSMU receiver can attain performance close to that of the op-
timal linear MSMU receiver in Section VI. In Section VII, we
briefly discuss the effects of unequal power users. Finally, we
conclude with a summary in Section VIII.

Note: As discussed above, this paper focuses on linear re-
ceiver structures. For the remainder of this paper, we omit the
word “linear” when discussing receivers so as to ease read-
ability. All receivers are linear unless otherwise stated.

II. SIGNAL MODEL

In this paper, we consider a user synchronous direct se-
quence code-division multiple-access (DS-CDMA) communi-
cation system with a processing gain of. We shall consider
the standard real baseband signal model (as used in [13]).

The -dimensional chip matched filter vector for each
symbol interval is given by

(1)

where is the data bit of user , is the power of user ,
is the -dimensional spreading sequence of user, and

is additive white Gaussian noise (AWGN) with zero mean and
covariance . The spreading sequence matrix is

. We shall define the spreading sequence
matrix excluding the spreading sequence of useras

.
We assume that all users employ (baseband) binary antipodal

modulation. We shall also use a random spreading model where
the elements of are independent and identically distributed
(i.i.d.) random variables taking values of with an equal
probability. The random spreading assumption is needed for the
large system analysis, which follows in Section V. We also as-
sume that the spreading sequences are known at the receiver,
the received user powers are equal with common power

(for ), and we assume perfect estimation of the re-
ceived user powers and the noise variance. We refer to
as the SNR.

At the receiver, a linear filter for theth user is characterized
by the -dimensional filter coefficient vector . The
soft data estimate at the output of this filter for useris

(2)

The SIR at the output of the linear filter is

SIR (3)

Note: This is a random variable which is dependent on the
realizations of the spreading sequences. The superscriptin-
dicates the dependence on the processing gain.

In this paper, we will derive an expression for the second-
order MSMU receiver’s large system SIR. We shall be com-
paring the large system SIR performance of the second-order
MSMU receiver with that of the optimal MSMU receiver of (4)
and [33]. In order to do this, we shall first describe the optimal
MSMU receiver in the following section.

III. OPTIMAL MSMU RECEIVER

The general MSMU receiver for users and stage can,
after the th stage, be expressed in the form [7]

(4)

where and are the polynomial co-
efficients. The soft data estimate for users at the output of
stage is

(5)

where .
When the polynomial coefficients are chosen so as to min-

imize the mean squared error for stage the
receiver in (4) is also known as the constrained LMMSE re-
ceiver [7]. As the number of stages increases, the output of this
receiver can be shown to converge to the LMMSE solution. In
a finite-sized system, only stages are needed to attain
LMMSE performance; however, the computational load is the
same as the direct LMMSE receiver. This MSMU receiver has
been analyzed in [33]; however, in that case, the coefficients
were chosen to maximize the total large system SIR over all
users for a particular stage. It is for this receiver that we re-
serve the term optimal MSMU receiver.

In related work, a MSMU receiver which is based on the
steepest descent method [34] also haspolynomial coefficients
for stage , which in [34] are called partial cancellation fac-
tors. The calculation of the partial cancellation factors in-
volves an -dimensional matrix inversion and a sorting rou-
tine ensuring a decreasing monotonic mean squared error at the
output of each stage. By appropriately optimizing this MSMU
receiver, the same performance as the optimal MSMU receiver
can be achieved. In fact, it can also be shown that the MSMU
receiver of [34] is similar in form and performance to an MSMU
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receiver based on a quite general first-order nonstationary linear
iterative solution method (for more details, see [1]–[3]).

Finally, we recall that these multistage receivers ([7], [33],
[34], and the second-order linear MSMU receiver we are consid-
ering here) are suitable techniques which avoid the(or )-di-
mensional matrix inversion of the LMMSE receiver. For the re-
ceivers of [7], [33], and [34], the calculation of the polynomial
coefficients requires an optimization overparameters for an

stage receiver. In contrast, the second-order linear MSMU re-
ceiver is based on the second-orderstationarylinear iterative so-
lution method where only two parameters are needed to ensure
fast convergence to the LMMSE solution. We will show that the
second-order linear MSMU receiver, when its two parameters
are chosen to maximize the large system SIR, can achieve per-
formance close to the optimal MSMU receiver for a practical
range of stages.

IV. SECOND-ORDER MSMU RECEIVERSTRUCTURE

The second-order MSMU receiver considered in this paper
is based on the general second-order stationary linear iterative
solution method of [1]. This receiver has two parameters and
uses data estimates from the preceding two stages to estimate the
data for the current stage. Our linear iterative receiver structure
can be efficiently implemented in a recursive fashion.

We start by considering the -dimensional direct LMMSE
receiver for user

(6)

This receiver involves an matrix inversion. Using the
matrix-inversion lemma [13] and substituting into (6), we have
the direct LMMSE data estimate

(7)

where the direct LMMSE receiver is now given by
and

. Now, by substituting the
direct LMMSE receiver, given in (7), into (3), the SIR for
user is

SIR (8)

In this paper, we focus our attention on MSMU receiver im-
plementations which are computationally less intensive than the
direct LMMSE receiver in (6) and (7), but which achieve near-
LMMSE performance. The main computational cost in imple-
menting the LMMSE receiver, given in (7), comes from the
inversion of the matrix .

Observe from (7) that the LMMSE estimate is given by
, where is the solution to the linear equation

(9)

The second-order stationary linear iterative solution method of
[1] is a technique for efficiently solving (9). Successive esti-
mates for are obtained from the following iteration

(10)

where is the number of iterations (or stages),
, and are real valued parameters which we call

the second-order parameters. The iteration is initialized with
and . From [1], we know that this linear

iterative solution method will converge to the LMMSE receiver
for user , given in (7), as the number of stages increase pro-
vided that the pair are in the range and

, where is the maximum
eigenvalue of . Similar convergence properties exist for
other types of linear and nonlinear interference cancellation re-
ceivers, some of which may be found in [2], [3], [15], and [17].

The second-order expression of (10) can be rewritten in a state
space form, giving

(11)

The data estimate for userand stage at the output of the
second-order MSMU receiver is

(12)

where is the linear filter coefficient vector which charac-
terizes the second-order MSMU receiver. This linear filter coef-
ficient vector can be written in direct form for userand stage

as

(13)

where is derived from (11) and is given by the following
recursion:

(14)

In summary, we have now defined the-dimensional chip rate
filter coefficients of the second-order MSMU receiver for stage

and user .
Now if there were a straightforward relationship between

and the polynomial coefficients of the
linear multistage receiver of (4) [7], then we could simply
substitute for into the SIR expression of [33] and
[35], and we would have the SIR for our second-order MSMU
receiver. However, no such closed form expression exists. In
the following section, we directly derive the large system SIR
of our second-order MSMU receiver.

V. ANALYSIS OF THE LARGE SYSTEM SIR

In this section, we use large system analysis to analyze the
performance of the second-order MSMU receiver. In a standard
approach, we define a large system by taking the CDMA system
parameters and to infinity but keeping their ratio held
fixed. By substituting (13) and (14) into (3), it can be seen that
the key terms of interest in our analysis are random variables of
the form for . Consequently, we
present the following lemmas.
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Lemma 1: If with held fixed, the random
variable converges in probability to the determin-
istic moment given as follows:

where is the limiting empirical distribution function of the
eigenvalues of (see [25], [28], and [36]). Theth moment
of the limiting empirical distribution function can be cal-
culated recursively as

(15)

where and .
Proof: See [3] and [36].

Lemma 2: The direct form of the matrix recursion of
given in (14) is

(16)

where can be calculated recursively
as

(17)

with if , or .
Proof: Substitute (16) in (14), and (17) follows directly.

The following theorem presents the main theoretical result of
this paper, namely, an expression for the large system SIR of our
second-order MSMU receiver.

Theorem 1: Let , with
held fixed. Then, the SIR of the th stage of the second-

order MSMU receiver converges in probability to a determin-
istic scalar SIR given by

SIR SIR (18)

where

(19)

(20)

where the moment is given in Lemma 1 and
is given in Lemma 2.

Proof of Theorem 1:Let be the SIR for user at

stage of the second-order MSMU receiver. Note, that
is a random variable due to the random spreading sequence

model assumed for the large system analysis. Substituting (13)
in (3) gives

SIR

where is an matrix given in direct form in (16)
of Lemma 2.

Now, consider the numerator of and define

where . The limit, as with
the ratio held fixed shall be taken. From Lemma 1 it
follows that:

(21)

for , where is given in (19).
We call the large system limit of the sequence of random
variables (r.v.s.) .

Now, consider the denominator of and define

Similarly, the limit as with the ratio held
fixed is taken. Then

(22)

for , where is given in
(20). We call the large system limit of the sequence of r.v.s.

.

Now, since and , then
with given in (18).

A significant point to note is that we have given the large
system SIR expression for the second-order MSMU receiver in
terms of only the number of stages, the system loading, the two
second-order parameters , and the SNR.

In addition, note that it has recently been shown that as the
system size increases, the bit-error rate (BER) of the direct
LMMSE receiver converges almost surely to
(constrained to antipodal signaling, equal power users in
synchronous CDMA), where is the large system SIR
of the LMMSE receiver and is the Gaussian -function
[37]. This result has also been found to be applicable for linear
multistage receivers [35]. Therefore, we are able to couple
these results with our large system SIR expression to calculate
the BER of the second-order MSMU receiver.
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VI. NUMERICAL RESULTS

In this section, we empirically show that the variance of the
SIR of the second-order MSMU receiver decreases proportion-
ally to , as increases. We then focus on two suitable
second-order MSMU receiver parameters denoted and

which minimize the asymptotic convergence factor as
(to be discussed later on). It is found that these pa-

rameters result in good SIR performance at the output of the
second-order MSMU receiver for a finite number of stages

. We then numerically optimize our receiver to maximize the
large system SIR expression with respect to the second-order
MSMU receiver parameters and . Finally, we compare the
result with the large system SIR of the optimal MSMU receiver.

AverageEmpirical Squared Error

We proved in Theorem 1 that converges in prob-
ability to the large system SIR of the second-order MSMU
receiver, , as and increase with held
fixed. We shall now demonstrate this convergence in another
manner with the empirical mean square error, which is the
mean squared error between and , denoted

. This gives an indication of
the relationship between the variance of the SIR and. An
example of this convergence is illustrated in Fig. 1, where we
have plotted using 1000 samples of for each
value of in the range (incrementing in steps
of four). For each sample of we randomly generated
the spreading sequences. This plot uses , ,

and dB. We empirically found
that showing that the empirical
mean-squared error of the SIR decreases with a relation-
ship. This complements the results presented in [32], where it
has recently been proved that in the case of the decorrelator
and direct LMMSE receiver the fluctuations around the large
system SIR are proportional to .

Optimization of the Second-Order MSMU Receiver

In this section, we numerically optimize the large system
SIR of the second-order MSMU receiver in terms of the
second-order parameters for a finite number of stages.
We compare the optimized parameters with related theoretical
values which are known to minimize the asymp-
totic convergence factor [1].

Second-Order MSMU Receiver Parameters:The asymptotic
convergence factor (ACF) is the spectral radius of the iteration
matrix of the respective iterative solution method [1], [2]. In
the case of the second-order stationary linear iterative solution
method, it is minimized when

and

(23)

where in our case, are the minimum/max-
imum eigenvalues of and

[1]. Using this
expression for ensures convergence to a solu-

Fig. 1. Empirical mean-squared error versusN (m = 4, � = 0:75, SNR =

12 dB).

tion as . However, it is not certain how this relates to
a finite number of stages. For a discussion on the asymptotic
convergence factor, see [1] and [2].

If we consider a large system where with
held fixed, then the extreme eigenvalues of the ma-

trix converge with probability one to two
deterministic scalars

and (24)

See [2] and the references therein.
Therefore, in a large system (with random spreading), we

have approximately

and

(25)

with minimal asymptotic convergence factor, whereindicates
the large system result.

Two-Dimensional (2-D) Optimization:We shall now
numerically maximize with respect to giving
optimized parameters denoted . An example is
shown in Fig. 2 (note the SIR is not in decibels). This plot uses

dB and for Stage 5. We have plotted
the large system SIR for Stage 5 asand varies, where the
spacing between contour levels is 0.197 and the optimized
large system SIR for Stage 5 is 12.1542 (not in decibels). The
optimized large system SIR when is
indicated by a , and indicates the large system SIR when

.
The bounds for which ensure convergence to the direct

LMMSE solution as the number of stagesincreases were pre-
viously stated in Section IV. In a large system, these bounds for
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(a)

(b)

Fig. 2. Large system SIR as� and� varies (� = 0:25 andSNR = 12 dB).
(a) SIR contours of� versus�.

our second-order MSMU receiver may be given by
and . These bounds are shown
by the dashed lines in Fig. 2. It can be seen that the parameters

and are within these bounds. Out-
side the bounds, the SIR performance severely degrades, as can
be seen by the closeness of the contour levels. As the number of
stages increases it has been observed that the plateau of the high
SIR region expands within the bounded area. Any within
this region would eventually give large system LMMSE SIR per-
formance;however,weareprimarily interested ina finitenumber
of stages and hence focus on the maximum point of the region.

TABLE I
NUMERICALLY OPTIMIZED VALUES OF�; � AND SIR (IN dB) IN THE

FORMAT FOR STAGE 5 (VARIOUS� AND SNR)

The numerically optimized values of and, therefore,
(in decibels) for Stage 5 are shown in Table I for a range

of SNRs and system loadings, . We have found that
for the large system second-order parameters
the second-order MSMU receiver gives near-LMMSE perfor-
mance between Stages 5 and 8 for most system loadings. As
well, the optimized values of for Stage 5 may be used
for with negligible degradation.

Performance Comparison

In this section, we compare the performance of our numeri-
cally optimized over second-order MSMU receiver with
that of the th-order optimal MSMU receiver, of [33] discussed
previously. The results are shown in Fig. 3(a) and (b) for up to
Stage 5, where and 0.75, respectively, and

dB. The second-order MSMU receiver has been numerically
optimized specifically for Stage 5 and the optimal MSMU re-
ceiver is separately optimized for each stage (each plotted point)
up to Stage 5. We indicate the large system LMMSE SIR from
[28] by the dashed-dot line. The dashed line indicates the large
system SIR of our receiver when .
The large system SIR of our numerically optimized receiver
is indicated by the dotted line (with marks) when

. The optimal MSMU receiver’s large system SIR
is the solid line.

The surprising result is that the optimized second-order
MSMU receiver gives very similar performance to the op-
timal MSMU receiver, which is considerably more complex
to optimize. Also, in the initial stages the SIR performance
for is only slightly degraded than for the
numerically optimized parameters (as seen in Fig. 3). How-
ever, as the system loading increases the SIR degradation for

slightly increases compared with that of the
optimal MSMU receiver.

Optimization Guidelines

In this section, we decrease the computational load of the 2-D
optimization problem by expressing one of the second-order
MSMU receiver parameters as a simple function of the
other, which leads to a simpler one-dimensional (1-D) optimiza-
tion problem.
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(a)

(b)

Fig. 3. Large system SIR versus Stages (SNR = 12 dB,m = 5). (a)� =

0:25. (b) � = 0:75.

One-Dimensional Optimization:We have found by taking
the line with the slope of the boundary line

, which passes through the point ,
that a 1-D optimization is possible.

This line is given by

(26)

(a)

(b)

Fig. 4. Large system SIR versus� (SNR = 12dB andm = 5). (a)� = 0:25.
(b) � = 0:75.

Substituting this expression forinto the large system SIR, we
performed a simple 1-D numerical search to optimize the large
system SIR with respect togiving , where
substituting into (26) gives .

We show the value for which results in the max-
imum large system SIR along the line given by (26) in Fig. 4(a)
and (b). The vertical dashed line indicates . These plots
use and 0.75, dB, and . We
observed from an extensive investigation that the degradation
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(a)

(b)

Fig. 5. Comparison of Large system SIR versus Stages, for 1-D and 2-D
numerical optimization (SNR = 12 dB andm = 5). (a) � = 0:25.
(b) � = 0:75.

using this approximation is negligible over most system param-
eters of interest.

Finally, we show the large system SIR performance using the
1-D numerical optimization compared with that using the pre-
vious 2-D numerical optimization as the number of stages in-
crease in Fig. 5(a) and (b). These plots use and 0.75,
respectively, dB, and . As can be seen, using

the 1-D approximated values results in neg-
ligible performance degradation as the stages increase compared
with that of the 2-D optimized values .

VII. I MPACT OF UNEQUAL POWER USERS

So far, our discussion has focused on a model where the
users have equal received powers. It is quite straightfor-
ward to apply a similar large system SIR analysis to that
of Section V for the -dimensional receiver for unequal
received powers. The main difference in the large system
analysis will be the key terms of interest which are now
random variables of the form . Here,
diag is a

dimensional matrix of received user powers ex-
cluding the received power of user. Now, taking the limit as

with held fixed, if the empirical distri-
bution of the eigenvalues of converges in probability to a
limiting empirical distribution function denoted by , then

converges in probability to a deterministic
scalar . No simple closed-form expressions are
available for ; however, methods for calculating
these eigenvalue moments can be found in [36] and [38].
Following on with the analysis will give a large system SIR
expression for unequal power users, similar to (18), in terms of

. A recent and related analysis [39] of linear mul-
tiuser receivers incorporates into the spreading sequence

giving the unnormalized spreading sequence for
user . This results in an alternative derivation of the limiting
deterministic moments and will similarly result in an equivalent
large system SIR expression.

While the analysis of the standard receiver as discussed above
is fairly straightforward, the actual performance that results
can be quite poor in situations where the powers of the users
are dramatically different. The key iteration matrix becomes

and when there are big differences in the
entries of the diagonal power matrix this matrix is poorly
conditioned. Practically, this would mean slow convergence, as
the number of stages increase to the LMMSE receiver.

In order to explore this issue further and to hint at a solution to
the problem, it is convenient to work with an alternative form of
the LMMSE receiver and corresponding second-order iterative
implementation. For the received signal model of (1) the linear
MMSE receiver produces the estimate

(27)

where is the vector of LMMSE
receiver estimates and diag is a
diagonal matrix of received user powers, which are assumed
unequal. The ( -dimensional) second-order MSMU Receiver
structure that aims to iteratively implement the above receiver
is

(28)

where is the vector of the received matched
filtered signal. When and are appropriately chosen, then this



TRICHARD et al.: LARGE SYSTEM PERFORMANCE OF SECOND-ORDER LINEAR MULTISTAGE CDMA RECEIVERS 599

receiver will converge to the LMMSE receiver estimate given
above (scaled by ).

Denote as the minimum/maximum eigenvalues
of the iteration matrix . It can be inferred from
[1, Th. C.1] that

and

where and are the minimum and maximum re-
ceived powers. If the powers vary significantly, as they would
in Rayleigh fading for example, then the condition number (the
ratio of the maximum and minimum eigenvalues) has the poten-
tial to be very large leading to instability or to slow convergence
of the iterative algorithm.

A solution to this problem is to use the more general iterative
receiver

(29)
where the receiver of (28) has been modified by the nonsingular

preconditioning matrix [1]. Our numerical investiga-
tions indicate [40], [41] that a good choice foris the diagonal
matrix , which minimizes the eigenvalue spread.
The large system analysis of this modified receiver is the subject
of current research.

VIII. C ONCLUSION

In this paper, we derived an expression for the large system
SIR of the second-order MSMU receiver. We have shown that
the large system SIR only depends on the number of stages, the
system loading, two second-order MSMU receiver parameters,
and the SNR. We have shown experimentally that as
increase with their ratio held constant, the average empirical
mean squared error between the large system SIR and the SIR
of our receiver decreases with a relationship. Further,
using simple numerical methods the large system SIR can
be optimized in terms of both the second-order parameters.
We have shown that it is possible to attain the performance
of the optimal MSMU receiver with only two parameters
to select compared with selecting the coefficients of the
optimal MSMU receiver. Finally, we have found that the line
with slope (parallel to boundary
line), which passes through the point reduces
the computational cost of the numerical optimization with
negligible overall performance degradation.
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