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Linear Multistage CDMA Recelivers
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Abstract—In this paper, we analyze the performance of a though nonlinear MSMU receivers have been shown to perform
second-order linear multistage multiuser code-division multiple- petter in certain situations. This is due to many nonlinear
access receiver. The receiver’s filtered output is designed to con-proposmS employing the LMMSE receiver as a frontend filter
verge to that of the Iinea_r minimum mean-sqpa_red error solution for examples, see [20]-[22]), where efficient implementations
as the number of stages increase. Our analysis is based on a relateo( ples, ) ’ . P
second-order stationary iterative solution method. We derive the Of the LMMSE receiver are desirable. As an example, the
large system output signal to interference-plus-noise ratio for each direct LMMSE receiver in a -user-long spreading sequence
stage. We use this result to perform a numerical optimization with  CDMA system, (where adaptive receivers are not applicable)
respect to the two second-order parameters of our receiver. Within with processing gainV has a typical computational cost of
this iterative framework, we can achieve performance extremely O(K3 O(N? bok | trast. li ltist
close to the optimal linear multistage multiuser receiver. (K°) or ( . ) per symbok In contrast, linear mu2|s age

o o . IC receivers will have a computational cost 6f{mK?=) or

Index Terms—Large system analysis, linear iterative multiuser O(mN?) per symbol, wheren is the number of stages. We
detection, linear minimum mean-squared error (MMSE) detec- . RPN . . o .
tion, random spreading. are interested in finding linear MSMU receivers which attain

near-LMMSE performance fan <« K.
In this paper, we make use of the theory of linear iterative
. INTRODUCTION solution methods which are commonly used to numerically

INEAR iterative solution methods provide a host of usefiolve systems of linear equations [1], [2]. In particular, we

L results for designing linear iterative multiuser receivefonsider the second-order stationary linear iterative solution
structures for code-division multiple-access (CDMA) systenfgéthod [1], [2]. This is an important extension on our previous
[1]-[3]. These receiver structures are of great interest duevy@rk_whlch considered a fwst—qrder stationary linear iterative
their ability to asymptotically attain linear minimum meanSolution method (for more details, see [3], [19], and [23]). It
squared error (LMMSE) performance. The popularity of thIrns out that in the second-order case, the data estimates at the
LMMSE and related receivers is due to their vastly reducé/tput of each stage of the receiver converge significantly faster
complexity compared with the optimal maximume-likelihood© the LM_MSE solution .when compared with data estimates
receiver [4], and to their ability to suppress multiple-acced&om the first-order receiver of [3] and [23] as the number of
interference, especially compared with the conventional singfiagesn increase (see also [24]).
user matched filter (SUMF) receiver [5]. Unfortunately, even In orderto_analyze th_e perf_ormance ofthe second-order linear
the direct LMMSE receiver can often be too computationally}SMU receiver, we will utilize so-called large system anal-
demanding, paving the way for linear multistage multiuséf§is- We define a large system by taking the CDMA system
receivers with even less computational complexity. Our papeirametersV and K to infinity but keeping their ratida =
focuses on a second-order linear multistage multiuser (MSMBY V) held fixed. By doing this, a range of useful mathemat-
receiver. ical results can be applied (see [25] and [26]). In related work,

Linear MSMU receivers fall within the wider class oflarge system analysis has previously been used to determine the
multistage interference cancellation (IC) multiuser receiver@gnal-to-interference plus noise ratio (SIR) of linear COMA re-
for which there are numerous linear and nonlinear impleme#€!Vers including the conventional SUMF, the decorrelator and

many other useful analytical techniques such as random ma-
_ _ _ trix analysis, (for more details see [29] and [30]), which can
Manuscript received December 5, 2001; revised June 11, 2002 and Augyal yseful in the analysis of multiuser receivers [31]. This paper
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the signature sequences. In addition, we also give empirical effer &k = 1, ..., K), and we assume perfect estimation of the re-

dence which suggests that for any particular realization the fluseived user powers and the noise variamteWe refer toP/ o>

tuations around the large system SIR are proportiona)/?6, as the SNR.

(a similar result has recently been proved for the decorrelatorAt the receiver, a linear filter for theth user is characterized

and the LMMSE receiver [32]). by the N-dimensional filter coefficient vectot, € RY. The
Further, we numerically maximize the large system SIR gbft data estimate at the output of this filter for uses

the second-order linear MSMU receiver with respect to the two R

second-order receiver parameters. We will show the surprising b, = cjr. )

resu!t, namely, that the o.ptimized second-order Iingar MSMEhe SR at the output of the linear filteg, is

receiver can, for a practical range of stages, achieve perfor-

mance with order close to the linear MSMU receiver given in

[7] and [33] often called the optimal linear MSMU receiver.

This optimal linear MSMU receiver is “optimal” in the sense R . L

of maximizing the total large system SIR over all users for a N_ote._Thls IS a random_ variable which is dependen';_on the

particular stagen [33]. In contrast to the two parameters of ouFeallzatlons of the spreading sequences. The superStij-

second-order receiver, it requires aith-order optimization at dlcate§ the dependen_ce on _the processing gain.
each stagen. In this paper, we will derive an expression for the second-

This paper is organized as follows. The CDMA signal modé’lrd_er '\thMlU recem:r’s Ig:gRe sy?tem SIR. \;thSha" bedcorg—
is described in Section II. We describe the optimal linear MSM fing the farge system performance of the second-order
receiver followed by the second-order linear MSMU receiv SMU receiver with that of the optimal MSMU receiver of (4)

in Sections Il and IV. We derive the large system SIR for oﬁ]d [33]. In prde_r to do this, we shal! first describe the optimal
receiver in Section V. We show that the second-order line SMU receiver in the following section.

MSMU receiver can attain performance close to that of the op-
timal linear MSMU receiver in Section VI. In Section VII, we
briefly discuss the effects of unequal power users. Finally, weThe general MSMU receiver fak users and stage: can,

P(cfsi)?
cI(PSkST + 02T)cy

SIRM) = (3)

I1l. OPTIMAL MSMU RECEIVER

conclude with a summary in Section VIII. after themth stage, be expressed in the form [7]

Note: As discussed above, this paper focuses on linear re- m
ceiver structures. For the remainder of this paper, we omit the C, =S Z a; (STS)i 4)
word “linear” when discussing receivers so as to ease read- P

ability. All receivers are linear unless otherwise stated.

whereC,,, = [¢1,m, .-, Ck,m] @nda; are the polynomial co-
efficients. The soft data estimate f&f users at the output of
Il. SIGNAL MODEL :
stagern is
In this paper, we consider & user synchronous direct se- . ’
quence code-division multiple-access (DS-CDMA) communi- by, = Cpr )
cation system with a processing gain/&t We shall consider - . -
Y P 99 whereb,, = [bo m, -+ br,m]T.

the standard real baseband signal model (as used in [13]). When the polynomial coefficients are chosen so as to min-
The N-dimensional chip matched filter vector for each poly

symbol interval is given by |mizg the_ mean squared erréf(b — b,,)?] for stagem the
receiver in (4) is also known as the constrained LMMSE re-
K ceiver [7]. As the number of stages increases, the output of this
r= Z V/Pibisk +n (1) receiver can be shown to converge to the LMMSE solution. In
k=1 a finite-sized system, onl)’ — 1 stages are needed to attain
. _ . LMMSE performance; however, the computational load is the
whereby, is the data bit of usek, P, is the power of usek,  same as the direct LMMSE receiver. This MSMU receiver has
s; is the N-dimensional spreading sequence of useandn  heen analyzed in [33]; however, in that case, the coefficients
is additive white Gaussian noise (AWGN) with zero mean anglere chosen to maximize the total large system SIR over all
covariancer’I. The N’ x K spreading sequence matrix3s=sers for a particular stage. It is for this receiver that we re-
[s1...sk]. We shall define théV x (K —1) spreading sequenceggrye the term optimal MSMU receiver.
matrix excluding the spreading sequence of Us@sS; = In related work, a MSMU receiver which is based on the
[s1, .-, Sk—1, Skt1, .- -, Sk]. steepest descent method [34] alsomgsolynomial coefficients
We assume that all users employ (baseband) binary antipoglstagem, which in [34] are called partial cancellation fac-
modulation. We shall also use a random spreading model whesgs. The calculation of the: partial cancellation factors in-
the elements o8 are independent and identically distributedolves anm-dimensional matrix inversion and a sorting rou-
(i.i.d.) random variables taking values1 /v/N with an equal tine ensuring a decreasing monotonic mean squared error at the
probability. The random spreading assumption is needed for thgtput of each stage. By appropriately optimizing this MSMU
large system analysis, which follows in Section V. We also ageceiver, the same performance as the optimal MSMU receiver
sume that the spreading sequences are known at the recetam, be achieved. In fact, it can also be shown that the MSMU
the received user powers are equal with common pdwet P receiver of [34] is similar in form and performance to an MSMU
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receiver based on a quite general first-order nonstationary linedrerem is the number of iterations (or stage®), = S,S} +
iterative solution method (for more details, see [1]-[3]). (¢2/P)1, and(x, ) are real valued parameters which we call
Finally, we recall that these multistage receivers ([7], [33the second-order parameters. The iteration is initialized with
[34], and the second-order linear MSMU receiver we are consiglz o = fr andxj, —; = 0. From [1], we know that this linear
ering here) are suitable techniques which avoidth@r N)-di- iterative solution method will converge to the LMMSE receiver
mensional matrix inversion of the LMMSE receiver. For the rdfor userk, given in (7), as the number of stages increase pro-
ceivers of [7], [33], and [34], the calculation of the polynomialided that the paifx, 3) are in the rangd < x < 2 and
coefficients requires an optimization overparameters for an 0 < 8 < 2x/(Amax + (02/P)), Where .« is the maximum
m stage receiver. In contrast, the second-order linear MSMU rEigenvalue ofS;SZ. Similar convergence properties exist for
ceiver is based on the second-orsigtionarylinear iterative so- other types of linear and nonlinear interference cancellation re-
lution method where only two parameters are needed to ensoedvers, some of which may be found in [2], [3], [15], and [17].
fast convergence to the LMMSE solution. We will show that the The second-order expression of (10) can be rewritten in a state
second-order linear MSMU receiver, when its two parametespace form, giving
are chosen to maximize the large system SIR, can achieve per-
formance close to the optimal MSMU receiver for a practicaT Rk, m } - [(HI — 0Zk) (1= H)I} {X’am—l} 18 {r} _
range of stages. Xk, m—1 I 0 Xk, m—2 0
(11)

IV. SECOND-ORDER MSMU RECEIVER STRUCTURE )
The data estimate for usérand stagen at the output of the

. The second-order MSMU receiver cons.idered in this. Pap&scond-order MSMU receiver is

is based on the general second-order stationary linear iterative .

solution method of [1]. This receiver has two parameters and br = STXk,m = C;‘gmr (12)

uses data estimates from the preceding two stages to estimate the is the [ il fhici hich ch

data for the current stage. Our linear iterative receiver structf8€"eck, m is the linear filter coefficient vector which charac-

can be efficiently implemented in a recursive fashion. terizes the second-order MSMU receiver. This linear filter coef-
We start by considering tha'-dimensional direct LMMSE ficient vector can be written in direct form for uskeland stage

receiver for usek m as

2 —1 m
cp = P12 <ssT + % I) Sk. (6) Chom =B Mg(i)sk (13)
=0

This receiver involves aiv x N matrix inversion. Using the N . — .
matrix-inversion lemma [13] and substituting into (6), we hav\éVhereMk(Z) is derived from (11) and is given by the following

the direct LMMSE data estimate recursion:
i 2\ My (0) =1
=cTr = ¢, P 1/25T T, % g 7 k
k= o (SkSk - P ' % My, (1) = (k1 — BZy,)
where the direct LMMSE receiver is now given by My(i) = (kI — Zp)Mg(i — 1) + (1 — k) Mg(i — 2). (14)
= &PTVASSY + (07/P)D)7'sp and & =

1/(1 + sT(SkST + (02/P)T)~'s;,). Now, by substituting the In summary, we have now defined th&dimensional chip rate
direct LI\];IMSEkreceiverpk given in (7), into (3), the SIR for filter coefficients of the second-order MSMU receiver for stage

userk is m and userk.
b\ —1 Now if there were a straightforward relationship between
SIRI(CN) _ T <Ska + T I) Sk 8) (.n./ B) and.the ponnomiaI coefficient&ay, ..., a,,) of the
P linear multistage receiver of (4) [7], then we could simply
In this paper, we focus our attention on MSMU receiver insubstitute fofao, ..., a.,) into the SIR expression of [33] and

plementations which are computationally less intensive than #&9], and we would have the SIR for our second-order MSMU
direct LMMSE receiver in (6) and (7), but which achieve neareceiver. However, no such closed form expression exists. In
LMMSE performance. The main computational cost in implghe following section, we directly derive the large system SIR
menting the LMMSE receiver;, given in (7), comes from the of our second-order MSMU receiver.
inversion of theV x N matrix (S.S} + (o2/P)1).

Observe from (7) that the LMMSE estimate is givenipy= V. ANALYSIS OF THE LARGE SYSTEM SIR

“1/24T i i : : o .
P~/7s} xy,, wherex; is the solution to the linear equation In this section, we use large system analysis to analyze the

o2 performance of the second-order MSMU receiver. In a standard
2 L)xp=r. ©) approach, we define a large system by taking the CDMA system
The second-order stationary linear iterative solution methodr%?rametergv a_nd_K o infinity but .keeplng.thew ratio heid
i . . . . ixed. By substituting (13) and (14) into (3), it can be seen that
[1] is a technique for efficiently solving (9). Successive est*—h K i ; vsi bl f
mates forx, are obtained from the following iteration e key terms of interest in our analysis are random variables o
’ the forms? (S S%)’s;, for 0 < i < 2m + 1. Consequently, we
Xie,m = (KL — BZg)Xkm-1 + (1 — K)Xpm—2 + fr  (10) present the following lemmas.

(Sksf +
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Lemmal: If N — oo with« = K/N held fixed, the random model assumed for the large system analysis. Substituting (13)
variables? (S, ST)’s; converges in probability to the determin-in (3) gives
istic momenty); (a) given as follows:

ST (8:ST)si2i(a) = [ NGy SIRY)

whereG()) is the limiting empirical distribution function of the
eigenvalues 08, S7 (see [25], [28], and [36]). Th&h moment
of the limiting empirical distribution functiorh; («) can be cal-
culated recursively as

(Sg i Mk(i)5k> 2

=0

) 2 M (i) M (5) (SkST + % I) sy,

whereM(i) is anN x N matrix given in direct form in (16)
of Lemma 2.
Now, consider the numerator IR and define

k,m
1
Yila) = ——[(2i = 1)(1 + a)hi—1(a) m m '
o —(i = 2)(1 — @)*¢ia(e)]  (15) T =SE D Mi(isi =3 Z a;ist (SkSt) s

i=0 i=0 j=0
whereyy(a) = 1 andy;(a) = a. wherea; (02, P, k, ) = a; ;. The limit, asN — oo with
Proof: See [3] and [36]. the ratioa = K/N held fixed shall be taken. From Lemma 1 it
Lemma 2: The direct form of the matrix recursion ™, (i) follows that:

given in (14) is ) m
. o Lonm =Y fila, o2, P, s, §) (21)

My (i) = Y a;.i(0”, P, s, B)(SkSE ) (16) =0
=0 for0 < ¢;(a) < oo, wherefi(a, o2, P, k, 3) is givenin (19).

We calln,, the Iarge system limit of the sequence of random

wherea, ;(c2, P, i = a; ; can be calculated recursivel
3,i(0% Py 6, ) G Yvariables (rvs)yk ).

as
Now, consider the denominator SIR and define
ag,0 = 1
o? ( S T o’
aji = (H—ﬁ?> aji—1+(1—k)aji—o—Paj_1,-1 (17) Viem = Sk z; My ()M ()  SkS + FI Sk
1=0 j=
with a; ; 20if j < 0,i <0ori—j <O0. :ZZ - apiay.
Proof: Substitute (16) in (14), and (17) follows directly. i=0 =0 k=0 1=0 e

The following theorem presents the main theoretical result of o2
this paper, namely, an expression for the large system SIR of our . {s{ (SkSZ)kH+1 sk+ 5 St (SkST)kH sk} .
second-order MSMU receiver.

Theorem 1:Let N, K — oo, With 0 < « = (K/N) < Similarly, the limit asN — oo with the ratioa = K/N held
oo held fixed. Then, the SIR of thexth stage of the second-fixed is taken. Then

order MSMU receiver converges in probability to a determin- N m m
istic scalar SIR, given by v L =3 giila, 0% Pk ) (22)
. 9 i=0 j=0
{ fi (a, 02, P, K, B) for 0 < ;(a) < oo, whereg; j(a, o, P, x, 3) is given in
SIRECJ_V% L SIR, = == ?n (18) (20). We callv, the large system limit of the sequence of r.v.s.
| > 3 gijl 0% Pk, f) Vi
1=07=0 Now, sincer;k 2t andu —n/m, thenSIR(N) LSIR,,
where with STR,,, given in (18). O
i A significant point to note is that we have given the large
file, 0%, P, K, B) = Z ajii(a) (19) system SIR expression for the second-order MSMU receiver in
j=0 terms of only the number of stages, the system loading, the two
ig second-order parametgps, (3), and the SNR.
gij(a,d® P K, B) = Z ki1, In addition, note that it has recently been shown that as the
k=0 1=0 system size increases, the bit-error rate (BER) of the direct
o? LMMSE receiver converges almost surely (./SIR],)
[1/}k+z+1( )+ P Yr+i(a) | (20) (constrained to antipodal signaling, equal power users in

synchronous CDMA), wher8IR!, is the large system SIR
where the momenty;(a) is given in Lemma 1 and ot yhe | MMSE receiver and)(.) is the Gaussia-function
ak,i(0%, P, ki, B) = a,i is given |JrV1 Lemma 2. [37]. This result has also been found to be applicable for linear
Proof of Theorem 1:Let SIR{"), be the SIR for usek at multistage receivers [35]. Therefore, we are able to couple
stagen of the second-order MSMU receiver. Note, tBhE{( ), these results with our large system SIR expression to calculate
is a random variable due to the random spreading sequetime BER of the second-order MSMU receiver.
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VI. NUMERICAL RESULTS

In this section, we empirically show that the variance of the 10'L ™
SIR of the second-order MSMU receiver decreases proportion- AN
ally to 1/N, as N increases. We then focus on two suitable %
second-order MSMU receiver parameters denotgg, and %
Ber Which minimize the asymptotic convergence factor as Yva,

m — oo (to be discussed later on). It is found that these pa- & \.\
rameters result in good SIR performance at the output of the L Y
second-order MSMU receiver for a finite number of stages (7Y
0o. We then numerically optimize our receiver to maximize the 107 o,
large system SIR expression with respect to the second-order
MSMU receiver parameters and 5. Finally, we compare the
result with the large system SIR of the optimal MSMU receiver.

Empirical MS

AverageEmpirical Squared Error

We proved in Theorem 1 thaSlR,(é\zl converges in prob-
ability to the large system SIR of the second-order MSMU 10" .
receiver,SIR,,,, as N and K increase witho = K/N held 10 1¢ 10
fixed. We shall now demonstrate this convergence in another Processing Gain (N)
manner with the empirical mean square error, which is ﬂfﬂ?g. 1. Empirical mean-squared error versvigm = 4, a = 0.75, SNR =
mean squared error betweéiR,, and STIR™Y) | denoted 12 dB).

k, m?
¢™ = (SIR,, — SIR™))2. This gives an indication of . _ _
the relationship between the variance of the SIR ahdan ton asm — oo. However, it is not certain how this relates to.
example of this convergence is illustrated in Fig. 1, where v INite number of stages. For a discussion on the asymptotic
have plottede™) using 1000 samples #IR(") for each CONvergence factor, see [1] and [2].

. . o If we consider a large system wheke — oo with 0 < a =
< N< _ .
value of\' in the ranges < NV —(1\%68 (incrementing in steps K/N < 1 held fixed, then the extreme eigenvalues of the ma-
of four). For each sample &fIR, ", we randomly generated

. .k, m . 07 o trix (SiS{ + (0%/P)I) converge with probability one to two
the spreading sequences. This plot uses= 4, a = 0.75, deterministic scalars

8§ < N < 368 andSNR = 12 dB. We empirically found ) )
that ")~ éN) = 140N " showing that the empirical fomin — = and e — (Va+ 12+ 2. (24)
mean-squared error of the SIR decreases witli/é relation- P P

ship. This complements the results presented in [32], whereSie [2] and the references therein.

has recently been proved that in the case of the decorrelatof herefore, in a large system (with random spreading), we
and direct LMMSE receiver the fluctuations around the lardeave approximately

system SIR are proportional tg N . 5 ((\/5 N 1)2 N %)
Optimization of the Second-Order MSMU Receiver RACF = 2 oo - 2 o
In this section, we numerically optimize the large system (Va+1)"+ % + \/ 2 (2 (Va+1)"+ %)
SIR of the second-order MSMU receiv&lR,,, in terms of the gng
second-order parametefs, 3) for a finite number of stages. ___ 2SR
We compare the optimized parameters with related theoreticAcF = m (25)
values(kacr, Bacr) Which are known to minimize the asymp- o P o
totic convergence factor [1]. with minimal asymptotic convergence factor, whesendicates

Second-Order MSMU Receiver Parametef&he asymptotic the large system result. S
convergence factor (ACF) is the spectral radius of the iteration TWO-Dimensional - (2-D) ~ OptimizationWe shall now
matrix of the respective iterative solution method [1], [2]. Ifumerically maximizeSIR,, with respect to(x, 3) giving
the case of the second-order stationary linear iterative soluti@ptimized parameters denotemax; Jmax). An example is

method, it is minimized when shown in Fig. 2 (ote the SIR is not in decibglshis plot uses
9 SNR = 12 dB anda = 0.25 for Stage 5. We have plotted
K =FKACF = — === the large system SIR for Stage 5asndg varies, where the
L+ v(1=pp) spacing between contour levels is 0.197 and the optimized
and large system SIR for Stage 5 is 12.1542 (not in decibels). The
B = fBacr = _ 2RacF (23) optimized large system SIR Whe®, 3) = (Fmax, fmax) IS
Pmin + fimax indicated by ak, andx indicates the large system SIR when
where in our case,fimin/ftmax are the minimum/max- (, 8) = (KXeps BReF)-
imum eigenvalues of(S,S; + (¢2/P)I) and py = The bounds fofx, () which ensure convergence to the direct

[1 — (Kmin/tmax)]/[1 + (min/Bmax)] [1]. Using this LMMSE solution as the number of stagesncreases were pre-
expression fo(kacr, Bacr) €nsures convergence to a soluviously stated in Section IV. In a large system, these bounds for
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.- SIR =12.0958
5,ACF

High SIR region
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| * (o Bace) E
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—————————————— "7’ PCFBounds
_
Level = 0.19672
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SIR
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Fig. 2. Large system SIR asand3 varies (r = 0.25 andSNR = 12 dB).

(a) SIR contours ok versusg.

our second-order MSMU receiver may be givenlby x < 2
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TABLE |
NUMERICALLY OPTIMIZED VALUES OF , 3 AND SIR,, (IN dB) IN THE

FormAT ({;:”) FOR STAGE 5 (VARIOUS & AND SNR)
SNR (@B)
a=£ 3 6 9 12 15
o125 | (V16,080 [ (130, 112) [ (1462, L410) [ (1.65,1.68) [ (182, 1.72)
: 263 555 850 11.46 14.43
025 | (FL8.0.75) | (135,008) [ (150, 121) | (167, 140) | (182, 156)
2 226 5.08 794 10.85 1377
oz7s || (F22.0.70) | (L37,090) [ (155, 111) | (1.7, 138) | (TL L40)
: 1.8 4.58 734 10.14 12.97
os (125,0.66) | (1.41,085) | (1,60, 1.03) | (1.79, 1.20) | (1.99, 1.34)
: 1.50 4.06 6.67 931 11.90
os2s | (126.0.62) | (143,0.79) | (162,0.86) | (12, L11) | (200, 1.20)
: L11 353 5.94 832 10.55
75 (| (25,089) | (144,0.74) | (1.63,0.89) | (181,109) | (197,11
0.73 298 5.17 724 9.04
og7s | (F29.0:56) | (145,0.70) | (162,0.83) | (1.78,0.98) | (T9L, Lo1)
: 0.36 244 439 6.14 7.54
1 (120,0.53) | (1.45,066) | (1.60,0.77) | (1.74,0.85) | (1.84,0.91)
| 001 1.90 363 5.07 6.15

The numerically optimized values of, 8 and, therefore,
SIRj; (in decibels) for Stage 5 are shown in Table | for a range
of SNRs and system loadings,= K/N. We have found that
for the large system second-order parametef§.r, S3cr)
the second-order MSMU receiver gives near-LMMSE perfor-
mance between Stages 5 and 8 for most system loadings. As
well, the optimized values ofx, 3) for Stage 5 may be used
for m < 8 with negligible degradation.

Performance Comparison

In this section, we compare the performance of our numeri-
cally optimized ove(x, /) second-order MSMU receiver with
that of thernth-order optimal MSMU receiver, of [33] discussed
previously. The results are shown in Fig. 3(a) and (b) for up to
Stage 5, wherex = 0.25 and 0.75, respectively, ariNR. =
12 dB. The second-order MSMU receiver has been numerically
optimized specifically for Stage 5 and the optimal MSMU re-
ceiver is separately optimized for each stage (each plotted point)
up to Stage 5. We indicate the large system LMMSE SIR from
[28] by the dashed-dot line. The dashed line indicates the large
system SIR of our receiver whek, 5) = (kXcr, Baer)-

The large system SIR of our numerically optimized receiver
is indicated by the dotted line (with marks) when(x, ) =
(Kmax; Pmax)- The optimal MSMU receiver’s large system SIR
is the solid line.

The surprising result is that the optimized second-order
MSMU receiver gives very similar performance to the op-
timal MSMU receiver, which is considerably more complex
to optimize. Also, in the initial stages the SIR performance
for (k3%crs Ber) is only slightly degraded than for the
numerically optimized parameters (as seen in Fig. 3). How-

and0 < 8 < 2x/((/a+1)2+02/P). These bounds are showneVer, as the system loading increases the SIR degradation for
by the dashed lines in Fig. 2. It can be seen that the paramefer$cr, Sxcr) Slightly increases compared with that of the
(Kmaxs Bmax) @Nd(K3p, B3%r) are within these bounds. Out-optimal MSMU receiver.

side the bounds, the SIR performance severely degrades, ascan . | o

be seen by the closeness of the contour levels. As the numbePgfimization Guidelines

stages increases it has been observed that the plateau of the higthis section, we decrease the computational load of the 2-D

SIR region expands within the bounded area. Aay3) within

optimization problem by expressing one of the second-order

this region would eventually give large system LMMSE SIR peMSMU receiver parameters:, 3) as a simple function of the
formance; however, we are primarily interested in a finite numbether, which leads to a simpler one-dimensional (1-D) optimiza-
of stages and hence focus on the maximum point of the regi@ion problem.
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Fig. 3. Large system SIR versus Stagéed R = 12 dB,m = 5). (@)« =

0.25. (b) o = 0.75.

One-Dimensional OptimizationWe have found by taking

the line with the slope of the boundary litk= 2x/((/a +
1)2 + 02/ P), which passes through the poiMcr, B3cr),

that a 1-D optimization is possible.
This line is given by

8= K+ /BKOCF_(

(Va+1)2+ %

oo
263cr

o2
\/&4—1)2—1—?

(26)
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Fig.4. Largesystem SIRversagSNR = 12dBandm = 5).(a)a = 0.25.
(b) @ = 0.75.

Substituting this expression fgrinto the large system SIR, we
performed a simple 1-D numerical search to optimize the large
system SIR with respect t0giving (K max, 1d, Omax, 14), Where
substitutings = Kmax, 14 INtO (26) giVESBmax, 14-

We show the value foFmax, 14 Which results in the max-
imum large system SIR along the line given by (26) in Fig. 4(a)
and (b). The vertical dashed line indicatgs.x, 14. These plots
use« 0.25 and 0.75,SNR = 12 dB, andm 5. We
observed from an extensive investigation that the degradation
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the 1-D approximated valu¢s,,.ax, 14, Smax, 14) results in neg-
ligible performance degradation as the stages increase compared
with that of the 2-D optimized valug%max, Omax)-

VII. I MPACT OF UNEQUAL POWER USERS

So far, our discussion has focused on a model where the
users have equal received powers. It is quite straightfor-
ward to apply a similar large system SIR analysis to that
of Section V for the N-dimensional receiver for unequal
received powers. The main difference in the large system
analysis will be the key terms of interest which are now
random variables of the forns! (S;P:SY)’s;. Here, P}, =
diangl, ~-~7Pk—17Pk+17 ...,PK] is a K — 1 x
K — 1 dimensional matrix of received user powers ex-
cluding the received power of uskr Now, taking the limit as
N — oo with « = K/N held fixed, if the empirical distri-
bution of the eigenvalues @ converges in probability to a
limiting empirical distribution function denoted biy(P), then
s{(SkPkSk)isk converges in probability to a deterministic
scalari;(«, F(P)). No simple closed-form expressions are
available fory;(«, F(P)); however, methods for calculating
these eigenvalue moments can be found in [36] and [38].
Following on with the analysis will give a large system SIR
expression for unequal power users, similar to (18), in terms of
¥;(a, F(P)). Arecent and related analysis [39] of linear mul-
tiuser receivers incorporatggP;, into the spreading sequence
s, giving the unnormalized spreading sequengé®s; for
userk. This results in an alternative derivation of the limiting
deterministic moments and will similarly result in an equivalent
large system SIR expression.

While the analysis of the standard receiver as discussed above
is fairly straightforward, the actual performance that results
can be quite poor in situations where the powers of the users
are dramatically different. The key iteration matrix becomes
(SkPrSE + o2I) and when there are big differences in the
entries of the diagonal power mat®;, this matrix is poorly
conditioned. Practically, this would mean slow convergence, as
the number of stages increase to the LMMSE receiver.

In order to explore this issue further and to hint at a solution to
the problem, it is convenient to work with an alternative form of
the LMMSE receiver and corresponding second-order iterative
implementation. For the received signal model of (1) the linear
MMSE receiver produces the estimate

b=P Y2STS + 2P~ 1)"!STr (27)
[b1, ..., bx]T is the K x 1 vector of LMMSE
receiver estimates an® = diagP, ..., Px]isaK x K
diagonal matrix of received user powers, which are assumed
unequal. The K -dimensional) second-order MSMU Receiver

using this approximation is negligible over most system pararstructure that aims to iteratively implement the above receiver

eters of interest.

is

Finally, we show the large system SIR performance using the . R
1-D numerical optimization compared with that using the preb,, = (kI—(S'S+0?P~1))b,,_1+(1—k)b,,_2+ Sy (28)
vious 2-D numerical optimization as the number of stages in-
crease in Fig. 5(a) and (b). These plots use 0.25 and 0.75, wherey = STr is the K x 1 vector of the received matched
respectivelySNR = 12 dB, andm = 5. As can be seen, usingfiltered signal. Whem: andg are appropriately chosen, then this
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receiver will converge to the LMMSE receiver estimate given [6]
above (scaled bp!/2).

Denotey, (i /ur5y as the minimum/maximum eigenvalues (7
of the iteration matriXS”'S + o?P~1). It can be inferred from

1, Th. C.1] that

[ ] ]
2 2

and pUEP > 14

max

UEP
min

<1+

J,max 7,min [9]

whereP; min and P; max are the minimum and maximum re-
ceived powers. If the powers vary significantly, as they would 10]
in Rayleigh fading for example, then the condition number (the
ratio of the maximum and minimum eigenvalues) has the poten-
tial to be very large leading to instability or to slow convergenc
of the iterative algorithm.

A solution to this problem is to use the more general iterativd12]
receiver [13]
b, = (kI— U (STS+02P~1))byy—1+(1—£)by,_o+3Uy

(29)
where the receiver of (28) has been modified by the nonsingular
K x K preconditioning matribU [1]. Our numerical investiga- [15]
tions indicate [40], [41] that a good choice foris the diagonal
matrix [I+ o*P~']~*, which minimizes the eigenvalue spread. ,
The large system analysis of this modified receiver is the subject
of current research.

[14]

[17]

VIIl. CONCLUSION
. . . (18]
In this paper, we derived an expression for the large system

SIR of the second-order MSMU receiver. We have shown that
the large system SIR only depends on the number of stages, tHé)]
system loading, two second-order MSMU receiver parameters,
and the SNR. We have shown experimentally that\ask  [20]
increase with their ratio held constant, the average empirical
mean squared error between the large system SIR and the SiR]
of our receiver decreases with 1@N relationship. Further,
using simple numerical methods the large system SIR cap,
be optimized in terms of both the second-order parameters.
We have shown that it is possible to attain the performance
of the optimal MSMU receiver with only two parameters (23]
to select compared with selecting the coefficients of the
optimal MSMU receiver. Finally, we have found that the line [24]
with slope 2/((v/a + 1) + o2?/P) (parallel to boundary
line), which passes through the poiM3, ., f3cr) reduces [25]
the computational cost of the numerical optimization with
negligible overall performance degradation. [26
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