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Abstract—In this paper, we derive an expression for the signal
to interference-plus-noise ratio of a linear multistage parallel in-
terference cancellation receiver. We focus on a linear multistage re-
ceiver which converges to the linear minimum mean-squared error
receiver as the number of stages increases. The signal to interfer-
ence-plus-noise ratio is given in terms of the system loading, the
partial cancellation factor, the number of stages, and the signal-to-
noise ratio. Our expression also allows a simple approximation for
the bit error rate at each stage. Finally, we perform a numerical op-
timization to maximize the signal to interference-plus-noise ratio
expression with respect to the partial cancellation factor of the re-
sulting linear multistage receiver.

Index Terms—Large system analysis, linear minimum mean-
squared error, multiuser detection, parallel interference cancella-
tion, random spreading.

I. INTRODUCTION

M ULTIUSER receivers can dramatically outperform
conventional single-user matched filter (SUMF) code-

division multiple-access (CDMA) receivers by exploiting the
structure of multiple-access interference (MAI). Unfortunately,
the optimal multiuser receiver [maximum-likelihood (ML)] is
prohibitively complex for the system sizes of interest [1]. The
linear minimum mean-squared error (LMMSE) receiver can
outperform the conventional SUMF CDMA receiver, and can
do so with less computational load than the optimal multiuser
receiver [2]. Our paper focuses on a linear multistage parallel
interference cancellation (IC) receiver which can achieve
near-LMMSE performance with even less computational
complexity.

In this paper, we consider a user-synchronous CDMA
system with a processing gain employing long spreading
sequences. Such sequences are much longer than the symbol
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interval. When long spreading sequences are used, (such as in
IS-95 and allowed for in IMT-2000), the LMMSE receiver is
different for every symbol interval, and has to be recalculated at
a cost of per symbol. In this case, multistage receivers
can reduce the computational cost to or
per symbol (depending on the implementation), whereis the
number of stages which does not depend on the system size.

The well-known IC receiver of [3] may be regarded as one of
the first examples of a multistage IC receiver for CDMA. Each
stage estimates and cancels MAI from the hard decisions of fil-
tered measurements at the output of the preceding stage. How-
ever, incorrect decisions can propagate from one stage to the
next, depending on the level of MAI. It is this problem that en-
couraged the development of numerous linear and nonlinear IC
algorithms [2], [4]–[17]. An example is that of partial parallel
IC (PIC) which was centered on analyzing the decision statistics
at the output of an arbitrary stage of a multistage PIC receiver,
where all user filter measurements are estimated simultaneously
[8]–[10]. The amount of MAI cancelled is controlled by what
we call partial cancellation factors. Design of the partial cancel-
lation factors is crucial, since a careless choice of these param-
eters can adversely affect the performance. We shall focus on a
receiver that resembles a linear multistage partial PIC receiver,
which is linear in the sense that we utilize linear soft decisions
in all stages; this linearity eases the performance analysis.

An alternative interpretation of linear multistage partial PIC
receivers is that of linear iterative methods. Recently, a link
has been established between linear multistage partial PIC and
linear iterative methods which solve systems of linear equa-
tions [12], [14], [18], [19]. The mathematical literature of gen-
eral linear iterative methods contains a host of useful results
(based on extreme eigenvalues) for selecting appropriate par-
tial cancellation factors. Using these techniques, we can derive
a linear receiver structure where the filter coefficients are com-
puted such that the filtered measurements converge to the decor-
relator or LMMSE solution as the number of stages increases. In
our case, our linear multistage receiver is based on the first-order
stationary linear iterative method [12], [14]. The first-order sta-
tionary linear iterative method has only one partial cancellation
factor over which to optimize the performance. Our linear re-
ceiver resembles a linear multistage partial PIC receiver which
converges to the LMMSE receiver as the number of stages in-
creases. We can attain near-LMMSE performance with a finite
number of stages (which does not depend on the system size)
providing a significant computational saving to that of the di-
rect LMMSE receiver. In what follows, we call this receiver the
linear multistage partial PIC (PPIC) receiver.

0090-6778/02$17.00 © 2002 IEEE
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In this paper, we analyze the performance of the linear mul-
tistage PPIC receiver. To do this, we build upon current results
from large system analysis. A large system is defined by taking
the system parameters and to infinity, but keeping their
ratio held constant [20]–[24]. Using large system results, we
derive an expression for the limiting output signal to interfer-
ence-plus-noise ratio (SINR) of our receiver which we call the
large system SINR. The large system SINR is a deterministic
scalar independent of the eigenvalues of the correlation matrix
and the signature sequence realizations. We can express it in
terms of the system loading , the number of stages

, the partial cancellation factor, and the signal-to-noise ratio
(SNR).

Our main contribution in this paper is the derivation for the
large system SINR expression of the linear multistage PPIC re-
ceiver. We empirically show that the MSE between the SINR
and the large system SINR of the linear multistage PPIC re-
ceiver decreases with a relationship, as increases with

held fixed. We numerically maximize the large
system SINR with respect to the partial cancellation factor. We
also compare the large system SINR of the optimized linear
multistage PPIC receiver with the large system SINR of the mul-
tistage receiver given in [4] and [25], and described later on in
this paper. The latter receiver is called the optimal linear multi-
stage receiver, since it is optimal in the sense of optimising the
large system SINR for a particular stage, requiring filter
coefficients (see [25]). Furthermore, we can use the large system
SINR expression of the linear multistage PPIC receiver to ap-
proximate its bit error rate (BER) at stage.

This paper is organized as follows. The CDMA system model
is described in Section II, and the-dimensional linear multi-
stage PPIC receiver structure is defined in Section III. We derive
the large system SINR in Section IV, and we illustrate the use
of the linear multistage PPIC receiver’s large system SINR ex-
pression in Section V. Finally, we conclude and summarize our
results in Section VII.

II. SIGNAL MODEL

We consider a synchronous direct-sequence CDMA commu-
nication system with users and a processing gain of. We
assume that all users employ (baseband) binary antipodal mod-
ulation and consider a real baseband model [2].

The -dimensional chip matched filter vector for each
symbol interval is given by

(1)

where is the data bit of user taking on values plus or minus
one with equal probability, is the power of user , is
the -dimensional spreading sequence of user, and is ad-
ditive white Gaussian noise (AWGN) with zero mean and co-
variance . The spreading sequence matrix is

, and we define the spreading sequence
matrix excluding the spreading sequence of useras

. We assume a random spreading
model where the elements ofare independent and identically
distributed (i.i.d.) random variables taking values of

with an equal probability. The random spreading assumption is
needed to allow us to apply large system analysis. We also as-
sume that the spreading sequences are known at the receiver, the
received user powers are equal with common power
(for ), and we have perfect estimation of the re-
ceived user powers and the noise variance.

At the receiver, a linear filter for user produces the soft
estimate for the filter coefficients . The
SINR for this estimate is [2]

SINR (2)

In this paper, we analyze the SINR in the particular case where
the filter coefficients are selected using a linear iterative method
based on the LMMSE solution. The resulting receiver is dis-
cussed in Section III.

III. RECEIVER STRUCTURE

We start by considering the LMMSE receiver for which there
are several equivalent implementations, including

(3)

(4)

where the SNR is . The LMMSE receiver in (3) involves
inverting an matrix, while (4) involves a matrix
inversion. It is straightforward to show that both produce iden-
tical estimates. The first form is more convenient for the SINR
analysis. To assist us in writing an expression for the SINR of
user in this case, we first use the matrix-inversion lemma [2]
to see that

(5)

where

Now, the SINR for user , denotedSINR , is

SINR (6)

In this paper, we focus our attention on multistage receiver im-
plementations which are computationally less intensive than (3),
but still converge asymptotically (in the number of stages) to the
SINR of (6) for each user. The first-order stationary linear iter-
ative method we are considering is

(7)

and

where is an -dimensional (measurement) vector for user
after the th stage of filtering and cancelling (of other users
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interference). The initial -dimensional (measurement) vector
for user is . Also, is the soft estimate for user

at stage , and a real valued scalar which we call the partial
cancellation factor. This linear iterative method will converge
to the LMMSE receiver for user (5), provided that is in
the range , where is the
maximum eigenvalue of [19]. The convergence properties
for other forms of linear/nonlinear IC receivers have also been
studied in [8] and [13].

Rewriting (7) in a direct form gives the linear multistage PPIC
receiver after stages

(8)

Note that this receiver structure differs slightly from what we
call the “standard” linear multistage PPIC which has a direct
form after stages of [12], [14]

(9)

This is an important distinction, since in the large system
SINR analysis, we are interested in key terms of the form

which are easier to analyze than ,
because is independent of .

Having defined the -dimensional filter coefficients of the
linear multistage PPIC receiver as , ((8) for stage and
user ), the large system SINR for this linear receiver will now
be derived in Section IV.

IV. A NALYSIS OF THE LARGE SYSTEM SINR

In this section, we derive an expression for the large system
SINR of the linear multistage PPIC receiver in terms of the
system loading , the number of stages , the partial cancel-
lation factor , and the SNR .

In our analysis of the large system SINR, a key term is a
random variable of the form for

. Consequently, the following lemma and corollary will be
useful:

Lemma 1: If we take with fixed, the
random variable converges in probability to the
deterministic moment

where is the limiting empirical distribution function of the
eigenvalues of . This limiting distribution is given by (10),

shown at the bottom of the page, where and
.

Note that is the th moment of the limiting distribution
function.

We shall only give a brief discussion of the proof ofLemma
1, however, for more details the reader is referred to [21], [23],
and [24]. Now, let be the empirical distribution func-
tion of the eigenvalues of the matrix . It is well
known that with probability one, converges in distribu-
tion to as with fixed (see [21], for ex-
ample). The idea of the proof is that is close to
trace in a large system, and that this
latter quantity converges to . The result can be proved
following identical lines to the proof ofLemma 4.3in [23] (see
alsoLemma 1in [24]).

Corollary 1: The th moment of the limiting distribution
function ofLemma 1is

(11)

where and . A solution to this difference
equation is

(12)

Proof: For (11) we have

where and from tables
of integrals [26, Table 2.260-1] the result follows. The result of
(12) comes from solving the difference equation (11).

Remark: In studies of the eigenvalues of large sample co-
variance matrices (such as ), (12) is usually derived directly
from combinatorial arguments, for example, see [21]. The lim-
iting empirical distribution function, , is then determined
from the limiting moments.

In the following theorem, we give an expression for the large
system SINR of our linear multistage PPIC receiver.

Theorem 1: Let , , with held
fixed. Then, the SINR of the -stage PPIC receiver converges
in probability to a deterministic scalar given by

(13)

(10)
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where , are defined below, and the
moment is given inCorollary 1

(14)

(15)

The proof ofTheorem 1is given in the Appendix. Our large
system SINR expression is independent on the eigenvalues of
the cross-correlation matrix and the realizations of the spreading
sequences. It only depends on the system loading, the partial
cancellation factor, the number of stages, and the SNR.

A. Convergence to the Large System LMMSE SINR

The large system SINR of Theorem 1for stage 0 is equal
to the SUMF receiver’s large system SINRSINR . As
the number of stages increases , converges to the
LMMSE receiver’s large system SINRSINR .

First, observe that at stage 0 we have

SINR (16)

This is theSINR for equal power users [22], [23].
Let

and

Then

(17)

Provided and , we can
move the limit inside the integral using the dominated conver-
gence theorem to give

(18)

Similarly, we can show that with

(19)

Combining the above results gives us
. This is precisely the large system

Fig. 1. Empirical MSE versusN (8 � N � 512, � = 0:75, andSNR =

12 dB).

SINR for the LMMSE receiver [23], and can be evaluated in
closed form as

SINR

(20)

We have shown that of our linear multistage PPIC receiver
converges toSINR as increases.

V. NUMERICAL STUDIES

In this section, we shall empirically show that the MSE be-
tween the SINR, , and the large system SINR, , of the
linear multistage PPIC receiver decreases proportionally with a

relationship as increases with held fixed. We
perform a numerical optimization of our linear multistage PPIC
receiver to maximize with respect to the partial cancellation
factor, and compare the result with the large system SINR of
the optimal linear multistage receiver. Finally, we use the large
system SINR to approximate the BER of the linear multistage
PPIC receiver.

A. Convergence in

We proved inTheorem 1that the SINR of the linear multi-
stage PPIC receiver, , converges in probability to the large
system SINR of the linear multistage PPIC receiver,, as ,

increases with held fixed. This convergence is now
shown in another manner by examining the empirical MSE be-

tween and , which is defined as ,
where denotes the mean. This expression allows us to em-
pirically give an indication that the variance of the SINR de-
creases with a relationship around the large system SINR
limit as , increase with held fixed. This con-
vergence is captured in a plot versus shown in Fig. 1.
In this plot, we have plotted , where we have used 1000 re-
alizations of for each value of in the range
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Fig. 2. Large system SINR versus� (� = 0:75, m = 15, andSNR =

12 dB).

(incrementing in steps of four), , , and
dB. We show both the linear plot, (dotted line, left

axis), and the log plot (solid line, right axis). We found
that , (taken from the empir-
ical data), which indeed shows that decreases with a
relationship. This is a significant result, as it has only recently
been shown specifically for the LMMSE and decorrelating re-
ceivers that the variance of the SINR distribution decreases with
a relationship [27].

B. Optimization of the Linear Multistage PPIC Receiver

We shall now optimize in terms of the single partial can-
cellation factor for a finite number of stages. We applied a
simple numerical method to maximize with respect to .
The stopping threshold for the th estimate of was

. The best practical estimate of
giving the maximum is denoted , as shown in Fig. 2.

We have normalized the SINR (SINR/SNR) for this plot, which
uses dB, , and . We show and

, (which is discussed below), as dashed-dotted and dashed
vertical lines, respectively. After extensive numerical investi-
gations, we have found that reasonable SINR performance can
occur for , however, a severe SINR degradation
occurs for .

1) Asymptotic Convergence Factor (ACF) and : The
ACF (the spectral radius of the iteration matrix [12], [19])
is used to optimize the first-order stationary linear iterative
method. It is minimized when

(21)

where, in our case, are the minimum/maximum
eigenvalues of . Using this expression for

ensures convergence to a solution as . However,
it is not certain how this relates to a finite number of stages. For
a discussion on the ACF, refer to [12] and [19].

If we consider a large system where with
is held fixed, then the extreme eigenvalues of the

matrix converge with probability one to two
deterministic scalars

and (22)

see [12] and the references therein.
This means that in a large system (with random spreading) we

have approximately with
minimal ACF, where indicates the large system result. The
partial cancellation factor is a function only of the system
load and the SNR . In small-sized systems,
e.g., , and for a finite number of stages, we have previ-
ously found that backing off from the value of was
needed to give reasonable performance. For more details, see
[14].

An extensive numerical investigation has indicated that
gives good robust performance for a finite number of

stages for the system parameters tested within the range
and dB for this implementation of the

linear multistage PPIC receiver.

C. Comparison With the Optimal Linear Multistage Receiver

In this subsection, we shall compare with the large system
SINR of the optimal linear multistage receiver. The optimal
linear multistage multiuser receiver is given by [4], [17], [25],
and

(23)

where, briefly, forms a polynomial expansion in terms of
the -dimensional cross-correlation matrix , are the
polynomial coefficients, and is the number of stages. This
receiver is optimal in the sense that the polynomial coefficients
are optimized to minimize the MSE [4], [17], or maximize the
SINR [17], [25], for a particular stage . The optimization
involves an -dimensional matrix inversion at stage, and
for , gives LMMSE performance with the compu-
tational load of the LMMSE receiver. We call this receiver the
optimal linear multistage receiver, since it is “optimal” in the
sense that the polynomial coefficients are chosen to maximize
the large system SINR for a particular stage[17], [25].

We show the large system SINR performance of the linear
multistage PPIC receiver and the optimal linear multistage re-
ceiver as increases in Fig. 3(a) and (b). We have plotted
with increasing stages when (the solid line) optimized
at stage 15, and (the dashed line). The SUMF re-
ceiver’s large system SINR is indicated by an arrow, and the
large system LMMSE SINR [SINR , given in (20)] is in-
dicated by a horizontal dashed-dot line. The optimal linear mul-
tistage receiver’s large system SINR is indicated by the dashed
line with marks. The optimal -parameter receiver clearly
converges faster than the simpler one-parameter receiver.

1) Complexity Comparison:As mentioned in the introduc-
tion, the computational complexity of these linear multistage
receivers is and for stages. For a sim-
ilar level of performance, the one-parameter linear multistage
PPIC receiver requires more stages than the-parameter op-
timal linear multistage receiver, and, in this sense, is compu-
tationally more expensive. However, let us concentrate on the
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(a)

(b)

Fig. 3. Large system SINR versus stages (andSNR = 12 dB). (a)� = 0:25.
(b) � = 0:75.

complexity of the coefficient (parameters or partial cancellation
factors) calculation needed for these receivers.

For optimal large system SINR performance at the output of
stage , the complexity of the coefficient calculation for this re-
ceiver is floating point operations (FLOPS). Although
the linear multistage PPIC receiver has a lower performance for
the same number of stages, it only needs one parameter,, to
be calculated. Further, we have shown that is an ex-
cellent, near-optimal choice for this single parameter, and is a
simple function of the system load and the SNR. The computa-
tional load for the calculation of the single parameter is, thus,

for the simpler receiver.
In summary, the slower convergence of the linear multistage

PPIC receiver is natural, since it has one degree of freedom, as
opposed to the optimal linear multistage receiver, which has.

Fig. 4. BER versus stages (� = 0:75 andSNR = 12 dB).

The advantage of the simpler receiver is the ease in which the
single design parameter can be calculated.

2) Related Linear Multistage Receivers:In this subsection,
we have focused on a comparison of the linear multistage PPIC
receiver and the optimal linear multistage receiver. In related
work, the linear multistage receiver of [11] was designed to
monotonically decrease the MSE at the output of each stage.
This linear multistage receiver has a similar structure to the
linear multistage PPIC receiver. It is instead based on the
steepest descent method, where a different partial cancellation
factor is applied in each stage. When the linear multistage
receiver of [11] is appropriately optimized, it would achieve
the same performance as the optimal linear multistage receiver
given in (23) or [17] and [25]. This is not a surprising result,
it has recently been shown that the optimal linear multistage
receiver, at stage , maximizes the SINR and minimizes the
MSE with respect to its polynomial coefficients [17]. In the
equal power case, the algorithm used in [11] for calculating
the partial cancellation factors involves, among other things,
computing the finite th order moments of the cross-corre-
lation matrix, an -dimensional matrix inversion for solving,
and a sorting routine. This coefficient calculation is of the
same order of complexity as for the optimal linear multistage
receiver .

D. BER Approximation

The BER of the SUMF and LMMSE receivers for bi-
nary antipodal modulation may be approximated using

SINR , where it is assumed that the interference is
a Gaussian random variable (the Standard Gaussian approxi-
mation), and . We can use
this expression to approximate the BER of the linear multistage
PPIC receiver by assumingSINR , giving the BER for
the th stage as .

We illustrate the use of this approximation in Fig. 4. For this
plot, we collected the average BERBER from Monte Carlo
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simulations of the linear multistage PPIC receiver on an AWGN
channel. The plot uses , dB, and
for up to 15 stages. We select the partial cancellation factor to
be . We have plotted the approximate BER of the
SUMF and LMMSE receivers using their large system SINRs
from (16) and (20), their BER is indicated by an arrow. The
linear multistage PPIC receiver’s approximate BER is plotted
using , and is indicated by the solid line. We have conducted
extensive numerical investigations, and the BER approximation
using for these system loads gives an excellent BER estimate
of the simulated BER of the linear multistage PPIC receiver
for a practical and .

VI. I MPACT OF UNEQUAL POWER USERS

Our discussion until now has focused on a model where the
users have equal received powers. We now briefly discuss the
impact of unequal power users on the performance of the stan-
dard linear multistage PPIC receiver structure (for more details,
see [16]).

For the received signal model of (1), the linear MMSE re-
ceiver produces the estimate

The ( -dimensional) standard linear multistage PPIC receiver
structure that aims to iteratively implement the above receiver is

where is the vector of the received matched
filtered signal and is a diagonal
matrix of received user powers. Whenis appropriately chosen,
then this receiver will converge to the LMMSE receiver estimate
given above (scaled by ).

Denote as the minimum/maximum eigenvalues
of . We use the superscript to indicate
that unequal power users are assumed. It can be inferred from
[19, Theorem C.1], that for any real and symmetric matrix with
maximum diagonal element , and maximum eigenvalue

, then . This gives the inequality
, where is the minimum received power.

Since it is possible for to approach 0, then it follows that
can get very large. In this case, ifis chosen to minimize

the ACF, then will be very
small, which will result in extremely slow convergence (in the
number of stages) to the LMMSE solution.

One solution to this problem is to use the more general itera-
tive receiver

(24)

where is a nonsingular preconditioning matrix [19]. In this
case, the key iteration matrix becomes and
appropriate choice of can minimize the eigenvalue spread.
Our investigations suggest that a good choice is to setto the
diagonal matrix . The large system analysis of
this modified receiver is the subject of current research.

VII. CONCLUSIONS

In this paper, we derived an expression for the large system
SINR of the linear multistage PPIC receiver. The large system
SINR only depends on the number of stages, the system loading,
the partial cancellation factor and the SNR. We have empirically
shown that the MSE between the realized SINR and the large
system SINR of the linear multistage PPIC receiver decreases
proportionally with as the system parameters and
increase with their ratio held fixed. Using simple numerical
methods, the large system SINR can be optimized in terms
of the single partial cancellation factor as the system loading
varies. However, it has been observed that it is even simpler
to choose for a robust performance near the max-
imum achievable large system SINR, for the parameter ranges
investigated. This reduces the computational load needed to
find the filter coefficients of the linear multistage PPIC receiver.
Finally, we have shown that the large system SINR can be used
in an approximation of the BER of the linear multistage PPIC
receiver.

APPENDIX

In this appendix, we give the derivation for the large system
SINR, denoted (for stage ), of the linear multistage PPIC
receiver fromTheorem 1.

Proof: Let be the random SINR for user, at stage
and processing gain of the linear multistage PPIC receiver.

Then, substituting (8) in (2) gives

(25)

where is the SNR and is a real valued scalar. Now, con-
sider1

The limit, as with the ratio held fixed
shall be taken. Note, fromLemma 1, the sequence of random
variables (rvs) for , where

is the th moment given inCorollary 1, and denotes
convergence in probability. Then, the sequence of rvs also
converges in probability to , where

1In the case when� =P = 1=� , then� has a simplified form and the
binomial expansion is not necessary.
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for . We call the large system limit of the
sequence of rvs .

Now, consider

Similarly, the limit as with the ratio
held fixed is taken, and fromLemma 1, the sequence of rvs

for . Then, the se-
quence of rvs also converges in probability to

where

for . We
call the large system limit of the sequence of rvs for

stage . Since, and then

(26)

REFERENCES

[1] S. Verdu, “Optimum multiuser asymptotic efficiency,”IEEE Trans.
Commun., vol. COM–34, pp. 890–897, Sept. 1986.

[2] , Multiuser Detection. Cambridge, U.K.: Cambridge Univ. Press,
1998.

[3] M. K. Varanasi and B. Aazhang, “Multistage detection in asyn-
chronous code-division multiple-access communications,”IEEE Trans.
Commun., vol. 38, pp. 509–519, Apr. 1990.

[4] S. Moshavi, E. G. Kanterakis, and D. L. Schilling, “Multistage linear
receivers for DS-CDMA systems,”Int. J. Wireless Inform. Networks,
vol. 3, pp. 1–17, Jan. 1996.

[5] L. B. Nelson and H. V. Poor, “Iterative multiuser receivers for CDMA
channels: An EM-based approach,”IEEE Trans. Commun., vol. 44, pp.
1700–1710, Dec. 1996.

[6] N. Mandayam and S. Verdu, “Analysis of an approximate decorrelating
detector,”Wireless Personal Commun., vol. 6, pp. 97–111, 1998.

[7] X. Zhang and D. Brady, “Asymptotic multiuser efficiencies for decision-
directed multiuser detectors,”IEEE Trans. Inform. Theory, vol. 44, pp.
502–515, Mar. 1998.

[8] X. Wang and H. V. Poor, “Space–time multiuser detection in multi-
path CDMA channels,”IEEE Trans. Signal Processing, vol. 47, pp.
2356–2374, Sept. 1999.

[9] D. Divsalar, M. K. Simon, and D. Raphaeli, “Improved parallel inter-
ference cancellation for CDMA,”IEEE Trans. Commun., vol. 46, pp.
258–268, Feb. 1998.

[10] N. S. Correal, R. M. Buehrer, and B. D. Woerner, “A DSP-based
DS-CDMA multiuser receiver employing partial parallel interference
cancellation,”IEEE J. Select. Areas Commun., vol. 17, pp. 613–630,
Apr. 1999.

[11] D. Guo, L. K. Rasmussen, and T. J. Lim, “Linear parallel interference
cancellation in long-code CDMA multiuser detection,”IEEE J. Select.
Areas Commun., vol. 17, pp. 2074–2081, Dec. 1999.

[12] A. Grant and C. Schlegel, “Convergence of linear interference can-
cellation multiuser receivers,”IEEE Trans. Commun., vol. 10, pp.
1824–1834, Oct. 2001.

[13] A. Yener, R. D. Yates, and S. Ulukus, “CDMA multiuser detection: A
nonlinear programming approach,”IEEE Trans. Commun., vol. 50, pp.
1016–1024, June 2002.

[14] L. G. F. Trichard, I. B. Collings, and J. S. Evans, “Parameter selection for
multiuser receivers based on iterative methods,” inProc. 51st IEEE Ve-
hicular Technology Conf., vol. 2, Tokyo, Japan, May 2000, pp. 926–930.

[15] L. G. F. Trichard, J. S. Evans, and I. B. Collings, “Second-order iterative
CDMA receivers: Performance analysis and parameter optimization,” in
Proc. IEEE Globecom, San Antonio, TX, Nov. 2001, pp. 748–752.

[16] I. B. Collings, K. Goonetilleke, and L. G. F. Trichard, “Multiuser re-
ceivers for nonideal power control conditions,” inProc. 3rd Australian
Communications Theory Workshop (AusCTW), Canberra, Australia,
Feb. 2002, pp. 1–5.

[17] L. G. F. Trichard, J. S. Evans, and I. B. Collings, “Optimal linear multi-
stage receivers for synchronous CDMA,” inProc. IEEE Int. Conf. Com-
munications, New York, NY, Apr. 2002, pp. 1461–1465.

[18] H. Elders-Boll, H. D. Schotten, and A. Busboom, “Efficient implemen-
tation of linear multiuser detectors for asynchronous CDMA systems by
linear interference cancellation,”Euro. Trans. Telecommun., vol. 9, pp.
427–437, Sept./Oct. 1998.

[19] O. Axelsson,Iterative Solution Methods. Cambridge, U.K.: Cam-
bridge Univ. Press, 1994.

[20] Z. D. Bai and Y. Q. Yin, “Limit of the smallest eigenvalue of a large
dimensional sample covariance matrix,”Ann. Probab., vol. 21, no. 3,
pp. 1275–1294, 1993.

[21] D. Jonsson, “Some limit theorems for the eigenvalues of a sample co-
variance matrix,”J. Multivariate Anal., vol. 12, pp. 1–38, 1982.

[22] S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random
spreading,”IEEE Trans. Inform. Theory, vol. 45, pp. 622–640, Mar.
1999.

[23] D. N. C. Tse and S. V. Hanly, “Linear multiuser receivers: Effective in-
terference, effective bandwidth and user capacity,”IEEE Trans. Inform.
Theory, vol. 45, pp. 641–657, Mar. 1999.

[24] M. L. Honig and W. Xiao, “Performance of reduced-rank linear inter-
ference suppression for DS-CDMA,”IEEE Trans. Inform. Theory, vol.
47, pp. 1928–1956, July 2001.

[25] R. R. Muller and S. Verdu, “Spectral efficiency of low-complexity mul-
tiuser detectors,” inProc. IEEE Int. Symp. Information Theory, Sorrento,
Italy, June 2000, pp. 439–439.

[26] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Prod-
ucts, 6 ed. New York: Academic, 2000.

[27] D. N. C. Tse and O. Zeitouni, “Linear multiuser receivers in random
environments,”IEEE Trans. Inform. Theory, vol. 46, pp. 1384–1400,
Jan. 2001.



1786 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 11, NOVEMBER 2002

Louis G. F. Trichard (S’98) was born in Cape Town,
South Africa, in 1973. He received the B.S. degree
in computer science and mathematics, the B.Eng. de-
gree in electrical engineering (information systems
engineering), and the Ph.D. degree in electrical engi-
neering from the University of Sydney, Sydney, Aus-
tralia in 1996, 1998, and 2002, respectively.

He is currently a JSPS Postdoctoral Research
Fellow at the Kohno Laboratory, Division of Physics,
Electrical and Computer Engineering, Graduate
School of Engineering, Yokohama National Uni-

versity, Yokohama, Japan. His current research interests include multiuser
detection, wireless communications, and ultrawideband communications.

Dr. Trichard was awarded the Telstra Australia Prize in electrical engineering
from the University of Sydney in 1998, at the end of his bachelor’s honor year.

Jamie S. Evans(S’93–M’98) was born in New-
castle, Australia, in 1970. He received the B.S.
degree in physics and the B.Eng. degree in computer
engineering from the University of Newcastle, New-
castle, Australia, in 1992 and 1993, respectively,
and received the University Medal upon graduation.
He received the Masters degree in 1996 and the
Ph.D. degree in 1998, both in electrical engineering,
from the University of Melbourne, Melbourne,
Australia, and was awarded the Chancellor’s Prize
for Excellence in the Ph.D. Dissertation.

From March 1998 to June 1999, he was a Visiting Researcher in the Depart-
ment of Electrical Engineering and Computer Science at the University of Cal-
ifornia, Berkeley. In 1999, he became a Lecturer at the University of Sydney,
Sydney, Australia, where he stayed until July 2001. Since that time he has been
a Senior Lecturer in the Department of Electrical and Electronic Engineering at
the University of Melbourne, Melbourne, Australia. His research interests are
in communications theory, information theory, and statistical signal processing,
with current focus on wireless communications networks.

Dr. Evans currently serves on the Editorial Board of the IEEE TRANSACTIONS

ON WIRELESSCOMMUNICATIONS.

Iain B. Collings (S’92–M’95–SM’02) was born in
Melbourne, Australia, in 1970. He received the B.E.
degree in electrical and electronic engineering from
the University of Melbourne, Melbourne, Australia,
in 1992, and the Ph.D. degree in systems engineering
from the Australian National University, Canberra, in
1995.

In 1995, he was a Research Fellow in the
Australian Cooperative Research Center for Sensor
Signal and Information Processing, Adelaide,
Australia, where he worked in the area of radar

signal processing. From 1996 to 1999, he was a Lecturer at the University
of Melbourne, and since 1999, he has been a Senior Lecturer in the School
of Electrical and Information Engineering, University of Sydney, Sydney,
Australia. His current research interests include synchronization, channel
estimation, equalization, and multicarrier modulation, for time-varying and
frequency-selective channels.

Dr. Collings currently serves as an Editor for the IEEE TRANSACTIONS ON

WIRELESSCOMMUNICATIONS.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


