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Abstract—n this paper, we derive an expression for the signal interval. When long spreading sequences are used, (such as in
to interference-plus-noise ratio of a linear multistage parallel in- 1S-95 and allowed for in IMT-2000), the LMMSE receiver is
terference cancellation receiver. We focus on a linear multistage re- different for every symbol interval, and has to be recalculated at

ceiver which converges to the linear minimum mean-squared error t of O(K3 bol. In thi ltist .
receiver as the number of stages increases. The signal to interfer- & €0St O (K*) per symbol. In this case, multistage receivers

ence-plus-noise ratio is given in terms of the system loading, the can reduce the computational cost@mK?) or O(mKN)
partial cancellation factor, the number of stages, and the signal-to- per symbol (depending on the implementation), wheris the
noise ratio. Our expression also allows a simple approximation for number of stages which does not depend on the system size.
the bit error rate at each stage. Finally, we perform anumerical op- - g \yell-known IC receiver of [3] may be regarded as one of
timization to maximize the signal to interference-plus-noise ratio . . .
expression with respect to the partial cancellation factor of the re- the first e?(amples of a multistage IC receiver for CD_MA' Each
sulting linear multistage receiver. stage estimates and cancels MAI from the hard decisions of fil-
. - tered measurements at the output of the preceding stage. How-
Index Terms—Large system analysis, linear minimum mean- . .
squared error, multiuser detection, parallel interference cancella- V€l mcorrec_:t decisions can pr0paga_te frpm one stage to the
tion, random spreading. next, depending on the level of MAI. It is this problem that en-
couraged the development of numerous linear and nonlinear IC
algorithms [2], [4]-[17]. An example is that of partial parallel
IC (PIC) which was centered on analyzing the decision statistics
ULTIUSER receivers can dramatically outperformat the output of an arbitrary stage of a multistage PIC receiver,
conventional single-user matched filter (SUMF) codewhere all user filter measurements are estimated simultaneously
division multiple-access (CDMA) receivers by exploiting th¢8]-[10]. The amount of MAI cancelled is controlled by what
structure of multiple-access interference (MAI). Unfortunatelyye call partial cancellation factors. Design of the partial cancel-
the optimal multiuser receiver [maximum-likelihood (ML)] islation factors is crucial, since a careless choice of these param-
prohibitively complex for the system sizes of interest [1]. Theters can adversely affect the performance. We shall focus on a
linear minimum mean-squared error (LMMSE) receiver caigceiver that resembles a linear multistage partial PIC receiver,
outperform the conventional SUMF CDMA receiver, and cawhich is linear in the sense that we utilize linear soft decisions
do so with less computational load than the optimal multiusér all stages; this linearity eases the performance analysis.
receiver [2]. Our paper focuses on a linear multistage parallelAn alternative interpretation of linear multistage partial PIC
interference cancellation (IC) receiver which can achieveceivers is that of linear iterative methods. Recently, a link
near-LMMSE performance with even less computationias been established between linear multistage partial PIC and
complexity. linear iterative methods which solve systems of linear equa-
In this paper, we consider & user-synchronous CDMA tions [12], [14], [18], [19]. The mathematical literature of gen-
system with a processing gaiN employing long spreading eral linear iterative methods contains a host of useful results
sequences. Such sequences are much longer than the syifiisged on extreme eigenvalues) for selecting appropriate par-
tial cancellation factors. Using these techniques, we can derive
a linear receiver structure where the filter coefficients are com-
Paper approved by G. Cherubini, the Editor for CDMA Systems of the IEEBUted such that the filtered measurements converge to the decor-
Communications Society. Manuscript received January 12, 2001; revised J#ator or LMMSE solution as the number of stages increases. In
7, 2001 and January 23, 2002. This paper was presented in part at the IEEE . . . . .
International Conference on Communications, Helsinki, Finland, June 26—/ Cas€, our linear multistage receiver is based on the first-order
2001. stationary linear iterative method [12], [14]. The first-order sta-
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In this paper, we analyze the performance of the linear mwlith an equal probability. The random spreading assumption is
tistage PPIC receiver. To do this, we build upon current resulteeded to allow us to apply large system analysis. We also as-
from large system analysis. A large system is defined by takisgme that the spreading sequences are known at the receiver, the
the system parameter$ and K to infinity, but keeping their received user powers are equal with common poler= P
ratio held constant [20]-[24]. Using large system results, wWeor &k = 1,..., K), and we have perfect estimation of the re-
derive an expression for the limiting output signal to interfeceived user powers and the noise variamée
ence-plus-noise ratio (SINR) of our receiver which we call the At the receiver, a linear filter for user produces the soft
large system SINR. The large system SINR is a determiniséistimateb;, = cFr for the filter coefficientsc, € RY. The
scalar independent of the eigenvalues of the correlation mat8K\R for this estimate is [2]
and the signature sequence realizations. We can express it in

T \2

terms of the system loadini@ge = K/N), the number of stages SINRy, = P (ck S’“) ) 2)

m, the partial cancellation factor, and the signal-to-noise ratio ci (PSiS{ +0°T) ci

(SNR). In this paper, we analyze the SINR in the particular case where

Our main contribution in this paper is the derivation for thee filter coefficients are selected using a linear iterative method

large system SINR expression of the linear multistage PPIC g4sed on the LMMSE solution. The resulting receiver is dis-
ceiver. We empirically show that the MSE between the SINR,ssed in Section III.

and the large system SINR of the linear multistage PPIC re-

ceiver decreases yvith]a/N relationship, asV increases with Ill. RECEIVER STRUCTURE

a = K/N held fixed. We numerically maximize the large o ) )
system SINR with respect to the partial cancellation factor. We Ve Start by considering the LMMSE receiver for which there
also compare the large system SINR of the optimized line&f€ Several equivalentimplementations, including

multistage PPIC receiver with the large system SINR of the mul- R o2 \ 7!

tistage receiver given in [4] and [25], and described later on in b =p /28T (SST + FI> r )
this paper. The latter receiver is called the optimal linear multi- 5 \ -1

stage receiver, since it is optimal in the sense of optimising the b=p1/2 <STS + 0—1) g7y (4)
large system SINR for a particular stage requiringm filter P

coefficients (see [25]). Furthermore, we can use the large systefore the SNR is°/o2. The LMMSE receiver in (3) involves

SINR expression of the linear multistage PPIC receiver to averting anN x N matrix, while (4) involves & x K matrix

proximate its bit error rate (BER) at stage inversion. It is straightforward to show that both produce iden-
This paper is organized as follows. The CDMA system modgly| estimates. The first form is more convenient for the SINR

is described in Section II, and thé-dimensional linear multi- 5a)ysis. To assist us in writing an expression for the SINR of
stage PPIC receiver structure is defined in Section Ill. We derlﬁgerk in this case, we first use the matrix-inversion lemma [2]
the large system SINR in Section IV, and we illustrate the U$g gee that ’

of the linear multistage PPIC receiver’s large system SINR ex- 1
pression in Section V. Finally, we conclude and summarize our er—r (8,87 + 0_21 <
results in Section VII. k MR T P k

(®)

where
Il. SIGNAL MODEL

1

We consider a synchronous direct-sequence CDMA commu- T T o2y 1 :
nication system withK” users and a processing gain/éf We VP (1 TSk (S’“Sk T ?I) S’“)
assume that all users employ (baseband) binary antipodal mRgiy the SINR for uset: denotedSINR,,, is
ulation and consider a real baseband model [2]. ' ' , )

The N-dimensional chip matched filter vector for each T T, ?

: S SINR, = s | SkS; + =1 - 6

symbol interval is given by k= Sk ( Wkt p > St ©

K In this paper, we focus our attention on multistage receiver im-

r= Z Jﬁbksk +n (1) plementations which are computationally less intensive than (3),
k=1 but still converge asymptotically (in the number of stages) to the

SINR of (6) for each user. The first-order stationary linear iter-

whereb,, is the data bit of uselt taking on values plus or minus =" JHE s
ative method we are considering is

one with equal probabilityP; is the power of usek, s is
the N-dimensional spreading sequence of uUseandn is ad- r . 0’

ditive white Gaussian noise (AWGN) with zero mean and co- Xpym =TT + <I -7 (Sksk + FI>> Xkm—1 (1)
varianceo?I. The N x K spreading sequence matrixSs=

[s1,...,sK], and we define th& x (K —1) spreading sequenceand
matrix excluding the spreading sequence of Users S, = bio o = T Xm
[S1,---,8Sk—1,Sk+1,---,SK]. We assume a random spreading ' '

model where the elements 8fare independent and identicallywherex;, ,,, is an/N-dimensional (measurement) vector for user
distributed (i.i.d.) random variables taking valuestdfi /v/N)  k after themth stage of filtering and cancelling (of other users
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interference). The initialV-dimensional (measurement) vectoshown at the bottom of the page, whefe) = (1 — \/a)? and

for userk is x;, o = 7r. Also, by, is the soft estimate for userb(a) = (1 + /a)2.

k at stagen, andr a real valued scalar which we call the partial Note thaty;(«) is theith moment of the limiting distribution
cancellation factor. This linear iterative method will convergtunction.

to the LMMSE receiver for usek (5), provided that- is in We shall only give a brief discussion of the prooflafmma
the range) < 7 < 2/(Amax + (02/P)), wherel,.. is the 1, however, for more details the reader is referred to [21], [23],
maximum eigenvalue &, ST [19]. The convergence propertiesand [24]. Now, letG™) () be the empirical distribution func-
for other forms of linear/nonlinear IC receivers have also bed&on of the eigenvalues of th x N matrix Sksfkp. It is well

studied in [8] and [13]. known that with probability oneiZ(N) converges in distribu-
Rewriting (7) in a direct form gives the linear multistage PPI@on to G asN — oo with « = K/N fixed (see [21], for ex-
receiver aftern stages ample). The idea of the proof is thaf (S, S¥)’s, is close to

4 trace(S,ST)! = [ A{dGN)()) in alarge system, and that this
m 2 7 N .
_ _ T, 0 latter quantity converges tbA‘dG(\). The result can be proved
Clom =T (Z [I T <Sksk TP I)} ) sk (8) following identical lines to the proof dfemma 4.3n [23] (see
alsoLemma 1in [24]).
Note that this receiver structure differs slightly from what we Corollary 1: The ith moment of the limiting distribution
call the “standard” linear multistage PPIC which has a direfiinction ofLemma 1lis

=0

form afterm stages of [12], [14] bila) = Ll (26— 1)(1 4+ @)1 (a)
Chom =T (Xm: [I —7 (SST + 0—21>] L sk) ) —(i=2)1 —_a)z'l/%—z.(a).] 11
P P wherey(a) = 1 andy () = «. A solution to this difference
equation is
This is an important distinction, since in the large system izt _ )
SINR analysis, we are interested in key terms of the form Yia) = Z L <L> ('L - 1) Tl (12)
s7 (SkST)s). which are easier to analyze thafi(SS™)’sy, A AN J
becausdS;S7)" is independent of. Proof: For (11) we have
Having defined theV-dimensional filter coefficients of the 4 bla)
linear multistage PPIC receiver as,,, ((8) for stagem and Pi(a) = //\’dG(/\) = / A'g(A)dA
userk), the large system SINR for this linear receiver will now a(a)
be derived in Section IV, whereg(\) = (1/[X — a(a)][b(e) — A]/27\) and from tables
of integrals [26, Table 2.260-1] the result follows. The result of
V. ANALYSIS OF THE LARGE SYSTEM SINR (12) comes from solving the difference equation (11). m

Remark: In studies of the eigenvalues of large sample co-

In this section, we derive an expression for the large systeiance matrices (such 887), (12) is usually derived directly
SINR of the_ linear multistage PPIC receiver in _terms of th€om combinatorial arguments, for example, see [21]. The lim-
system loadingy, the number of stages, the partial cancel- jting empirical distribution function(\), is then determined
lation factorr, and the SNRP/o2. from the limiting moments.

In our analysis of the large syszfeim SINR, a key term is a |, the following theorem, we give an expression for the large
random variable of the formsy (Sx.Sy)'s. for (0 < i < 2m + system SINR of our linear multistage PPIC receiver.
1). Consequently, the following lemma and corollary will be " theorem 1: Let N. K — oo with 0 <a=K/N < coheld

useful: fixed. Then, the SINR of the:-stage PPIC receiver converges

Lemma 1:1f we take N — oo with a = K/N fixed, the i, nronapility to a deterministic scalar, given by
random variables (S, S )’s; converges in probability to the

deterministic moment Tm

i(a) = / NdG(\)

2

i()fl (05,0'2,[),7')

S 1+ 1)gi(a, 2 P, + — ) gmai R 2 P,
whereG()) is the limiting empirical distribution function of the go[(L i, 0%, D7) 4 (= gmeisa (0%, Po)]

eigenvalues 08, ST . This limiting distribution is given by (10), (13)
0, A<0
max(1 — «,0), 0<A<a(a)
G\ = v [r—a(a)][b(a)—=z 10
) max(1l — «,0) + fa)\(a) %dm, a(a) <A < b(a) (10)

17 b(Oé) < )\
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wheref;(a, 02, P, 1), gi(a, 02, P, 7) are defined below, and the 14
momenty;(«) is given inCorollary 1

pert P =0 (257 (N,

=0

(14)
2 poy= i S (0% 1\
gi(o, 07, P, 1) =(-7) Z <F - ;) 8

Jj=0 w

. (;) <¢j+1(a) + a?fz/;j(a)> . s

The proof of Theorem 1is given in the Appendix. Our large
system SINR expression is independent on the eigenvalues
the cross-correlation matrix and the realizations of the spreadi
sequences. It only depends on the system loading, the par
cancellation factor, the number of stages, and the SNR.

(=]
T

10F &

10

....... ¢ (Y Linear Scale)
— ¢ (Y Log Scale)

A. Convergence to the Large System LMMSE SINR
The large system SINRy,,,) of Theorem Tor stage O is equal

Processing Gain (N)

to the SUMF receiver's Iarge system SINBINRSUMF). As Fig. 1. Empirical MSE versu®’ (8 < N < 512, « = 0.75, andSNR =

the number of stages increages — o), ., converges to the
LMMSE receiver’s large system SINESINRL v vsE)-
First, observe that at stage 0 we have

o () P Pl-a) 1
Yo = = = SINRsumr.  (16) SINRp, = =
(41 () + S0 (a)]  Pa+o? LMMSE = 5
This is theSINRsyyr for equal power users [22], [23]. P2(1-a)2 Pl+a)
L t + 4 2 + - (20)
€ 4o 20
m We have shown thay,,, of our linear multistage PPIC receiver
N = Z fila, 027 P,7) converges t&INR vvisg asm increases.
1=0
V. NUMERICAL STUDIES
and
LN ) . ) In this section, we shall empirically show that the MSE be-
”m:Z [(i+D)gi(e, 0%, P, )+ (m—i)gmyir1 (2, 0%, P.7)]. tween the SINRy ™ and the large system SINR,,, of the
=0 linear multistage PPIC receiver decreases proportionally with a
Then y ) o 1/N relationship asV increases withx = K /N held fixed. We
lim - lim Z(_T)i 0_2 1y ! perform a numerical optimization of our linear multistage PPIC
mitse M T e — —\P T receiver to maximizey,,, with respect to the partial cancellation
. B = factor, and compare the result with the large system SINR of
. (‘) (/)\J’dG()\)> the optimal linear multistage receiver. Finally, we use the large
. , system SINR to approximate the BER of the linear multistage
1—[1—-7A+ %)™ PPIC receiver.
— lim L=+ B a0y an
m—00 T(A+ %)

Providedo < 7 < 2/(b(a) + (¢2/P)) anda?/P > 0, we can
move the limit inside the integral using the dominated conver-
gence theorem to give

1 1

m— 00

2

. (=1 =7(A+ Z)]m+D)2 where(-) denotes the mean. This expression allows us to em-
ml,gnoo Vm :/n},gnoo T2(\ + a_z) dG(X) pirically give an indication that the variance of the SINR de-
9 P creases with /N relationship around the large system SINR
— (l) / ! dG(N). (19) limitas N, K increase withh = K/N held fixed. This con-
™) ) A+ % vergence is captured in a plét") versusN shown in Fig. 1.
Combining the above results gives Uinm,_..vm = Inthis plot, we have plotted’Y), where we have used 1000 re-

12 dB).

A. Convergence itV

We proved inTheorem 1that the SINR of the linear multi-
stage PPIC receive1y,(nN), converges in probability to the large
system SINR of the linear multistage PPIC receivyer, asN,
lim 7, = - / — dG(N). (18) K increaseswithx = K/N held fixed. This convergence is now
TS A+ T shown in another manner by examining the empirical MSE be-
Similarly, we can show that with < 7 < 2/(b(a) + (02/P)) tweeny,, and\, which is defined as™ = (7,, —

SINR for the LMMSE receiver [23], and can be evaluated in
closed form as

AN )2,

J1/(A+ (6?/P))dG(X). This is precisely the large systemalizations of%(nm for each value ofV in the range8 < N <
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0.35 T T T T T T T T

matrix (S, S? + (o2 /P)I) converge with probability one to two
deterministic scala2rs

2

nin = B ANt = (Va+ 17+ %5 (22)

see [12] and the references therein.
This means that in a large system (with random spreading) we

have approximately;r = 2/((v/a + 1)? + (20°/P)) with
] minimal ACF, wherex indicates the large system result. The
partial cancellation factor} - is a function only of the system
load(a = K/N) and the SNRP/5?). In small-sized systems,
e.g.,N = 32, and for a finite number of stages, we have previ-
ously found that backing off from the value of= 73, was
needed to give reasonable performance. For more details, see
[14].
1 An extensive numerical investigation has indicated that
Ticp Oives good robust performance for a finite number of
0 | _ACF . L . . stages for the system parameters tested within the range
0 o1 02 03 04 05 06 07 08 09 T 4 < 1and0 < SNR < 18 dB for this implementation of the
linear multistage PPIC receiver.

0.3

m SIR
8

ge Syste
=}
N

o
a
o

Normalised Lar
° <

o
o
a

—— Normalised SIR
tom stage 15

Fig. 2. Large system SINR versus(a = 0.75, m = 15, andSNR =
12 dB).

C. Comparison With the Optimal Linear Multistage Receiver
512 (incrementing in steps of four)p = 10, a = 0.75, and In this SUbSECti.O”' we shall compage with the large syste_m
SNR = 12 dB. We show both the linear plot, (dotted line, le .lNR of the optimal !mear mul_ﬂstage receiver. The optimal
Y axis), and the log plot (solid line, right axis). We found inear multistage multiuser receiver is given by [4], [17], [25],
thate() ~ éV) = (10%196) N—1-120_ (taken from the empir- and
. _— N . m '
L(;?;tcii;tg)r;iwhlch indeed shows thaf" decreases with &/N C, — Z a; (S7S)’ (23)
p. This is a significant result, as it has only recently '
been shown specifically for the LMMSE and decorrelating re- =0
ceivers that the variance of the SINR distribution decreases wwihere, briefly,C,,, forms a polynomial expansion in terms of
al/N relationship [27]. the K-dimensional cross-correlation matr&’'S, a; are the
polynomial coefficients, andh is the number of stages. This
B. Optimization of the Linear Multistage PPIC Receiver  receiver is optimal in the sense that the polynomial coefficients
We shall now optimizey,, in terms of the single partial can-are optimized to minimize the MSE [4], [17], or maximize the
cellation factorr for a finite number of stages. We applied &INR [17], [25], for a particular stage:. The optimization
Simp|e numerical method to maximizg, with respect tor. involves anm-dimensional matrix inversion at stage, and
The stopping threshold for thg + 1)th estimate ofr,,. was form = K — 1, gives LMMSE performance with the compu-
leiz1| = |fig1 — 7] < 107°. The best practical estimate oftational load of the LMMSE receiver. We call this receiver the
7 giving the maximumy,, is denotedr,,, as shown in Fig. 2. optimal linear multistage receiver, since it is “optimal” in the
We have normalized the SINR (SINR/SNR) for this plot, whickense that the polynomial coefficients are chosen to maximize
usesSNR = 12 dB, a = 0.75, andm = 15. We showr,,,, and _the large system SINR for a particular stagd17], [25].
% cop» (Which is discussed below), as dashed-dotted and dashe¥Ve show the large system SINR performance of the linear
vertical lines, respectively. After extensive numerical investiultistage PPIC receiver and the optimal linear multistage re-
gations, we have found that reasonable SINR performance €@fver asm increases in Fig. 3(a) and (b). We have plotted
occur for0 < 7 < 7,¢, however, a severe SINR degradatiotith increasing stages when= 7, (the solid line) optimized
oceurs forr > 7. at stage 15, and = 73~ (the dashed line). The SUMF re-
1) Asymptotic Convergence Factor (ACF) antl.: The ceiver’s large system SINR is indicated by an arrow, and the
ACF (the spectral radius of the iteration matrix [12], [19]Jarge system LMMSE SINRYINRyyisE, given in (20)] is in-
is used to optimize the first-order stationary linear iterativéicated by a horizontal dashed-dot line. The optimal linear mul-
method. It is minimized when tistage receiver’s large system SINR is indicated by the dashed
2 21) line with x marks. The optimain-parameter receiver clearly
Ponin + Mmax converges faster than the simpler one-parameter receiver.
where, in our caseymin/tmax are the minimum/maximum 1) Complexity ComparisonAs mentioned in the introduc-
eigenvalues of S, ST + (o2/P)I). Using this expression for tion, the computational complexity of these linear multistage
TacF €nsures convergence to a solutiomas— co. However, receivers isO(mK?) andO(mK N) for m stages. For a sim-
it is not certain how this relates to a finite number of stages. Fitar level of performance, the one-parameter linear multistage
a discussion on the ACF, refer to [12] and [19]. PPIC receiver requires more stages thanmthparameter op-
If we consider a large system wheke — oo with 0 < o = timal linear multistage receiver, and, in this sense, is compu-
K/N < 1 is held fixed, then the extreme eigenvalues of thationally more expensive. However, let us concentrate on the

T = TACF =
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p— 10 T T T T
—— Large System Approx.
- N=128 (simulated)
#x—MF BER (Lge Syst. Approx.)
10"}
1 2
©
o
L
7 m
10%} x
R k—LMMSE BER (Lge Syst. Approx.)
sk MF SIR (Lge Syst) | ==~ LMMSE SIR (Lge Syst.)
- «-- Optimal Multistage (Lge Syst.)
—— Multistage PPIC (Lge Syst.), Yopt
- --. Multistage PPIC (Lge Syst.), ook
‘ 5 10 15 10° : s » : ‘ . s .
# Stages Y 2 4 6 ﬁStagg% 12 14 16 18

@
Fig. 4. BER versus stages (= 0.75 andSNR = 12 dB).

@
4

The advantage of the simpler receiver is the ease in which the
single design parameter can be calculated.

2) Related Linear Multistage Receiverfn this subsection,
we have focused on a comparison of the linear multistage PPIC
receiver and the optimal linear multistage receiver. In related
work, the linear multistage receiver of [11] was designed to
monotonically decrease the MSE at the output of each stage.
This linear multistage receiver has a similar structure to the
linear multistage PPIC receiver. It is instead based on the
steepest descent method, where a different partial cancellation
factor is applied in each stage. When the linear multistage
receiver of [11] is appropriately optimized, it would achieve

Joooo LMMSE SIR (Lge Syst) I the same performance as the optimal linear multistage receiver
MF SIR (Lge Syst) | - Ok e oot - given in (23) or [17] and [25]. This is not a surprising resuilt,
. | ---- Multistage PPIC (Lge Syst), T, it has recently been shown that the optimal linear multistage
0 5 # Stages 10 15 receiver, at stage:, maximizes the SINR and minimizes the
MSE with respect to itsn. polynomial coefficients [17]. In the
() equal power case, the algorithm used in [11] for calculating
Fig. 3. Large system SINR versus stages @N® = 12 dB). (@)« = 0.25. them partial cancellation factors involves, among other things,
(0)a = 0.75. computing the finitemth order moments of the cross-corre-

lation matrix, anm-dimensional matrix inversion for solving,

complexity of the coefficient (parameters or partial cancellatigid @ sorting routine. This coefficient calculation is of the
factors) calculation needed for these receivers. same order of complexity as for the optimal linear multistage

For optimal large system SINR performance at the output Btceiver(O(m?)).
stagen, the complexity of the coefficient calculation for this re- o
ceiver isO(m?) floating point operations (FLOPS). AlthoughP- BER Approximation
the linear multistage PPIC receiver has a lower performance forThe BER of the SUMF and LMMSE receivers for bi-
the same number of stages, it only needs one parameti&r, nary antipodal modulation may be approximated using
be calculated. Further, we have shown that 73 is an ex- P, = Q(VSINR), where it is assumed that the interference is
cellent, near-optimal choice for this single parameter, and isaaGaussian random variable (the Standard Gaussian approxi-
simple function of the system load and the SNR. The computaation), andQ(z) = 1/(v2r) [=° e(~*"/?dz. We can use
tional load for the calculation of the single parameter is, thuthis expression to approximate the BER of the linear multistage
O(1) for the simpler receiver. PPIC receiver by assumirfgINR = ~,,, giving the BER for

In summary, the slower convergence of the linear multistagfee mth stage as, ., ~ Q(\/¥m)-
PPIC receiver is natural, since it has one degree of freedom, asVe illustrate the use of this approximation in Fig. 4. For this
opposed to the optimal linear multistage receiver, whichvhas plot, we collected the average BEBER,,..) from Monte Carlo
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simulations of the linear multistage PPIC receiver on an AWGN VII. CONCLUSIONS
channel. The plot use§¥ = 128, SNR = 12 dB, anda = 0.75

. . In this paper, we derived an expression for the large system
for up to 15 stages. We select the partial cancellation factoré?NR of tFr)lepIinear multistage PPI?: receiver. The Iarge s;//stem
ber = 73.p. We have plotted the approximate BER of th '

SUME and LMMSE receivers using their large system SIN INR only depends on the number of stages, the system loading,
from (16) and (20), their BER is indicated by an arrow. Th e partial cancellation factor and the SNR. We have empirically

linear multistage PPIC receiver's approximate BER is plotte%10Wn that the MSE .between the realized SINR, and the large
using~,., and is indicated by the solid line. We have conducteystem SINR of the linear multistage PPIC receiver decreases
extensive numerical investigations, and the BER approximatiBfPPortionally with1/N as the system parameteis and K
using,, for these system loads gives an excellent BER estimaf¢réase with their ratio held fixed. Using simple numerical
of the simulated BER.. of the linear multistage PPIC receivermethods, the large system SINR can be optimized in terms

for a practicalV and K. of the single partial cancellation factor as the system loading
varies. However, it has been observed that it is even simpler
VI. IMPACT OF UNEQUAL POWER USERS to chooser = 7;p for a robust performance near the max-

) ) ) imum achievable large system SINR, for the parameter ranges
Our discussion until now has focused on a model where (h&qstigated. This reduces the computational load needed to

users have equal received powers. We now briefly discuss i@y e filter coefficients of the linear multistage PPIC receiver.

impact of unequal power users on the performance of the st Hhally, we have shown that the large system SINR can be used
dard linear multistage PPIC receiver structure (for more detai San a,pproximation of the BER of the linear multistage PPIC

see [16]). receiver
For the received signal model of (1), the linear MMSE re- '
ceiver produces the estimate
APPENDIX
b=P 2(STS + 2P~ 1)"!STr. In this appendix, we give the derivation for the large system
SINR, denotedy,, (for stagem), of the linear multistage PPIC
The (K -dimensional) standard linear multistage PPIC receivegceiver fromTheorem 1
structure that aims to iteratively implement the above receiveris  Proof: Let W,EJQ be the random SINR for usér, at stage
m and processing gailN of the linear multistage PPIC receiver.
Byst = b + 7]y — (STS + 0*P~1)]b,, Then, substituting (8) in (2) gives

wherey = STr is the K x 1 vector of the received matched., (V) _
filtered signal an® = diag[ P, ..., Px]isaK x K diagonal "
matrix of received user powers. Wheis appropriately chosen, (s
then this receiver will converge to the LMMSE receiver estimate
given above (scaled tp'/?). NI
DenoteuVEP /.U EP a5 the minimum/maximum eigenvalues * EO EO
of (STS + o?P~1). We use the superscript?” to indicate
that unequal power users are assumed. It can _be mfe_rred_ fr\?VWereP/ch is the SNR and is a real valued scalar. Now, con-
[19, Theorem C.], that for any real and symmetric matrix with .
maximum diagonal element,,.,, and maximum eigenvalue sidet
fimax, tN€Nfimay > Gmax. This gives the inequalityVFF >

2/p. . P ini i i : |
1+ (0% / P} min), WhereP; i, is the minimum received power. n}(j\nz =sT Z (I -7 (SkSkT. + %I)) Sk

{é (1-~ (sisT + "—;I))isk>2

2

(25)

m
1=0

Since it is possible foP; i to approach 0, then it follows that

Y EP can get very large. In this casesifs chosen to minimize . i 5 i
the ACF, thenr = 7{5F = 2/ (uYEF + plEP) will be very =S ('Y (‘7_ _ l)
small, which will result in extremely slow convergence (in the =0 =0 P T
number of stages) to the LMMSE solution. i ;

One solution to this problem is to use the more general itera- X < ) st (Sks;‘:) Sk

tive receiver

Bms1 = b + 7U[y — (STS + o2P~ )by, (24) The limit, asN — oo with the ratioae = K/N held fixed
shall be taken. Note, frohemma 1 the sequence of random

i T TVig, P ;
whereU is a nonsingular preconditioning matrix [19]. In thisvarlab!es (rvg)sk (SkS%) S."_”./}J(a) for 0 < j Spm’ where
case, the key iteration matrix becon#ééS”S + 02P~1) and () is thejth moment given irCorollary 1, and— denotes

appropriate choice 0 can minimize the eigenvalue spreadS0nvergence in probability. Then, the sequence offfs also
Our investigations suggest that a good choice is tdked the Converges in probability tg,,, = >°;%, fi(a, 0%, P, 7), where

i i 2p—17-1 i
dlggonal_r_natrlx[l +o _P [ The large system analysis of 1 the case when?/P = 1/7, thenn(") has a simplified form and the
this modified receiver is the subject of current research. binomial expansion is not necessary.
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ilavo®,Pr) = (=1 i o/ P = 1/ (1) v 0)

for 0 < ¢,(a) < oo. We calln,, the large system limit of the

sequence of rvagz.

Now, consider

:ii(_f)iﬂ% (%2 3 %)“’H <Z~IZ—J>

=0 j7=0 =0

2
. |:SZ (Sksg)H—l Sk =+ %SZ (Ska)l Sk:| .

Similarly, the limit asN — oo with the ratioa = K/N

held fixed is taken, and fromhemma 1 the sequence of rvs
sT(SST ) spLo1p;i(a) for 0 < j < 2m + 1. Then, the se-

quence of rvs/,(cj\;z also converges in probability to

U = Z Z givi(a,a® P,T)
i=0 j=0
= Z [(L + 1)5]1(04 027 P, T)
i=0
+ (m — ) gmyiv1(, 0, P,7)]
where 5 = (' Sy’ — 1/ ()

(Y41 (@) + (62/P)pj () for 0 < 4j(a) < oo. We
call v, the large system limit of the sequence of uié:g for

stagem. SinceN) Zyp,, andv(Y) L1, then

(N)_p
’Yk,m—’f}/m

(1m)*

2

g fl (OZ,O'27P77')
1=0

[+ 1)g:(at, 02, P, )+ (m—i)gm i1 (s 02, P,7)]
(26)

1o

“
Il
<)
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