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Abstract—This paper introduces a model to study both single
tier and multi-tier wireless communication systems consisting
of a multitude of wireless access points (AP), and operating
according to the classical opportunistic beamforming framework.
The AP locations in the proposed network model are determined
by using planar Poisson point processes. The extreme value
distribution of signal-to-interference-plus-noise-ratio (SINR) on
a beam is of fundamental importance for obtaining performance
bounds for such an opportunistic communication system. Two
tight distribution approximation results are provided for the
distribution of maximum SINR on a beam, which is hard to
obtain due to correlation structure of the underlying inter-AP
interference field, using key tools from stochastic geometry. These
approximations hold for general path loss models that satisfy
some mild conditions. Simulations and numerical evaluations are
presented to validate the results, to provide further insights into
the derived approximate maximum beam SINR distributions,
and to illustrate the utility of these approximations in obtaining
performance bounds for opportunistic communication systems
having multiple interfering APs. In particular, key performance
measures such as beam outage probability and ergodic aggregate
data rate of an AP are derived by utilizing the approximated
distributions.

Index Terms—Communication systems, Data communication,
MIMO systems, Opportunistic beamforming, Stochastic pro-
cesses

I. I NTRODUCTION

Opportunistic beamforming (OBF) is an important adap-
tive signaling technique that utilizes multiuser diversity and
varying channel conditions to extract the full multiplexing
gain available in vector broadcast channels [1]–[20]. The
main advantages of OBF are threefold. It attains the sum-
rate capacity with full channel state information (CSI) to
a first order for large numbers of mobile users (MU) in
the network [1]. Secondly, its operation only requires partial
CSI in the form of signal-to-interference-plus-noise ratios
(SINR). Finally, OBF is easy to implement, which makes it
a practical communication scheme. It has been also shown
that OBF is an asymptotically feedback optimal transmission
strategy [5]. This paper introduces an analytical framework to
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study single tier and multi-tier OBF wireless communication
networks consisting of multiple interfering wireless access
points (AP) by modeling their locations using spatial Poisson
point processes (PPP).

For single AP communication systems, the well known
system model of opportunistic communication along multiple
orthonormal beams was first introduced by Sharif and Hassibi
in [1]. In this work, the authors considered a multi-antenna
vector broadcast channel over which an AP communicates
with N MUs that are equidistant from the serving AP. The
orthogonal beams are randomly generated, and each beam is
allocated to the MU having the highestSINR on that beam.
Most of the existing works on OBF are based on this model
having homogeneous and equidistant MUs from the AP [1]–
[7].

On the other hand, heterogeneity among MUs was also
considered in previous works such as [8] and [9], where
each MU has its own deterministic location dependent path
loss value,i.e., the MUs are no longer equidistant from the
home AP. In [8], heterogeneous MUs are grouped into a
finite number of MU classes, and the asymptotic throughput
scaling behavior of the resulting system is analyzed. In [9], the
authors focused on the sum rate and the individual throughput
scaling while simultaneously maintaining fairness among the
MUs. Recently, the model was further improved in [10] by
introducing random MU locations that are governed by a
spatial PPP and assigning a random path loss value to each
MU. The authors in [10] mainly focused on the outage capac-
ity of the network by taking the random MU locations into
account. All of the above papers consider OBF for onlysingle
AP communication systems by ignoring inter-AP interference
among potentially interfering APs.

Different from these previous works, we take a step further
in this paper to model and analyze OBF communication
systems consisting ofmultiple interfering APs (multi-AP) by
using spatial PPPs to model the AP locations. Also, being
different than the conventional structure introduced in [1], the
MUs communicating with a particular AP are not equidistant
from it. This introduces heterogeneity among the MUs as well.
The proposed model allows us to study OBF for both single
tier andK-tier multi-AP communication systems. Similar to
[8], [9] and [10], the signal received by an MU in this paper
is impaired by both fading and the location dependent path
loss. However, unlike [8], [9] and [10], the communication
quality at an MU is also degraded by signals transmitted from
interfering APs.

Since the MUs are not equidistant from an AP, the path
loss values between the MUs and its home AP, which we
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call the intra-AP path loss values, are different among the
MUs communicating with a particular AP. The intra-AP path
loss values are considered to be arbitrary but deterministic
positive real numbers. On the other hand, the path loss values
between an MU and its interfering APs, which we call the
inter-AP path loss values, are random and governed by a path
loss modelG(r), wherer is the distance from the interfering
AP. The network is a fully closed-access network,i.e., the
MUs communicate only with their respective home APs. For
an example, one can consider a multitude of Wi-Fi networks,
where each network has its own security measures to prevent
unauthorized access.

The related work also includes papers such as [11]–[14]
and [21]–[24], that study multiuser MIMO. The main point
of difference between the network model introduced in this
paper and those introduced in [11]–[14] is that these previous
studies consider the AP locations to be known, similar to grid
based cellular models, which is in sharp contrast to our random
AP locations model. Recent studies indicate that irregular AP
locations in communication networks of today resemble to the
random Poisson deployment, rather than regular grid based
topologies [25], [26]. To this end, [21]–[24] use stochastic
geometric approaches to model the AP locations, but their
operation is not based on partial CSI, which make them
different than this paper. To the best of our knowledge, this is
the first paper that considers random AP locations to model
multi-AP OBF communication systems and that uses key tools
from stochastic geometry to analyze the performance of the
resulting wireless communication system.

Transmissions are scheduled to MUs having the highest
received SINR on each beam in an OBF communication
system. Therefore, the distribution of the maximumSINR
on a beam emerges as an important summary statistics for
the performance analysis of OBF communication systems. For
single AP OBF communication systems, the calculation of the
extreme value distribution ofSINR on a beam is relatively
simple to carry out since theSINR values received by MUs
on a particular beam constitute a collection of independent
random variables. In particular, for the baseline model of
opportunistic communication introduced in [1], theSINR
values on a beam turn out to be independent and identically
distributed (i.i.d.) random variables among the MUs since
they are equidistant from the AP. Hence, the extreme value
distribution of SINR on a beam for the system in [1] can
be simply obtained by raising the individual beamSINR
distributions to the power ofN for a communication scenario
consisting ofN MUs.

However, unlike single AP OBF communication systems
such as [8], [9] and [10], theSINR values on a beam for the
multi-AP system model considered in this paper are no longer
independent among the MUs. They are dependent on the
common randomness caused by the point process governing
the locations of the interfering APs. This dependency makes
it prohibitively hard to derive the exact distribution of the
maximumSINR on a beam, and hence, it becomes relatively
much more complicated to perform performance analysis for
multi-AP OBF communication systems. The heterogeneity
among the MUs does further multiply the complexity as it

makes theSINR values on a beam non-identically distributed
among the MUs.

Towards the resolution of this complication, we provide
two tight distribution approximation results. To obtain the first
approximation, we assume that the inter-AP interference is
independent among the MUs connected to a particular AP.
Intuitively, this approximation should give rise to a close match
to the actual scenario for APs with large coverage radii since
MUs are expected to be further away from each other in
this case, and the spatial correlation of inter-AP interference
will diminish to zero for large distances [27]. For the second
approximation, we assume that the inter-AP interference is
perfectly correlated. Intuitively, this approximation should lead
to a close match to the actual scenario for APs with small
coverage radii since in this case, the MUs are expected to
be close to each other, and the spatial correlation of inter-AP
interference will increase to one for small distances [27].

We derive analytical expressions for the extreme value
distribution of beamSINR values under these approximations
for both single tier and multi-tier networks, and illustrate
that the proposed distribution approximation results match
the realistically simulated distribution of the maximum beam
SINR values quite well. The derived expressions hold for
general path loss models that satisfy some mild conditions,
including the commonly used unbounded path loss model
G(r) = r−α. Further, we use these approximation results to
obtain performance bounds for multi-AP OBF communication
systems by focusing on beam outage probabilities and achiev-
able aggregate ergodic data rates of each AP.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce the system model to analyze multi-AP
OBF communication systems. In Section III, we study the
distribution of the maximumSINR on a beam and derive
analytical distribution approximation results to approximate
the distribution of maximumSINR on a beam. In Section
IV, we extend our baseline model introduced in Section II
for single tier multi-AP OBF wireless networks toK-tier
heterogeneous multi-AP OBF wireless networks, with each
tier modeling a particular class of networks, similar to macro-
cells, pico-cells or femto-cells in a cellular environment. The
results analogous to those obtained in Section III for the
distribution of maximumSINR on a beam are also obtained
for K-tier multi-AP OBF communication systems in Section
IV. Note that the intra-AP path loss values are considered
to be arbitrary but deterministic, which implies that the MU
locations are deterministic. This is done in order to ensure
clarity in our main results. However, according to conventional
assumptions when stochastic geometry is applied to model
wireless networks, both APs and MU locations are assumed
to be subject to PPPs, albeit with different intensities. In
Section V, we will discuss how the results in this paper can
be extended to a scenario where both AP locations and MU
locations are random.

To illustrate the applications of our analytical distribution
approximation formulas derived for general path loss models
as well as to gain further insights, we derive the extreme value
distribution for beamSINR levels by using two well known
path loss models in Section VI. We provide simulations and
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numerical evaluations in Section VII to validate the results and
to discuss the utility of each approximation for getting insights
into a realistically simulated OBF communication system. In
particular, we demonstrate that when the coverage radius is
small, the approximated maximum beamSINR distribution
obtained by assuming perfect correlation gives rise to a close
match to the actual case in both sparse and dense networks.
On the other hand, the approximation result obtained by
assuming that the inter-AP interference is independent among
the MUs connected to a particular AP performs better for
sparse networks when the coverage radius is large. When
the coverage radius is large and the network is dense, both
approximations do not perform well, and for this particular
scenario, we propose using a mix of the two approximations
to better approximate the actual case. Finally, we utilize the
approximate maximum beamSINR distributions to obtain
some important performance measures for multi-AP OBF
communication systems such as beam outage probability and
ergodic aggregate data rate per AP in Section VII. Section
VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM SETUP

In this section, we will present our system model as an
extension of the classical single AP OBF framework with
homogeneous MUs [1] to a scenario of heterogeneous MUs
and multiple interfering APs. To simplify notations, we focus
only on the system model for a single tier network in this
section. The extensions to the multi-tier case are given in
Section IV. To this end, we consider a wireless network with
APs located according to a homogeneous spatial PPPΦ of
intensity λ. Each AP is equipped withT transmit antennas
and communicates with a multitude of MUs having single
receive antennas. The network is assumed to be afully closed-
access network. That is, the MUs communicate only with their
respective home APs similar to a multitude of Wi-Fi networks,
where each network has its own security measures to prevent
unauthorized access.

Being different from [1], the MUs communicating with a
particular AP are not equidistant from it, which introduces
additional heterogeneity among them. Each AP has a circular
disk-shaped coverage area of radiusD, and we assume that
an MU lying outside of the coverage area will not be able
to communicate reliably with the AP. This means that each
AP and the locations of the MUs that communicate with it
can be illustrated by using points lying inside a disk of radius
D, where the AP is located at the center of the disk. For a
particular realization of AP locations and a selected part of
the plane, Fig. 1 gives a graphical illustration of the proposed
model for the multi-AP OBF wireless communication network.
An inactive MU is an MU outside the coverage region of
its home AP. As shown in Fig. 1, an inactive MU may be
located inside the coverage area of a neighboring AP, but it
cannot receive any data by connecting to the neighboring AP
as the network is assumed to be closed access. The same
situation also applies to an active MU that is much closer
to a neighboring AP compared to its home AP.

The received signal by an MU is impaired by both fading
and path loss. We assume that the path loss value between an

Fig. 1. Part of the plane illustrating AP and MU locations for aparticular
realization of AP locations.

MU and its home AP is a fixed arbitrary positive real number,
and we call this the intra-AP path loss value of the respective
MU. Note that the intra-AP path loss values are different
among MUs since they are not equidistant from the home
AP. On the other hand, the path loss values between an MU
and its interfering APs, which we call the inter-AP path loss
values, are random and governed by a path loss modelG(r),
where r is the distance between the MU and an interfering
AP. Our path loss model is general in the sense thatG can be
any function that is continuous, positive and non-increasing
as well as satisfying the relationG(r) = O (r−α) asr grows
large for someα > 2.1

The network operates according to the classical OBF frame-
work [1] as follows. Each AP transmitsM , M ≤ T , different
data streams intended forM different MUs. We assume that
the origino belongs to the AP location processΦ and focus on
a test AP located at the origino ∈ Φ. This assumption does not
limit the generality of our results due to Slivnyak’s Theorem
[28]–[30]. The symbols of themth stream transmitted from
the AP located at the origin are represented byso,m. They
are drawn from a zero mean and unit variancecircularly-
symmetric complex Gaussian distribution CN (0, 1), and are
sent along the directions ofM orthonormal beamforming
vectors{bo,m}Mm=1. The overall transmitted signal from the
AP located at the origin is given by

so =
√
P

M
∑

m=1

bo,mso,m, (1)

whereP is the transmit power per beam.
Consider MUi located atui ∈ CD, whereCD represents

the disk centered at the origin with a radiusD. The MU atui

communicates with the serving AP located at the origin. Let
‖ui−y‖ be the distance between the MU located atui and an
AP located aty ∈ Φ\{o}, where‖·‖ represents the Euclidean
norm. The signal received by the MUi at ui is given by

Yi =
√
gih

⊤
o,ui

so+
∑

y∈Φ\{o}

√

G(‖ui − y‖)h⊤
y,ui

sy+Zi, (2)

1The variabler in G(r) is actually normalized by a reference distance
Dref . For example, in cellular networks, typical distances forDref are on
the order of a kilometer for macro-cells, of hundred meters for pico-/micro-
cells and of several meters for femto-cells [26].r takes the same units as
Dref . In the current paper, and in most related other works in the literature, it
is assumed thatDref = 1 unit distance. Therefore, bothλ andD in this paper
can be considered as normalized quantities with respect to the unit distance.
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where gi is the intra-AP path loss value of MUi, Zi is
the CN (0, 1) additive background noise,ho,ui

is theT -by-1
complex vector containing fading coefficients between the MU
at ui and the AP at the origin. Similarly,hy,ui

is theT -by-
1 complex vector containing fading coefficients between the
MU at ui and the AP located aty. We assume that the fading
coefficients are i.i.d. random variables drawn fromCN (0, 1).

Let γo,ui,m be the receivedSINR value at the MU located
at ui, corresponding to beamm transmitted from the home
AP. The first term on the right hand side of (2) represents
the received useful signal. The second term represents the
interference signals from all interfering APs located according
to Φ \ {o}. Thus,γo,ui,m is given by

γo,ui,m =
giXo,ui,m

(P )
−1

+ giIo +
∑

y∈Φ\{o} G(‖ui − y‖)Iy
, (3)

whereXo,ui,m = |h⊤
o,ui

bo,m|2, Io =
∑M

l=1,l 6=m Xo,ui,l and

Iy =
∑M

l=1 Xy,ui,l. Here, we note thatXy,ui,l = |h⊤
y,ui

by,l|2
is the (unnormalized) inter-AP interference power at the MU
located atui arising from beaml transmitted by the AP located
at y. Each MU feeds back itsSINR information to its home
AP, and the home AP selects the MU with the highestSINR
on each beam to maximize the communication rate. Therefore,
the instantaneous rate on beamm transmitted from the test AP
at the origin (measured in terms of nats/s/Hz) can be written
as

ratem = log

(

1 + max
1≤i≤N

γo,ui,m

)

, (4)

whereN is the number of home MUs within the coverage
area of the test AP at the origin.

III. D ISTRIBUTION OF THEMAXIMUM SINR ON A BEAM

FOR GENERAL PATH LOSSMODELS

In the system model we put forward in Section II, the
distribution of the maximumSINR on a beam emerges as
an important parameter for the network performance analysis.
Indeed, the CDF of the maximum beamSINR value provides
us with necessary and sufficient statistical characterization of
a multi-AP OBF communication system to calculate outage
and ergodic data rate capacities of the system. We note
that this observation is also correct for the single AP OBF
communication systems where the distribution of the beam
SINR F was first derived, and then by using the fact that the
SINR on a beam is i.i.d. among the MUs, the distribution of
the maximumSINR on a beam was simply obtained by raising
F to the power ofN [10]. The calculation of the extreme
value distribution of beamSINR values for multi-AP OBF
communication systems becomes strikingly more complicated
due to two reasons. Firstly, the MUs are not equidistant
from the BS, thus theSINR on a beam is not identically
distributed among the MUs. Secondly, due to the correlation
structure of the underlying inter-AP interference field, the
SINR on a beam is not independent among the MUs either.
Below, we first present the steps taken towards obtaining
tight bounds on the maximum beamSINR distribution. Then,
we elaborate on the performance characterization of multi-
AP OBF communication systems further in Section VII by

utilizing the derived extreme value distribution approximation
results.

When considering theSINR expression in (3) given for
a multi-AP OBF communication system, it can be seen that
Xo,ui,m is exponentially distributed with unit mean,i.e.,
Xo,ui,m ∼ exp(1). This means that due to being summations
of i.i.d. unit mean exponentially distributed random variables,
Io is distributed according toΓ(M−1, 1) andIy is distributed
according toΓ(M, 1), whereΓ(k, θ) represents the gamma
distribution with shape parameterk and scale parameterθ. By
using these observations, we first present the auxiliary result
below, where we condition on the locations of the interfering
APs and derive the conditional distribution of theSINR on a
beam for the MU located atui.

Lemma 1: Consider the AP located at the origino ∈ Φ, MU
i at ui ∈ CD. Let Φ!

o = Φ \ {o} represent the point process
governing the locations of the interfering APs. For a given
realization ofΦ!

o, the distribution of theSINR on a beam for
the MU atui and communicating with the AP ato is given
by

Fui

(

t|Φ!
o

)

= 1−
exp

(

−t
giP

)

(t+ 1)
M−1

∏

y∈Φ!
o

G̃i(t, ui − y), (5)

where

G̃i(t, ui − y) =
gMi

(gi + tG(‖ui − y‖))M
.

Proof: See Appendix A.
Since theSINR values on a beam at different MUs are

dependent upon each other through the common randomness
caused by the point process governing the locations of the
interfering APs, we have first conditioned on the point process
of locations of interfering APs in Lemma 1 to remove this
dependency. By utilizing this conditional CDF result for
individual beams, we can readily obtain an expression for the
conditional distribution of the maximumSINR on a beam
transmitted from the AP ato ∈ Φ, which can be written as

F ⋆
(

t|Φ!
o

)

=

N
∏

i=1

Fui

(

t|Φ!
o

)

.

Hence, the unconditional maximum beamSINR distribution
can be written as

F ⋆ (t) = EΦ!
o





N
∏

i=1



1−
exp

(

−t
giP

)

(t+ 1)
M−1

∏

y∈Φ!
o

G̃i(t, ui − y)







 .

(6)
The dependency among individual beamSINR values makes
it prohibitively hard to obtain an analytical expression for the
expectation in (6), and therefore we cannot derive a closed
form result for the maximumSINR on a beam. Towards
the resolution of this complication, we formally present two
approximations for the distribution of the maximumSINR on
a beam by using key tools from stochastic geometry below.
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A. Independent Inter-AP Interference Approximation

We will obtain our first approximation on the maximum
beam SINR distribution by assuming that inter-AP inter-
ference random variables are independent among the MUs
connected to a particular AP. This means that each MU located
in the circular coverage areaCD observes an independent
realization of the point process that governs the locations of
interfering APs. This assumption makes the beamSINR values
among the MUs connected to the same home AP independent,
which, in turn, leads to an easier computation of the maximum
SINR distribution on a beam. Thus, under the assumption of
independent inter-AP interference values,F ⋆ (t) in (6) can be
approximated as

F ⋆ (t) ≈ F ⋆
ind(t)

,

N
∏

i=1



1−
exp

(

−t
giP

)

(t+ 1)
M−1

EΦ!
o





∏

y∈Φ!
o

G̃i(t, ui − y)







 . (7)

This means that we can obtain the distribution of the
maximum beamSINR by first obtaining the beamSINR
distributions of the MUs connected to the AP at the origin, and
then considering the product of these individual beamSINR
distributions. These ideas are formally presented through the
following theorem, and intuitively, this approximation should
give rise to a close match to the actual scenario for APs having
large coverage radii since MUs are expected to be further
away from each other in this case, and the spatial correlation
coefficient of inter-AP interference will diminish to zero for
large distances [27].

Theorem 1: Under the independent inter-AP interference
assumption, the CDF of the maximumSINR on a beam
transmitted from an AP communicating withN MUs having
intra-AP path loss values{gi}Ni=1 can be approximated by

F ⋆
ind(t) =

N
∏

i=1

[

1− exp (−q1,i(t))

(t+ 1)
M−1

]

,

where

q1,i(t) =
t

giP
+

M−1
∑

m=0

∫ ∞

0

πλtgmi G(
√
r)

(tG(
√
r) + gi)

m+1 dr.

Proof: See Appendix A.
If we consider the expression obtained forF ⋆

ind more
closely, the first term of the functionqi,1 represents the
effect of the background noise on the maximum beamSINR
distribution, and the second term represents the effect of inter-
AP interference on the maximum beamSINR distribution. On
the other hand, the1/ (t+ 1)

M−1 term arises due to intra-
AP interference. For example, ifM = 1, i.e., single rank
transmission, this term vanishes since using a single beam
eliminates intra-AP interference among the MUs connected
to the same home AP. Through the following corollary, we
will further simplify the result in Theorem 1 to a scenario
where theN MUs communicating with the AP at the origin
are equidistant from it. In other words, it is assumed that allN
MUs receive signals from their home AP at the same average
power. In the literature associated with OBF, this is the most

common assumption made for the modeling of MU locations
[1]–[7].

Corollary 1: Under the independent inter-AP interference
assumption, the CDF of the maximumSINR on a beam
transmitted from an AP communicating withN equidistant
MUs having the same intra-AP path loss valueg can be

approximated byF ⋆
ind(t) =

[

1− exp (−q1(t))

(t+1)M−1

]N

, where

q1(t) =
t

gP
+

M−1
∑

m=0

∫ ∞

0

πλtgmG(
√
r)

(tG(
√
r) + g)

m+1 dr.

Next, we will provide another approximation for the CDF
of the maximumSINR on a beam transmitted from an AP.

B. Perfectly Correlated Inter-AP Interference Approximation

We will obtain our second approximation on the maximum
beamSINR distribution by assuming that inter-AP interfer-
ence random variables are perfectly correlated among the MUs
connected to the same home AP.2 This assumption makes the
conditional beamSINR values (conditioned on the interfering
AP locations) among the MUs connected to the same home
AP independent, which again leads to an easier computation
of the maximumSINR distribution on a beam. Under this
assumption, by using the stationarity property ofΦ!

o, F ⋆ (t)
in (6) can be approximated as

F ⋆ (t)≈F ⋆
cor(t)

,EΦ!
o





N
∏

i=1



1−
exp

(

−t
giP

)

(t+ 1)
M−1

∏

y∈Φ!
o

G̃i(t, y)







 , (8)

where we average over the location process of the interfering
APs after considering the product of the individual beam
SINR CDFs of the MUs to obtain our second approximation
on the maximum beamSINR distribution. Intuitively, this
approximation is expected to give rise to a close match to
the actual scenario for APs having small coverage radii since
the MUs are expected to be close to each other in this case
and the spatial correlation coefficient of inter-AP interference
will increase to one for small distances [27]. We will first
present an auxiliary result that we will use to derive the above
approximation.

Lemma 2: For any collection of real numbersa1, . . . , aN ,
we have

N
∏

i=1

(1− ai) =
∑

S⊆{1,...,N}

(−1)
|S|
∏

i∈S

ai,

where we take
∏

i∈S ai = 1 if S = φ.
The lemma can be easily proven by using induction, and
therefore, omitted in the paper. As an example for the use
of Lemma 2, we get(1−a1)(1−a2)(1−a3) = 1−a1−a2−
a3 + a1a2 + a1a3 + a2a3 − a1a2a3 for N = 3. Also note that
if a1 = a2 = . . . = aN = a, Lemma 2 simplifies to the well
known binomial expansion.

2The term representing inter-AP interference consists of both path loss
values and fading coefficients. The correlation is with respect to path loss
values. The fading coefficients are still considered to be i.i.d. random variables.



1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2016.2527650, IEEE
Transactions on Wireless Communications

6

Using the result in Lemma 2, the perfectly correlated inter-
AP approximation is formally presented in the following
theorem.

Theorem 2: Under the perfectly correlated inter-AP interfer-
ence assumption, the CDF of the maximumSINR on a beam
transmitted from an AP communicating withN MUs having
intra-AP path loss values{gi}Ni=1 can be approximated by

F ⋆
cor(t) =

∑

S⊆{1,...,N}

(−1)
|S|

(1 + t)
|S|(M−1)

exp (−q2(t,S)),

where

q2(t,S) =
∑

i∈S

t

giP
+ πλ

∫ ∞

0

(

1−
∏

i∈S

gMi

(gi + tG(
√
r))

M

)

dr.

Proof: See Appendix A.
Compared to the result in Theorem 1, the result in Theorem

2 is less tractable analytically. Even, numerical evaluation is
not straightforward whenN is large. Therefore, we resort to
the equidistant assumption again, where the AP communicates
with N equidistant MUs. If the MUs are equidistant with a
common intra-AP path loss valueg, (8) can be simplified as

F ⋆
cor(t), EΦ!

o









1−
exp

(

−t
gP

)

(t+ 1)
M−1

∏

y∈Φ!
o

gM

(g + tG(‖y‖))M





N





.

This assumption does not only make the conditional beam
SINR values (conditioned on the interfering AP locations)
among the MUs connected to the same home AP independent,
but also makes them identically distributed. The simplified
maximum SINR distribution is formally presented in the
following corollary.

Corollary 2: Under the perfectly correlated inter-AP in-
terference assumption, the CDF of the maximumSINR on
a beam transmitted from an AP communicating withN
equidistant MUs having the same intra-AP path loss valueg
can be approximated by

F ⋆
cor(t) = 1 +

N
∑

i=1

(

N
i

)

(−1)
i
exp (−q2,i(t))

(1 + t)
i(M−1)

,

where

q2,i(t) =
it

gP
+

Mi−1
∑

m=0

∫ ∞

0

πλtgmG(
√
r)

(tG(
√
r) + g)

m+1 dr.

Proof: See Appendix A.
Note that there is only a subtle difference in the derivations

of the two approximations in Theorems 1 and 2 above. In
the independent inter-AP interference scenario, we performed
averaging over the reduced Palm distribution of the interfering
AP locations before calculating the extreme value distribution
for beamSINR values, whereas we calculated the conditional
extreme value distribution for the beamSINR values first in
the perfectly correlated inter-AP interference scenario and then
averaged over the reduced Palm distribution of the interfering
AP locations to remove conditioning. Further, by focusing on
the two simplified expressions in Corollaries 1 and 2, we can
observe subtle structural differences between the expressions

obtained for the two cases as well. By binomial expansion,
F ⋆
ind(t) in Corollary 1 can be written as

F ⋆
ind(t) = 1 +

N
∑

i=1

(

N
i

)

(−1)
i

(1 + t)
i(M−1)

× exp

(

− it

gP
− i

M−1
∑

m=0

∫ ∞

0

πλtgmG(
√
r)

(tG(
√
r) + g)

m+1 dr

)

.

From a more practical point of view, the analytical structural
differences in these two approximation results help us to
understand the statistical behavior of maximum beamSINR
values for a multi-AP OBF network at the two extreme cases
of large and smallD. The extreme value distribution of the
beamSINR values in the actual scenario is expected to lie in
between these two limiting cases, a point which we illustrate
in detail numerically in Section VII. We should also note that
by direct observation of the results in Theorems 1 and 2,
and Corollaries 1 and 2, we can see that the CDF of the
maximum SINR on a beam transmitted from an AP goes
to one exponentially fast with increasing AP intensity and
decreasing intra-AP path loss values.

IV. OBF FOR NETWORKS WITH HETEROGENEOUSAPS

In this section, we will extend the results obtained for
single tier multi-AP OBF wireless communication networks in
Section III to aK-tier heterogeneous network, with each tier
modeling a particular class of network. LetK = {1, . . . ,K}
be the set of network tiers. In such a multi-tier network
consisting of heterogeneous APs, the AP locations of thekth
tier, wherek ∈ K, are usually modeled using a homogenous
spatial PPPΦk of intensityλk [31], a model which we also
follow in this paper. We will use the same notations given
in Section II, with an added indexk ∈ K when necessary to
represent the parameters of an AP in thekth tier, e.g., Dk, Mk

andPk represent the coverage radius, number of orthogonal
beams, and the transmit power per beam for an AP in tierk,
respectively.

Consider an AP in tierk ∈ K located at the origino ∈ Φk

and an MUi located atuk,i ∈ CDk
that communicates with

the AP located ato. Here,CDk
represents the disk centered

at the origin with a radiusDk. Note that the coverage radius
will be different among tiers, with macro APs having large
coverage radii and the femto and pico APs having relatively
small coverage radii. The receivedSINR value γo,uk,i,m of
the MU located atuk,i corresponding to beamm transmitted
from the AP ato is given by

γo,uk,i,m =
gk,iPkXo,uk,i,m

Io,uk,i,m
, (9)

where

Io,uk,i,m = 1+gk,iPkIo+
∑

yk∈Φk\{o}

G(‖uk,i−yk‖)PkIyk
+

K
∑

j=1,j 6=k

∑

yj∈Φj

PjG(‖uk,i − yj‖)Iyj
,
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gk,i is the intra-AP path loss value of MUi at uk,i,
Xo,uk,i,m = |h⊤

o,uk,i
bo,m|2, Io =

∑Mk

l=1,l 6=m Xo,uk,i,l, and

Iyj
=
∑Mj

l=1 Xyj ,uk,i,l for j ∈ K. The instantaneous rate on
beamm transmitted from the AP ato (measured in terms of
nats/s/Hz) can be written as

ratem = log

(

1 + max
1≤i≤Nk

γo,uk,i,m

)

, (10)

whereNk is the number of home MUs within the coverage
area of the tier-ktest AP at the origin.

Note that compared to (3), (9) has an extra term
∑K

j=1,j 6=k

∑

yj∈Φj
PjG(‖uk,i − yj‖)Iyj

in the denominator
that represents the effect of the interference from the APs in
all other tiers except tierk ∈ K. We call this term inter-
tier interference. As is done above, it can be shown that
Iyj

is distributed according to the gamma distribution,i.e.,
Iyj

∼ Γ(Mj , 1). Thus, inter-tier interference can be dealt with
by following the same approach used to deal with the inter-
AP interference in the single tier scenario. To this end, the
conditional distribution of beamSINR values in Lemma 1
can be easily extended to the case of heterogeneous networks
with K-tiers. That is, for a given realization of the interfering
APs Φ!

o = {Φk \ {o}}⋃⋃K
j=1,j 6=k Φj , the distribution of the

SINR on a beam of the MU atuk,i and communicating with
the AP ato ∈ Φk is given by

Fuk,i

(

t|Φ!
o

)

=

1−
exp

(

−t
gk,iPk

)

(t+ 1)
Mk−1

∏

y∈Φk\{o}

gMk

k,i

(gk,i + tG(‖uk,i − y‖))Mk

×
K
∏

j=1,j 6=k

∏

z∈Φj

(Pkgk,i)
Mj

(gk,iPk + tPjG(‖uk,i − z‖))Mj
. (11)

To obtain this expression, we have fixed the locations of all
APs (except the AP ato) in tier k and the locations of those
other APs causing inter-tier interference. Compared to (5), (11)
also contains an extra term, which is due to the effect of inter-
tier interference.

As discussed in Section III, an expression for the dis-
tribution of the maximum beamSINR is hard to obtain.
Thus, we provide two approximated distributions below. The
expression in (11) can be used to obtain these approximations
by following similar concepts/steps to the ones used in the
single tier analysis in Section III. For the first approximation,
we will assume that the random variables representing inter-
AP and inter-tier interference are independent among the MUs
connected to a particular AP. With this assumption, we extend
Theorem 1 to its respectiveK-tier version as follows. The
proof of this theorem is skipped to avoid repetitions.

Theorem 3: Consider an AP belonging to tierk ∈ K
and communicating withNk MUs having intra-AP path loss
values{gk,i}Nk

i=1. Under the independent inter-AP and inter-
tier interference assumption, the CDF of the maximumSINR
on a beam transmitted by the AP can be approximated by

F ⋆
ind,k(t) =

Nk
∏

i=1

[

1− exp (−q1,k,i(t))

(t+ 1)
Mk−1

]

,

where

q1,k,i(t)=
t

gk,iPk
+

K
∑

j=1

Mj−1
∑

m=0

∫ ∞

0

πλjPj (Pkgk,i)
m
G(

√
r)t

(tPjG(
√
r) + gk,iPk)

m+1 dr.

We will obtain our second approximation on the maximum
beamSINR distribution by assuming that inter-AP and inter-
tier interference random variables are perfectly correlated
among the MUs connected to the same home AP. This
assumption again makes the conditional beamSINR values
(conditioned on the interfering AP locations) among the MUs
connected to the same home AP independent. In the following
theorem, we extend Theorem 2 to its respectiveK-tier version.

Theorem 4: Consider an AP belonging to tierk ∈ K and
communicating withNk MUs having intra-AP path loss values
{gk,i}Nk

i=1. Under the perfectly correlated inter-AP and inter-
tier interference assumption, the CDF of the maximumSINR
on a beam transmitted by the AP can be approximated by

F ⋆
cor,k(t) =

∑

S⊆{1,...,N}

(−1)
|S|

(1 + t)
|S|(Mk−1)

exp (−q2,k(t,S)),

where

q2,k(t,S) =
∑

i∈S

t

giP

+
K
∑

j=1

πλj

∫ ∞

0

(

1−
∏

i∈S

(Pkgk,i)
Mj

(gk,iPk + tPjG(
√
r))

Mj

)

dr.

The proof of this theorem is also skipped to avoid repetitions.
Next, similar to what was done for the single tier scenario,

we will further simplify the results in Theorems 3 and 4
by assuming that the MUs are equidistant from the serving
AP. The results for the independent inter-AP and inter-tier
interference case and perfectly correlated inter-AP and inter-
tier interference case are presented in the following two
corollaries.

Corollary 3: Consider an AP belonging to tierk ∈ K and
communicating withNk equidistant MUs having the same
intra-AP path loss valuegk. Under the independent inter-
AP and inter-tier interference assumption, the CDF of the
maximum SINR on a beam transmitted by the AP can be
approximated by

F ⋆
ind,k(t) =

[

1− exp (−q3,k(t))

(t+ 1)
Mk−1

]Nk

,

where

q3,k(t) =
t

gkPk
+

K
∑

j=1

Mj−1
∑

m=0

∫ ∞

0

πλjPj (Pkgk)
m
G(

√
r)t

(tPjG(
√
r) + gkPk)

m+1 dr.

Corollary 4: Consider an AP belonging to tierk ∈ K and
communicating withNk equidistant MUs having the same
intra-AP path loss valuegk. Under the perfectly correlated
inter-AP and inter-tier interference assumption, the CDF of
the maximumSINR on a beam transmitted by the AP can be
approximated by

F ⋆
cor,k(t) = 1 +

Nk
∑

i=1

(

Nk

i

)

(−1)
i
exp (−q2,k,i(t))

(1 + t)
i(Mk−1)

,
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where

q2,k,i(t) =
it

gkPk
+

K
∑

j=1

iMj−1
∑

m=0

∫ ∞

0

πλjPj (Pkgk)
m
G(

√
r)t

(tPjG(
√
r) + gkPk)

m+1 dr.

V. EXTENSION OF RESULTS FOR RANDOMMU LOCATIONS

Note that we have assumed that the intra-AP path loss
values are fixed positive real numbers in the previous sections.
This is done to ensure clarity in the results in Theorems 1
and 2. However, according to conventional assumptions when
stochastic geometry is applied to model wireless networks,
both APs and MU locations are assumed to be subject to
PPPs, albeit with different intensities. In this section, we will
discuss how the results above can be extended to a scenario
where both AP locations and MU locations are random. To
this end, consider that the set of MUs communicating with a
particular home AP is distributed over the coverage area of
this AP according to a PPP. More specifically the set of MUs
communicating with the AP ato ∈ Φ is distributed over the
disk centered ato with radiusD according to a PPPΦMU,o

of intensityλMU. This means that the number of MUs inside
the coverage areaN is a Poisson distributed random variable
with meanλMUπD

2, and all MUs are uniformly distributed
over the coverage area given a particular realization ofN .
Therefore, the intra-AP path loss values are now random, and
they are governed by a path loss modelGMU(r), where r
is the distance between an MU and its home AP. We call
GMU the intra-AP path loss model. Similar toG, GMU is
general and it can be any function that is continuous, positive,
non-increasing, andGMU(r) = O (r−α) as r grows large for
someα > 2. Note that the intra-AP path loss values will be
identically distributed among a set of MUs communicating
with a particular home AP. Since the MU locations are
modeled using a PPP, and sinceGMU is non-increasing, the
CDF of the intra-AP path loss of an MU can be written as

GMU(g) = 1−
[

G−1
MU(g)

D

]2

.

Here, we defineG−1
MU(g) asG−1

MU(g) = inf {r : GMU(r) ≤ g}.
In this context, the results in Theorems 1 and 2 can

be considered as the CDFs of the maximumSINR on a
beam conditioned onN and g = {gi}Ni=1, i.e., F ⋆

ind(t|g, N)
and F ⋆

cor(t|g, N), where gi’s are now independent random
variables distributed according to the CDF derived above.
The distribution of the maximumSINR on a beam can be
obtained by averaging over the location process of the MUs.
To this end, averaging over the i.i.d. intra-AP path loss values
gives usF ⋆

ind(t|N) and F ⋆
cor(t|N). Similarly, by observing

that Pr {N = n} =
[

e−λMUπD2 (

λMUπD
2
)n
]

/n!, we can
remove the condition on the number of MUs, and obtain the
distribution of the maximumSINR on a beam. Although the
idea of unconditioning the expressions in Theorems 1 and 2
over g and N is rather straightforward, the unconditioning
does not lead to any simplification of the expressions. In
fact, it further complicates them. Therefore, without formally
presenting the results, we just discuss the idea of extending
our results to a scenario where the MU locations are random.

A similar approach can also be used to extend the results in
Theorems 3 and 4 to a scenario where the MU locations are
random.

VI. A PPLICATIONS FORSPECIFICPATH LOSSMODELS

The results above are presented for general path loss models.
In this section, we apply our results to two well known path
loss models, and in Section VII, the resulting expressions will
be used to provide some further insights, and concrete exam-
ples illustrating the applications of the derived results, using
numerical evaluations. For the applications, we will only focus
on the results derived under the equidistant MU assumption in
Corollaries 1, 2, 3 and 4 as they can be much effectively and
easily used to provide further insights on the results, and to
illustrate the validity of the two approximations (independent
and perfectly correlated) for different network settings. We
will again start with the single tier scenario. To this end, we
observe that only the integral expression appearing in both
Corollaries 1 and 2 depends on the functional form of the
path loss model, which is given here again as

Qm(t) =

∫ ∞

0

πλtgmG(
√
r)

(tG(
√
r) + g)

m+1 dr. (12)

Thus, it will be enough to simplify this integral expression
further to understand the effect of the specific functional
form of the path loss model on the maximum beamSINR
distribution. To this end, we will use two commonly used
path loss models in the literature. The first one is a bounded
path loss model while the second one is an unbounded path
loss model. For the bounded path loss model, the path loss
function G takes the functional form ofG(r) = (1 + rα)

−1,
where α > 2 ( e.g., see [10], [32], [33]). This bounded
path loss model is also used in our numerical evaluations
to illustrate network performance figures. For the unbounded
path loss model, we use the classical unbounded path loss
function G(r) = r−α, whereα > 2 ( e.g., see [25], [31],
[34]), which is the most commonly used path loss model in
the literature. Our results simplifying the integral expression
in (12) for these specific selections of path loss models are
given in the following corollary.

Corollary 5: For the path loss model taking the formG(r) =
r−α for α > 2, Qm(t) in (12) can be written as

Qm(t) =

(

m+ 2
α − 1

m

)

2λπ2

α

(

t

g

)
2
α

csc

(

2π

α

)

, (13)

and forG(r) = (1 + rα)
−1, whereα > 2, it can be written

as

Qm(t) =
2λπ2t

αg
csc

(

2π

α

)

× 2F1

(

m+ 1, 1− 2

α
; 1;− t

g

)

,

(14)
where2F1 represents the Gauss hypergeometric function [35].

Proof: For G(r) = r−α, Qm(t) in (12) can be written as

Qm(t) = πλ
(g

t

)m
∫ ∞

0

r
αm
2

(

gr
α
2 /t+ 1

)m+1 dr.

Making a variable changer
α
2 = v and using the techniques

introduced in [35] for further simplification leads to (13). Since
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the proof of (14) follows along the similar lines, we skip it to
avoid repetitions.

Results for the heterogeneous case can be obtained by
focusing on

Qm,j(t) =

∫ ∞

0

πλjPj (Pkgk)
m
G(

√
r)t

(tPjG(
√
r) + gkPk)

m+1 dr,

which is the integral expression appearing in both Corollaries
3 and 4 that depends on the functional form of the path loss
model. It is not hard to see that taking the results in Corollary
5 and replacingλ with λj and g with gkPk/Pj will give us
the required extension to the heterogeneous AP scenario,i.e.,
Qm,j for G(r) = r−α andG(r) = (1 + rα)

−1, whereα > 2.
We do not formally present these results to avoid repetition.

By focusing on the bounded path loss modelG(r) =
(1 + rα)

−1 and the respective maximum beamSINR distri-
butions given through Corollaries 1 2 and 5 for this path loss
model, we will provide some numerical evaluations in the next
section to illustrate the applications of maximum beamSINR
distribution approximations derived above.

VII. N UMERICAL EVALUATIONS

In this section, we will demonstrate the utility of analytical
results obtained for general network models by focusing on
specific communication scenarios through numerical evalua-
tions. We only focus on the single tier networks to keep the
notations simpler. However, the same qualitative conclusions
continue to hold for other selections of the system parameters
as well as HetNet scenarios. We assume that the MUs are
equidistant from the home AP and without any loss of gener-
ality, we assume that the MUs are located at the edge of the
coverage area. That is, the distance to the home MUs from an
AP isD, which is the radius of the coverage area. To this end,
we consider four separate communication scenarios differing
from each other with respect toD and the average number
of interferers per coverage areaµ, i.e., µ = λπD2. All other
network parameters are kept constant asM = 2, N = 20 and
α = 4.

We set the intra-AP path-loss value tog = (1 +Dα)
−1

and assume that the transmit powers per beam are controlled
such that all beams are received with an averageunit power,
i.e., Pg = 1. We note this assumption implies that increasing
D results in APs transmitting at higher power levels, and
as a result, MUs have the same receivedSNR in all four
communication scenarios studied. This is necessary to have
a fair comparison among different communication scenarios
studied in our numerical evaluations. We note that, without
such a normalization, our approximation results automati-
cally become more accurate with increasing coverage radii
as increasing the communication distance makes the received
SINR CDFs more concentrated around small values with short
dynamic ranges.

For the first communication scenario, we setD = 0.5 and
µ = 0.05. These selections of network parameters mean that
the network model of interest consists of sparsely distributed
APs having small coverage radii (in terms of the inter-AP
interference power levels) over the plane. Our approximation
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Fig. 2. The behavior of the CDFs for sparse networks withµ = 0.05.

results (including both independent and perfectly correlated
inter-AP interference cases) for the CDF of receivedSINR
values at MUs are illustrated in Fig. 2(a), along with the
realistically simulated CDF of the receivedSINR values.
On the other hand, Fig. 2(b) demonstrates the approximation
results for a network consisting of APs with relatively larger
coverage radii but again sparsely distributed in terms of inter-
AP interference power levels (i.e.,D = 5 andµ = 0.05) when
compared with the network model used to sketch Fig. 2(a).

In Fig. 3, we focus on network models that are highly
dense in terms of inter-AP interference. In particular, Fig.
3(a) demonstrates theSINR CDFs (both approximated and
realistically simulated ones) for a network consisting of APs
with small coverage radii (i.e.,D = 0.5) and large inter-AP
interference power levels (i.e.,µ = 1), whereas Fig. 3(b) gives
analogous results for a network consisting of larger coverage
radii (i.e., D = 5) and having the same inter-AP interference
power level with the network in Fig. 3(a). Next, we compare
and contrast the results obtained in Figs. 2(a) and 3(a).

We observe from Figs. 2(a) and 3(a) that when the coverage
radius is small, the perfectly correlated inter-AP interference
approximation gives rise to a close match to the actualSINR
in both sparse and dense networks. This observation provides a
quantitative justification for the intuition that led us to propose
the perfectly correlated inter-AP interference approximation
for the maximum beamSINR distribution in Section III. That
is, it is anticipated that the MUs communicating with AP
with small coverage radius are located close to each other,
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Fig. 3. The behavior of the CDFs for dense networks withµ = 1.

and the spatial correlation coefficient of inter-AP interference
increases to one for small distances [27]. Large spatial corre-
lation implies that all MUs experience more or less the same
inter-AP interference value, which leads to the above observed
phenomenon of close match between the actual CDF and its
perfectly correlated inter-AP interference approximation.

On the other hand, we observe in Fig. 2(b) that the inde-
pendent inter-AP interference approximation performs better
for sparse networks when the coverage radius is large. This
observation is also expected because MUs are located far away
from each other when the coverage radius is large, and the spa-
tial correlation coefficient of inter-AP interference diminishes
to zero for large distances [27]. However, the auto-correlation
function of the spatial interference field increases with interfer-
ing AP density, and therefore how large the coverage radius
should be to make interference values uncorrelated depends
also on the network density. In particular, we see in Fig. 3(b)
that when the coverage radius is large and the network is
dense, the independent inter-AP interference approximation
does not perform well, neither does the perfectly correlated
inter-AP interference approximation. For such cases where
both of the proposedSINR approximations do not perform
well, a plausible approach is to use a convex combination of
the two proposedSINR distribution approximations to better
fit the actual maximum beamSINR CDF.

To illustrate this point more clearly, we provide an ex-
ample combination ofF ⋆

cor(t) and F ⋆
ind(t) as F ⋆

mix(t) =
0.5F ⋆

cor(t)+0.5F ⋆
ind(t) in Fig. 3(b). In this particular example,

we set the mixing coefficient to0.5, and an optimal selection
of this coefficient relies upon the correlation between the
SINR values considered for choosing the best MU with the
maximumSINR for downlink communication at each beam.
As seen in this figure,F ⋆

mix(t) fits to the maximum beam
SINR distribution more closely for most values of interference
levels. In fact, the approach proposed above is just a heuristic
one. For a more rigorous treatment of this problem, one first
needs to determine a metric to measure the distance between
F ⋆ andF ⋆

mix such as the Kullback-Leibler divergence or the
Kolmogorov-Smirnov distance. Then, the mixing coefficient
that minimizes the distance between two distributions can
be found either numerically or analytically, whichever more
convenient to carry out, for given values ofD and λ. This
process can be repeated initially for all possible pairs ofλ
and D, and the respective optimal mixing coefficients can
be tabulated. Then, for any givenD and λ, the system
implementer will readily have access to the optimal mixing
coefficient, or at least a near optimal mixing coefficient given
that the exactD or λ is not to be found in the table. A final
remark is that we have also provided simulation results to
validate the expressions obtained for the two approximations in
Fig. 3(b). We have simulated over a 120×120 rectangular area,
and we have considered 350000 realizations of the Poisson
process. For clarity, we have omitted these simulation results
in Figs. 2(a), 2(b) and 3(a).

It is important to note thatF ⋆
ind andF ⋆

cor do in fact provide
a lower bound and anupper bound to the actual maximum
beamSINR distribution in Figs. 2 and 3, respectively. This is
a rather intuitive observation. For the perfectly correlated inter-
AP interference approximation, we assume the collection of
distances/path loss values between an MU and its interfering
APs to be the same for all MUs connected to a particular AP.
For the independent inter-AP interference approximation, on
the other hand, we assume that the collection of distances/path
loss values between an MU and its interfering APs consists
of independent random variables among the MUs. Thus, the
beamSINR values vary more significantly from one MU to
another one in the independent inter-AP interference case than
the variances of those in the perfectly correlated inter-AP
interference case.

The maximization operation to choose the best MU achiev-
ing the highest rate on each beam (i.e.,see (4)) benefits from
such a higher variance in the independent inter-AP interference
case. To put in other words, we can better exploit multiuser
diversity gains when the correlation structure of the beam
SINR values leads to larger dynamic ranges for the maximum
beamSINR CDF [36], which is the case in the independent
inter-AP interference approximation. In the actual scenario,
the inter-AP interference will neither be perfectly correlated
nor independent. Therefore, it will lie in the middle ground
between these two extreme cases, and that’s why we observe
F ⋆
ind andF ⋆

cor as lower and upper bounds to the realistically
simulated CDF of the maximum beamSINR in above figures.

We can use Figs. 2 and 3 to get insights into the hetero-
geneous AP scenario as well. In general, the heterogeneous
AP scenario will lead to denser deployment of the APs due
to interfering APs in different tiers. Therefore, Fig. 3 will be
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of more relevance. This figure tells us that when the coverage
radius is small, the perfectly correlated scenario will be a better
fit, and when the coverage radius is large, the mixing technique
will provide a better fit. This means, for pico and femto
APs, the approximation obtained using the perfect correlation
assumption in Theorem 4 and Corollary 4 will be better suited
for performance evaluation. On the other hand, the mixing
technique will be better suited for performance analysis of
macro APs and other APs having a large coverage radius.
Alternatively, we can numerically evaluate the results obtained
in Section VI with regards to the heterogeneous AP scenario,
and obtain similar insights. However, we are skipping these to
avoid repetition of figures that look similar to each other.

The utility of our CDF approximation results becomes more
prominent when we consider obtaining performance bounds
for Poisson wireless networks operating according to OBF. In
particular, these approximations can be used to analyze some
important performance measures such as outage probability
and ergodic capacity for multi-AP OBF systems. Starting
with outage probability calculations, we consider fixed rate
communication on each beam for delay sensitive traffic. In this
case, the beam outage probability becomes a relevant metric to
measure the system performance. Considering an AP located
at the origin and a particular beam, say beamm, without loss
of generality due to symmetry among beams and Slivnyak’s
Theorem, the beam outage probability can be written as

Pr (Beam Outage) = Pr

{

log

(

1 + max
1≤i≤N

γo,i,m

)

≤ t

}

= F ⋆
(

et − 1
)

for a target data ratet. If an outage event occurs at a beam,
this beam cannot be scheduled for reliable communication
until it faces better channel states. Using our independent
and perfectly correlated inter-AP interference approximation
results, we can upper and lower boundPr (Beam Outage)as

F ⋆
ind

(

et − 1
)

≤ Pr (Beam Outage) ≤ F ⋆
cor

(

et − 1
)

,

which are quite tight bounds, especially for target rates greater
than1 [nats/s/Hz] as depicted in Fig. 4. Further, these bounds
can also be utilized to estimate the outage capacity of a multi-
AP OBF communication system, defined as the supremum
of target rates that can be sustained by each beam without
exceeding a given threshold level for outage probability.3 In
Fig. 4, we only demonstrate beam outage probabilities for
sparsely distributed OBF Poisson wireless networks consisting
of APs with small coverage radii. The other three scenarios
considered above to illustrate our approximation results for the
distribution of the maximum beamSINR values have been
omitted to avoid repetitions.

The same approach can also be used to obtain ergodic data
rates for multi-AP OBF communication systems. Considering
an AP located at the origin, we can write the aggregate
average data rate that can be sustained to support reliable
communication of delay insensitive data as

3A similar calculation was carried out for single AP OBF communication
systems in [10].
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Fig. 4. Beam outage probability forD = 0.5 andµ = 0.05.

TABLE I
AVERAGE ACHIEVABLE RATE OF AN AP PER BEAM (NATS/S/HZ). (M = 2,

N = 20 AND α = 4.)

Interference D = 0.5 D = 0.5 D = 5 D = 5
µ = 0.05 µ = 1 µ = 0.05 µ = 1

Independent 1.0444 0.2463 1.1487 0.5990
Actual 1.0138 0.2345 1.1387 0.5378
Perfectly Correlated 1.0082 0.2323 1.1189 0.4291
Mix 1.0208 0.2401 1.1239 0.5101

Rergodic = E

[

M
∑

m=1

log

(

1 + max
1≤i≤N

γo,i,m

)

]

= M

∫ ∞

0

Pr

{

log

(

1 + max
1≤i≤N

γo,i,m

)

> t

}

dt

= M

∫ ∞

0

(

1− F ⋆
(

et − 1
))

dt,

where we used the property thatlog (1 + max1≤i≤N γo,i,m)
is always a positive number to write the first identity. Hence,
Rergodic can be upper and lower bounded as

M

∫ ∞

0

(

1− F ⋆
cor

(

et − 1
))

dt ≤ Rergodic ≤

M

∫ ∞

0

(

1− F ⋆
ind

(

et − 1
))

dt.

Table I tabulates the average achievable rate of an AP per
beam for the four scenarios considered in Figs. 2 and 3. In this
table, we also provide average achievable data rates obtained
through using the mixing approach to approximate the maxi-
mum beamSINR distribution with the mixing coefficient0.5,
i.e., F ⋆(t) ≈ F ⋆

mix(t) = 0.5F ⋆
cor(t)+0.5F ⋆

ind(t). We recall that
the strategy of approximatingF ⋆(t) through mixing ofF ⋆

cor(t)
andF ⋆

ind(t) works fine when neither the independent inter-AP
interference approximation and nor the perfectly correlated
inter-AP interference approximation comes close enough to
F ⋆. Indeed, from Table I, it can be seen that both independent
inter-AP interference approximation and perfectly correlated
inter-AP interference approximation very well match to the
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realistically simulated ergodic data rates in the first three cases
when the network either contains APs with small coverage
radii or it is sparse in terms of inter-AP interference values.
On the other hand, the approximated data rates obtained by
usingF ⋆

mix(t) match to the actual data rates much better when
the network contains APs with large coverage radii and large
inter-AP interference levels. The same explanations regarding
the suitability of each approximation also hold for outage
probabilities, which we do not restate here to avoid repetitions.

VIII. C ONCLUSIONS

In this paper, we have introduced a model to study both sin-
gle tier and multi-tier multi-AP opportunistic communication
systems, in which wireless access point locations are modeled
using a Poisson point process, and that operate according
to the classical opportunistic beamforming framework. The
received signals at MUs are impaired by both fading and
location dependent path loss. Considering a closed-access
network, where each AP communicates with a multitude of
non-equidistant MUs, and communication scheduled to the
MU having the bestSINR on each beam, we have focused
on the distribution of the maximum beamSINR by using key
tools from stochastic geometry. TheSINR values at MUs are
dependent on the point process characterizing the locations
of the interfering wireless access points. Thus, obtaining
an expression for the distribution of the maximum beam
SINR becomes untractable due to the maximization of a
set of correlated random variables. Towards the resolution
of this complication, we have provided two tight distribution
approximation results. The derived distribution approximation
results have been validated through simulations and numerical
evaluations. In particular, we have shown that for APs with
small coverage radii, the approximation obtained by assuming
perfect correlation gives rise to a close match to the actual
case in both sparse and dense networks. On the other hand,
the approximation obtained by assuming independent inter-
AP interference performs better for sparse networks when
the coverage radius is large. The utility of these distribution
approximation results has also been illustrated by obtaining
some important performance measures for multi-AP OBF
communication systems such as beam outage probability and
ergodic aggregate data rate per AP.

APPENDIX A
DISTRIBUTION OF THEMAXIMUM SINR ON A BEAM

A. Given Realization of AP Locations: Proof of Lemma 1

Let Isum =
∑

y∈Φ\{o} G(‖ui − y‖)Iy. We have

Pr
{

γo,ui,m > t|Φ!
o

}

= Pr

{

giXo,ui,m

(P )
−1

+ giIo + Isum
> t

∣

∣

∣

∣

∣

Φ!
o

}

.

Then, by conditioning onIo and{Iy}y∈Φ!
o
, and by using the

fact thatXo,ui,m ∼ exp(1), we get

Pr
{

γo,ui,m > t|Φ!
o

}

= EIo,Iy

[

exp

(

−tIo −
t

gi
Isum

)∣

∣

∣

∣

Φ!
o

]

exp

( −t

giP

)

= EIo

[

e−tIo
]

EIy

[

e
− t

gi
Isum

∣

∣

∣Φ!
o

]

exp

( −t

giP

)

. (15)

Furthermore, sinceIo is aΓ (M − 1, 1) distributed random
variable, we have

EIo

[

e−tIo
]

=

∫ ∞

0

e−y(t+1)yM−2

Γ(M − 1)
dy =

1

(t+ 1)
M−1

. (16)

Also note that{Iy}y∈Φ!
o

form an i.i.d. collection of random
variables with common distributionΓ(M, 1), hence we obtain

EIy

[

e
− t

gi
Isum

∣

∣

∣Φ!
o

]

=
∏

y∈Φ!
o

EIy

[

e
−tIyG(‖ui−y‖)

gi

]

=
∏

y∈Φ!
o

gMi

(gi + tG(‖ui − y‖))M
(17)

after averaging over allIy, y ∈ Φ!
o. Substituting (16) and (17)

in (15) and consideringFui

(

t|Φ!
o

)

= 1−Pr
{

γo,ui,m > t|Φ!
o

}

gives us (5), which completes the proof.

B. Independent Inter-AP Interference Approximation: Proof of
Theorem 1

Note that Φ!
o is a PPP of intensityλ on R

2 since the
reduced Palm distribution of a PPP is equal to the distribution
of the PPP itself. Hence, by using the probability generating
functionals for PPPs, and by changing the coordinates from
Cartesian to polar and evaluating the resulting integration over
the area of the interfering APs, we have

EΦ!
o





∏

y∈Φ!
o

G̃i(t, ui − y)





= exp

(

−λ

∫

R2

(

1− gMi

(gi + tG(‖y‖))M

)

dy

)

= exp

(

−λ

∫ ∞

0

(

1− gMi

(gi + tG(v))
M

)

2πvdv

)

= exp

(

−πλt

M−1
∑

m=0

∫ ∞

0

gmi G(
√
r)

(tG(
√
r) + gi)

m+1 dr

)

(18)

after a variable changev2 = r, some algebraic manipulations
and factoring the binomials. Substituting the resulting expres-
sion in (7) gives usF ⋆

ind(t), which completes the proof.
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C. Perfectly Correlated Inter-AP Interference Approximation:
Proof of Theorem 2

By using Lemma 2,F ⋆
cor in (8) can be written as

F ⋆
cor(t)

= EΦ!
o





∑

S⊆{1,...,N}

(−1)
|S|
∏

i∈S





exp
(

−t
giP

)

(t+ 1)
M−1

∏

y∈Φ!
o

G̃i (t, y)









=
∑

S⊆{1,...,N}

(−1)
|S|∏

i∈S e

(

−t
giP

)

(1 + t)
|S|(M−1)

EΦ!
o





∏

y∈Φ!
o

∏

i∈S

G̃i (t, y)



 .

Now, by resorting to similar steps used in the proof of
Theorem 1 (i.e., by using the probability generating functionals
for PPPs, by changing the coordinates from Cartesian to polar
and evaluating the resulting integration over the area of the
interfering APs), we get

EΦ!
o





∏

y∈Φ!
o

∏

i∈S

G̃i (t, y)





= exp

(

−λ

∫ ∞

0

(

1−
∏

i∈S

gMi

(gi + tG(v))
M

)

2πvdv

)

.

A variable changev2 = r and some algebraic manipulations
completes the proof.

D. Perfectly Correlated Inter-AP Interference Approximation:
Proof of Corollary 2

If gi = g for all i ∈ {1, . . . , N}, the result in Theorem 2
simplifies to

F ⋆
cor (t) = 1 +

N
∑

i=1

(

N
i

)

(−1)
i
e−ti/gP

(1 + t)
i(M−1)

× EΦ!
o





∏

y∈Φ!
o

gMi

(g + tG(‖y‖))Mi



 .

Directly from (18),

EΦ!
o





∏

y∈Φ!
o

gMi

(g + tG(‖y‖))Mi



 =

exp

(

−πλt

Mi−1
∑

m=0

∫ ∞

0

gmG(
√
r)

(g + tG(
√
r))

m+1 dr

)

,

which completes the proof.
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