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Abstract—This paper studies the outage capacity of a network
consisting of a multitude of heterogeneous mobile users and
operating according to the classical opportunistic beamforming
framework. The base station is located at the center of the cell,
which is modeled as a disk of finite radius. The random user
locations are modeled using a homogeneous spatial Poisson point
process. The received signals are impaired by both fading and
location dependent path loss. For this system, we first derive an
expression for the beam outage probability. This expression holds
for all path loss models that satisfy some mild conditions. Then, we
focus on two specific path loss models (i.e., an unbounded model
and a more realistic bounded one) to illustrate the applications
of our results. In the large system limit, where the cell radius
tends to infinity, the beam outage capacity and its scaling behavior
are derived for the selected specific path loss models. This paper
also studies opportunistic schemes that achieve fairness among the
heterogeneous users. Numerical evaluations are performed to give
further insights and to illustrate the applicability of the outage
capacity results even to a cell having a small finite radius.

Index Terms—Opportunistic beamforming, outage capacity,
Poisson point process, random user locations, fairness.

I. INTRODUCTION

A. Background and Motivation

S INCE its inception in [1], opportunistic beamforming
(OBF) has sparked a great deal of interest in the wireless

communications research community as an important adaptive
signaling technique that utilizes multiuser diversity and varying
channel conditions to extract the full multiplexing gain avail-
able in vector broadcast channels [2]–[18]. The main advan-
tages of OBF are threefold. It attains the sum-rate capacity with
full channel state information (CSI) to a first order for large
numbers of mobile users (MUs) in the network [2]. Secondly,
its operation only requires partial CSI in the form of signal-
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to-interference-plus-noise ratios (SINR) leading to a significant
reduction in the feedback load and the latency of feedback ac-
quisition compared to capacity achieving dirty paper precoding
[19]. Finally, OBF is easy to implement, which makes it a
practical communication scheme. It has been also shown that
OBF is an asymptotically feedback optimal transmission strat-
egy [6]. In this paper, we consider the classical opportunistic
communication along multiple orthonormal beams in a network
consisting of a multitude of heterogeneous MUs, and study the
outage capacity of the resulting communication system.

In most of the existing work on OBF, the MUs are assumed
to be homogeneous and equidistant from the base station (BS)
[2]–[8]. Recently, works such as [9] and [10] have focussed
on heterogeneous networks, which are better representations of
practical communication systems where the MUs experience
location dependent path loss. In [9], heterogeneous MUs are
grouped into a finite number of MU classes, and the asymptotic
throughput scaling of the resulting system is analyzed. In [10],
each MU has its own deterministic path loss coefficient, and
the authors focus on the sum rate and the individual through-
put scaling while simultaneously maintaining fairness among
the MUs.

Similar to [9] and [10], the signal received by a MU in this
paper is impaired by both fading and the location dependent
path loss. However, the path loss coefficients in this paper are
random, and governed by a general path loss model G(d),
where d represents the distance from the BS. In this setting,
the ergodic capacity achieving transmission strategy involves
averaging over all channel variations. The requirement to aver-
age over location dependent and usually slowly varying path
loss values questions the suitability of ergodic capacity as a
performance measure for this setup [20]. Thus, we focus on the
beam outage capacities as a performance metric in this paper,
and obtain downlink outage performance of OBF.

B. Contributions and the Organization of the Paper

Our contributions and the paper organization are as follows.
In Section II, we introduce the system model and formally
define the performance measures of interest. The cell is mod-
eled as a disk of radius D with the BS located at the center
of the disk. The random MU locations are modeled using a
homogeneous spatial Poisson point process (PPP) of intensity
λ, and the network operates according to the classical OBF
framework [2]. The received signal at a MU is impaired by
both fading and path loss. We say an outage event occurs on
a beam when the instantaneous rate achieved on it is less than a
target rate value, and the beam outage capacity is the maximum
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communication rate that can be achieved on a beam without
violating a preset constraint on the outage probability.

We start our analysis by obtaining an expression for the
beam outage probability for the system in consideration, which
holds for all path loss models that satisfy some mild conditions.
Then, we use this result to derive beam outage probabilities
for specific path loss models, and obtain further insights into
the downlink outage performance of OBF. In particular, we
focus on two well known path loss models. Firstly, we study
the unbounded power-law path loss model, which is the most
common path loss model in the literature [21]–[23]. In this
model, the path loss can take any value between zero and
infinity. Secondly, we study a more realistic bounded path loss
model, where the path loss is always less than one.

In Section IV, we consider the large system limit as D tends
to infinity. Using beam outage probability expressions obtained
in Section III, we study the outage capacity and its scaling
behavior for each of the path loss models. To this end, we obtain
expressions that can be easily used to calculate the beam outage
capacity of the system of interest. We also show that for the
unbounded path loss model, the beam outage capacity behaves
according to O (log(λ)) as λ grows large. On the other hand,
for the bounded path loss model, the beam outage capacity
behaves according to O (log log(λ)) as λ grows large, revealing
a different outage capacity scaling behavior. We justify why
this difference occurs: It is in fact due to the singularity at
the origin in the unbounded path loss model, which makes
the SINR values unbounded. As λ grows large, we are almost
guaranteed to have at least one MU in the small vicinity around
the BS such that its inter-beam interference is practically nulled
out. For such a MU, there is only power gain coming from the
fading process in the bounded case. On the other hand, in the
unbounded path loss model, there is also an extra power gain
coming due to the singularity at the origin, which results in
different scaling behaviors.

In Section V, we consider an alternative outage measure
that differs from our original outage measure depending on
the time scales of the channel gain vectors and the path loss
values between the BS and the MUs. For the original measure,
we have considered that the channel gains and the path loss
values change slowly with respect to the time scale of data
transmission that takes place between the BS and MUs. This
is in fact a very common assumption in the literature that uses
stochastic geometric based methods to model MU/BS locations
[23]–[26]. However, in a practical setting, the channel gains
change much faster compared to the path loss values, which can
allow us to average out the effect of fading process over the time
scales of data communication. This phenomenon is captured in
the new outage measure. In Section V, we extend our analysis
to this alternative outage measure. We show that although
closely resembling more practical communication scenarios,
the new outage measure is less tractable analytically, but can
be computed numerically.

A main drawback of using an opportunistic scheduling policy
in its plain implementation in a heterogeneous environment
is its inability to provide fairness among different MUs. If
the MUs were homogeneous as in [2]–[8], fairness would
be achieved as an automatic byproduct of the homogeneity

assumption. For the sake of completeness, we also focus on
the outage capacity of this simpler homogeneous system model
that ignores the path loss between the MU and the BS. In this
context, the MUs are equidistant from the BS, and the cell
radius becomes irrelevant as the effect of distance is nullified
by ignoring path loss. Also, the number of MUs in the cell
is now a deterministic value N . For this setting, we obtain
analytical expressions for the beam outage capacity. To this end,
we also show that the beam outage capacity scales according
to O (log log(N)), which is the same scaling behavior of the
ergodic downlink sum-rate [2], as the number of MUs grows
large. On the other hand, in the system model considered in this
paper, MUs having a high path loss value, i.e., cell edge MUs,
will starve for data, which eliminates fairness in the system. In
Section VI, we analyze the beam outage capacity of a system
adhering to a CDF based scheduling technique to achieve time-
wise fairness among MUs [10], [27]. In such a system, the MU
having the best SINR relative to its own statistics is scheduled
for data communication. This means the system will ignore the
path loss values when making the scheduling decision, which
gives every MU an equal opportunity of being scheduled.

In Section VII, we present numerical evaluations to provide
more insights into our results. To this end, we show that the
large system limit obtained by sending D to infinity closely
approximates the beam outage capacity even for cells having a
finite radius. Moreover, the rate of convergence of these results
increases with the MU intensity and the path loss exponent. In
addition, we compare the two outage measures in Section VII.
We show that for a given outage probability constraint ε, the
outage capacity will be higher if the modified outage measure in
Section V is considered. This observation is however different
for high ε values due to distinct dynamic ranges of beam SINR
values obtained for different outage measures. We also focus
on numerically obtaining the optimum cell radius when CDF
based scheduling is used to preserve fairness in the system.
Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM SETUP

We consider a multi-antenna single-cell vector broadcast
channel. The BS is equipped with M transmitter antennas, and
each MU is equipped with a single receive antenna. The cell
is modeled as a disk of radius D with the BS located at the
center of the disk. MUs are distributed over the plane according
to a PPP Φ of intensity λ. For a particular realization of MU
locations, Fig. 1 gives a graphical illustration of the part of the
plane that includes the cell.

The study is based on the assumptions of Rayleigh fading
and unit power noise. To this end, the random channel gains
between the receive antenna of the ith MU and the transmit
antennas of the BS are given by hi = (h1,i, . . . , hM,i)

�, where
hk,i is the channel gain between the kth transmit antenna at
the BS and the receive antenna at the ith MU. We assume that
the channel gains are independent and identically distributed
(i.i.d.) random variables, each of which is drawn from a zero
mean and unit variance circularly-symmetric complex Gaussian
distribution CN (0, 1). The path loss values of all MUs are gov-
erned by a path loss model G(d), where d is the distance from
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Fig. 1. The network model for a particular realization of MU locations.

the BS. Therefore, the random path loss values are also i.i.d.
among the MUs, where the randomness stems from the fact
that MU locations are random. The path loss model is general
in the sense that G can be any function that is continuous,
positive, non-increasing, and G(d) = O(d−α) as d grows large
for some α > 2.1 In addition, we assume a quasi-static block
fading model over time. For the sake of notational simplicity,
we drop the time index here in the channel model, and also
later in the representation of transmitted and received signals.

The network operates according to the classical OBF frame-
work [2]. The BS transmits M different data streams intended
for M different MUs. The symbols of the kth stream are
represented by sk. They are chosen from the capacity achiev-
ing unit power (complex) Gaussian codebooks, and are sent
along the directions of M orthonormal beamforming vectors
{bk = (b1,k, . . . , bM,k)

�}Mk=1. The overall transmitted signal
from the BS is given by

s =
√
ρ

M∑
k=1

bksk, (1)

where ρ is the transmit power per beam. The signal received by
the ith MU is given by

Yi =
√
gih

�
i s+ Zi, (2)

where gi is the path loss coefficient between the ith MU and
BS, Zi is the CN (0, 1) additive background noise.

Let SINRm,i be the SINR value corresponding to the mth
beam at the ith MU. Then, it is given by

SINRm,i =

∣∣h�
i bm

∣∣2
(ρgi)−1 +

∑M
k=1,k �=m

∣∣h�
i bk

∣∣2 . (3)

Unlike [2], for given MU locations, the beam SINR values
are no longer identically distributed among the MUs, due
to the location dependent path loss. Let Fi(x) represent the
cumulative distribution function (CDF) of the beam SINR at
MU i. Using techniques similar to those used in [2], it is not

1The variable d in G(d) is actually normalized by a reference distance Dref .
Typical distances for Dref are on the order of a kilometer for macrocells, of
hundred meters for pico/microcells and of several meters for femtocells [28].
d takes the same units as Dref . In the current paper, and in most related other
works in the literature, it is assumed that Dref = 1 unit distance. Therefore,
both λ and D can be considered normalized unitless quantities in this paper.

hard to show that Fi(x), for a given path loss value gi = g, is
written as

Fi(x|gi = g) = 1− e−
x
gρ

(x+ 1)M−1
(4)

for all i (i.e., replace ρ in (15) of [2] with ρg). The probability
distribution function (PDF) for a given path loss value gi = g is
written as,

fi(x|gi = g) =
e−

x
gρ

(x+ 1)M

[
1

gρ
(x+ 1) +M − 1

]
. (5)

Since the MU locations are modeled using a PPP, and since
G is non-increasing, the CDF of the path loss of a MU can be
written as

G(g) = 1−
[
G−1(g)

D

]2
. (6)

Here, we define G−1(g) as G−1(g) = inf{d : G(d) ≤ g}. We
note that this definition allows jump discontinuities in G(g). An
example of such a path loss model is given in Section VII.

Each MU feeds back its SINR information to the BS along
an error free feedback link, and the BS selects the MU with the
highest SINR on each beam to maximize the communication
rate. Let N be the random number of MUs in the cell. The
instantaneous rate on beam m (measured in terms of nats/s/Hz)
can be written as

rm = log

(
1 + max

1≤i≤N
SINRm,i

)
, (7)

and rm = 0 when the maximization is over the null set, i.e.,
when N = 0. When characterizing the instantaneous rate, the
channel gain vectors, the path loss values and the number of
MUs are considered to be random quantities. Then, by using
fundamental concepts of outage [20], we formally define our
first outage measure, which we call type-1 outage,2 as follows.

Definition 1: A type-1 outage event occurs on beam m when
the instantaneous rate achieved on the beam rm is less than a
target rate value x, i.e., when rm ≤ x.

Directly following from this definition, we have the beam
outage probability, or the CDF of the rate on a beam

Ω1(x) = Pr{rm ≤ x} = F �(ex − 1), (8)

where F � is the CDF of the maximum SINR on a beam. This
expression will be instrumental in obtaining expressions for
the beam outage capacities of the system of interest, which we
formally define as follows.

Definition 2: The beam outage capacity for type-1 outage
C1(ε) is defined as the supremum of communication rates on
a beam that results in an outage probability of less than ε for
that particular beam, i.e.,

C1(ε) = sup {x : Ω1(x) ≤ ε} , (9)

for ε ∈ (0, 1).

2We also define a slightly different outage measure in Section V, which we
call type-2 outage.
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In the remaining parts of the paper, we will focus on obtain-
ing expressions for Ω1, which will be used to analyze beam
outage capacities of the system model of interest.

III. BEAM OUTAGE PROBABILITIES

In this section, we will obtain expressions for beam outage
probabilities for the system of interest. We will first obtain
expressions considering the general path loss model that was
introduced in Section II, and then apply the results to specific
path loss models to obtain further insights.

A. Beam Outage Probabilities for General Path Loss Models

In our setup, the number of MUs in the cell N is a Poisson
distributed random variable with mean λπD2. Hence, in order
to derive beam outage probabilities, we will first condition on
N and path loss values, and then we will remove conditioning
by averaging over the location process. These ideas are formally
presented in the following theorem.

Theorem 1: For a given communication rate x, the beam
outage probability Ω1(x) is equal to F �(ex − 1), where F �(x)
is given by

F �(x) = exp

⎛
⎝ −λπ

(x+ 1)M−1

D2∫
0

exp

(
−x

G(
√
t)ρ

)
dt

⎞
⎠ . (10)

Proof: Conditioning on N and g = (g1, . . . , gN )�, we
have F �(x|N, g) =

∏N
i=1 Fi(x|gi), where g is the vector con-

taining the path loss values of all the MUs in the cell. Av-
eraging over the i.i.d. path loss values gives us F �(x|N) =

(
∫ G(0)

G(D) F (x|v)dG(v))
N

. Similarly, by observing that Pr{N =

n} = (e−λπD2
(λπD2)n/n!), we can uncondition on the num-

ber of MUs, and obtain

F �(x) =

∞∑
n=0

e−λπD2
(λπD2)

n

n!

⎛
⎜⎝

G(0)∫
G(D)

F (x|v)dG(v)

⎞
⎟⎠

n

.

Now, by using (4), we have

F �(x) =

∞∑
n=0

e−λπD2
(λπD2)

n

n!

×

⎛
⎜⎝

G(0)∫
G(D)

dG(v)−
G(0)∫

G(D)

e
−x
vρ

(x+ 1)M−1
dG(v)

⎞
⎟⎠

n

.

Since
∫ G(0)

G(D) dG(v) = 1, we get

F �(x) = exp

⎛
⎜⎝−λπD2

G(0)∫
G(D)

e
−x
vρ

(x+ 1)M−1
dG(v)

⎞
⎟⎠

by writing the infinite summation using the exponential func-
tion. Substituting for G(v) from (6) and making a variable
change (G−1(v))

2
= t completes the proof. �

For a given communication rate x, the beam outage proba-
bility can be obtained numerically by means of (10). However,
further analytical characterization of the outage capacity shed-
ding light on the system performance using this expression is
not straightforward due to the integral that depends on the path
loss model. Therefore, in the next subsection, we apply this
result to derive beam outage probabilities for specific path loss
models.

B. Beam Outage Probabilities for Specific Path Loss Models

First, we focus on the classical unbounded path loss model,
which is G(d) = d−α, where α > 2, e.g., see [21]–[23]. The
following lemma gives us the beam outage probability expres-
sion for this case.

Lemma 1: Let G(d) = d−α, where α > 2. For a given com-
munication rate x, the beam outage probability Ω1,ub(x) is
equal to F �

ub(e
x − 1), where F �

ub(x) is given by

F �
ub(x) = exp

(
−2λπ

α(x+ 1)M−1

(ρ
x

) 2
α

γ

(
2

α
,
xDα

ρ

))
, (11)

and γ(·) is the lower incomplete gamma function.
Proof: From Theorem 1, we have

F �
ub(x) = exp

⎛
⎝ −λπ

(x+ 1)M−1

D2∫
0

exp

(
−xt

α
2

ρ

)
dt

⎞
⎠ ,

and evaluating the integral completes the proof [29]. �
The above path loss model has been extensively used in

the literature due to its mathematical tractability. However,
this model has an unrealistic singularity at the origin, which
might lead to flawed conclusions [26], [30]. Therefore, we
also obtain the beam outage probability for a more realistic
bounded gain path loss model. To this end, we choose G(d)
as G(d) = (1 + dα)−1, where α > 2, e.g., see [26], [30], [31].

Lemma 2: Let G(d) = (1 + dα)−1, where α > 2. For a
given communication rate x, the beam outage probability
Ω1,b(x) is equal to F �

b (e
x − 1), where F �

b (x) is given by

F �
b (x) = exp

(
−2λπe

−x
ρ

α(x+ 1)M−1

(ρ
x

) 2
α

γ

(
2

α
,
xDα

ρ

))
, (12)

and γ(·) is the lower incomplete gamma function.
Since the proof follows from the same lines of the proof of

Lemma 1, we skip it to avoid repetitions. It can be seen that
(12) differs from (11) due to an extra e−x/ρ term in (12). It is
this extra term that changes the behavior of the outage capacity
fundamentally in the bounded path loss case, and leads to an
interesting result on the scaling behavior of the beam outage
capacity, which will be studied in detail in the next section.

IV. BEAM OUTAGE CAPACITY AND

ITS SCALING BEHAVIOR

For the analysis in this section, we will focus on the
large system limit as D tends to infinity. When D → ∞,
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γ((2/α), (xDα/ρ)) converges to Γ(2/α). Therefore, for the
large system limit, (11) and (12) can be written as

F̄ �
ub(x) = exp

(
−2λπ

α(x+ 1)M−1

(ρ
x

) 2
α

Γ

(
2

α

))
(13)

F̄ �
b (x) = exp

(
−2λπe

−x
ρ

α(x+ 1)M−1

(ρ
x

) 2
α

Γ

(
2

α

))
, (14)

respectively. By using Definition 2, and the monotonicity of F �,
for type-1 outage, the beam outage capacity can be written as

C1(ε) = log
(
F �−1(ε) + 1

)
, (15)

where F �−1
(ε) = inf{x : F �(x) ≥ ε}. We will first obtain

beam outage capacity and its scaling behavior for the un-
bounded path loss model through the following theorem.

Theorem 2: Let y� be the solution of

ya+1 − ya −
(

−b

log ε

)α
2

= 0, (16)

where a = (α/2)(M − 1), b = (2λπ/α)Γ(2/α)ρ2/α and y ∈
(1,∞). Then, for G(d) = d−α, α > 2, the beam outage ca-
pacity C1,ub(ε) in the large system limit is equal to log(y�).
Moreover, C1,ub(ε) scales according to O(log(λ)) as the MU
intensity λ grows large.

Proof: See Appendix A. �
According to Theorem 2, we can obtain the beam outage

capacity by using a root finding algorithm to find the unique y�

solving (16) for any value of M . Further, when M=1, we can
get a closed form expression for the beam outage capacity as

C1,ub(ε) = log

⎛
⎝1 + ρ

(
−2λπΓ

(
2
α

)
α log ε

)α
2

⎞
⎠ .

The beam outage capacity expression above for M = 1 clearly
indicates the logarithmic outage capacity scaling with λ.

Next, we will obtain similar results for the bounded gain path
loss model.

Theorem 3: Let y� be the solution of

log (ya(y − 1)) +
α

2ρ
(y − 1)− α

2
log

(
−b

log ε

)
= 0, (17)

where a = (α/2)(M − 1), b = (2λπ/α)Γ(2/α)ρ2/α and y ∈
(1,∞). Then, for G(d) = (1 + dα)−1, α > 2, the beam outage
capacity C1,b(ε) in the large system limit is equal to log(y�).
Moreover, C1,b(ε) scales according to O(log log(λ)) as the MU
intensity λ grows large.

Proof: See Appendix A. �
Similar to the unbounded case, we can use a common root

finding algorithm on (17) to find the beam outage capacity
when G(d) = (1 + dα)−1. More interestingly, Theorem 3 re-
veals a different outage capacity scaling behavior than that of
Theorem 2. This difference in scaling is in fact caused by the
singularity at the origin in the unbounded path loss model.
When M = 1, it is easy to see that the SNR values become
unbounded in the unbounded path loss model, which in turn

leads to different scaling behaviors. For M > 1, we are almost
guaranteed to have at least one MU in the small vicinity δ of
the BS such that its inter-beam interference is practically nulled
out, for large values of λ as a function of δ (i.e., opportunistic
nulling). For such a MU, there is only power gain coming from
the fading process in the bounded case. On the other hand, in
the unbounded path loss model, there is also an extra power
gain coming due to the singularity at the origin, which results in
different scaling behaviors. These issues are investigated more
rigorously in Appendix A.

V. OUTAGE CAPACITY FOR MULTI-TIME SCALE FADING

In this section, we consider an alternative outage mea-
sure that differs from our original outage measure given in
Definition 1 depending on the time scales of the channel gain
vectors and the path loss values between the BS and the MUs.
For type-1 outage, we have considered the communication
scenario in which both hi and gi change slowly with respect
to the time scale of data transmission that takes place between
the BS and MU i, for all i ∈ {1, . . . , N}. This is in fact a
very common assumption in the literature that uses stochastic
geometric based methods to model MU/BS locations [23]–
[26]. However, in a practical setting, the channel gain vector
hi can change rapidly over time scales smaller than the time
scale of communication, which can allow us to obtain ergodic
data rates averaged over hi. Considering this phenomenon, we
introduce another outage measure, which we call type-2 outage,
and define it formally as follows.

Definition 3: A type-2 outage event occurs on beam m
when the average rate achieved on the beam for a given
set of MU locations is less than a target rate value x, i.e.,
when E[rm|N, g]≤x, where g=(g1, . . . , gN )� and rm is given
in (7).

We recall that rm is a function of the channel gain vectors,
the path loss values of the MUs, and the number of MUs. For
type-1 outage, we use rm directly to characterize the outage
probability, but for type-2 outage, we first average rm over
the channel gain vectors, and use the resulting ergodic rate
to characterize the outage probability. Thus, there is a subtle
difference in obtaining the CDF of the rate on a beam for each
type of outage. To this end, for type-1 outage, we calculate
Pr{rm ≤ x} = E[Pr{rm ≤ x|N, g}]. On the other hand, for
type-2 outage we calculate Pr{E[rm|N, g] ≤ x}.

Along these ideas, we have the beam outage probability, or
the CDF of the rate on a beam

Ω2(x) =Pr {E[rm|N, g] ≤ x}

=E

⎡
⎣Pr

⎧⎨
⎩

∞∫
0

log(1 + t)dF �(t|N, g) ≤ x

∣∣∣∣∣∣N
⎫⎬
⎭
⎤
⎦ .

Also, we have F �(t|N, g) =
∏N

i=1 Fi(t|gi). Therefore,

Ω2(x)=Pr

⎧⎨
⎩

N∑
i=1

∞∫
0

log(1+t)fi(t|gi)
N∏

k=1,k �=i

Fk(t|gk)dt≤x

⎫⎬
⎭ .

(18)
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Using Definition 2, we can write the beam outage capacity as

C2(ε) = sup {x : Ω2(x) ≤ ε} , (19)

for ε ∈ (0, 1). Due to the complex form of Ω2(x) appearing in
(19), it is not possible to write down a simplified expressions for
C2 as we have done for C1. Numerical evaluation is tractable,
but not straightforward as in the type-1 outage case as well
(more details will be provided in Section VII). Therefore,
although being more closer to the practical scenario, the new
outage measure is less tractable analytically, which is in fact
the reason behind the aforementioned common assumption
regarding the time scales of fading and path loss processes
with respect to that of data transmission. We note that since
the number of MUs in the cell is Poisson distributed, Ω2(x) can
also be written as,

Ω2(x) =

∞∑
n=0

e−λπD2
(λπD2)

n

n!

× Pr

⎧⎨
⎩

n∑
i=1

∞∫
0

log(1 + t)fi(t|gi)
n∏

k=1,k �=i

Fk(t|gk)dt ≤ x

⎫⎬
⎭ .

(20)

However, due to the infinite summation in (20), (18) turns
out to be more useful when evaluating C2 numerically. Next,
we will analyze a pressing concern for a system consisting of
heterogeneous MUs, which is achieving fairness.

VI. TIME-WISE FAIR SCHEDULING OF MOBILE USERS

A main drawback of using an opportunistic scheduling policy
in its plain implementation in a heterogeneous environment
is its inability to provide fairness among different MUs. If
the MUs were homogeneous (equidistant from the BS), which
is the most common system model for OBF in the literature
[1]–[3], [5], [9], fairness would be achieved as an automatic
byproduct of the homogeneity assumption. For the sake of
completeness, we will provide an outage capacity analysis for
this simpler model in Appendix C. On the other hand, in a
heterogeneous setup, MUs having a high path loss value, i.e.,
cell edge MUs, will starve for data, which eliminates fairness
in the system.

The fairness among MUs can be defined by using two
different view points. The first one is providing the same rate
for all the MUs, which we call rate-wise fairness. The second
one is providing all the MUs with an equal share of the channel
in time, which we call time-wise fairness. In this paper, we will
only focus on time-wise fairness. There are three main methods
of achieving time-wise fairness for a set of heterogeneous MUs
in the OBF literature. The first one is to use the proportionally
fair algorithm when scheduling the MUs [1]. As a second
option, the system can use selective feedback techniques to
achieve fairness in the network [5], [9]. Finally, the time-wise
fairness can also be achieved by using CDF based scheduling
techniques [10], [27].

In this section, we will analyze the beam outage capacity
of a system adhering to a CDF based scheduling technique to

achieve fairness among MUs. In such a system, the scheduler
knows the SINR distributions of all the MUs, i.e., Fi(x|gi)
for all i ∈ {1, . . . , N} for any given N . For a particular
beam m, the scheduler calculates the probabilities pm,i =
Fi(SINRm,i|gi) for all i. We note that these probabilities are
i.i.d. random variables, uniformly distributed between zero and
one. Then, it schedules transmission to the MU i�m having
the highest probability value, i.e., i�m = argmax1≤i≤N pm,i.
This means that the system will communicate with the MU
having the best SINR relative to its own statistics, or the system
will ignore the path loss values for the scheduling decision
and will schedule the MU doing the best in terms of fading.
Since the system takes the path loss values into consideration
when calculating the probabilities, all the MUs have an equal
chance of being scheduled. The instantaneous rate on a beam
(measured in terms of nats/s/Hz) can be written as

rm,fair = log
(
1 + SINRm,i�m

)
. (21)

We will first obtain an expression for the CDF of the SINR
on a beam of the scheduled MU through the following lemma.

Lemma 3: Consider an OBF system adhering to a CDF
based scheduling scheme. Then, if the number of MUs in the
cell N and the path loss vector containing path loss values of all
MUs g are given, the CDF of the SINR on any beam is given by

Ffair(x|N, g) =
1

N

N∑
i=1

[Fi(x|gi)]N . (22)

Proof: See Appendix B. �

A. Fairness Considering Type-1 Outage

We will first focus on Type-1 outage and we will use the
result in Lemma 3 to study the outage capacity of the system
of interest. To this end, the CDF of the rate on a beam can be
written as

Ω1,fair(x) = Ffair(e
x − 1). (23)

Similar to the analysis in Section III, in order to derive
beam outage probabilities, we will remove conditioning of
Ffair(x|N, g) given in Lemma 3 by averaging over the location
process. These ideas are formally presented in the following
theorem.

Theorem 4: For a given communication rate x, the beam
outage probability Ω1,fair(x) of a system operating based on
CDF based scheduling is equal to Ffair(e

x − 1), where Ffair(x)
is given by

Ffair(x) =
1

D2

D2∫
0

exp

(
−λπD2

(x+ 1)M−1
e

−x

G(
√

t)ρ

)
dt. (24)

Proof: See Appendix B. �
Unlike the results obtained in Theorem 1 for the greedy

scheduling policy, the application of the results in Theorem 4
for specific path loss models does not result in further simplifi-
cation of the expression. However, the resulting expressions can
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be easily evaluated numerically. Next we will focus on Type-2
outage.

B. Fairness Considering Type-2 Outage

For type-2 outage, the CDF of the rate on a beam is given by

Ω2,fair(x) = Pr

⎧⎨
⎩

∞∫
0

log(1 + t)dFfair(t|N, g) ≤ x

⎫⎬
⎭ .

By using Lemma 3,

Ω2,fair(x) = Pr

⎧⎨
⎩ 1

N

N∑
i=0

∞∫
0

log(1 + t)d [Fi(t|gi)]N ≤ x

⎫⎬
⎭ .

For type-2 outage, similar to the greedy scheduling policy con-
sidered in Section V, it is hard to further simplify the expression
obtained for Ω2,fair(x) to a form that facilitates analysis.

It is important to note that for both outage measures, the
SINR value of a MU will decrease as it moves away from the
BS due to path loss. Therefore, when making D large, the SINR
values of the cell edge MUs go to zero, resulting in zero rate for
the cell edge MUs. Since all MUs are considered equally for
scheduling to preserve fairness, the rate achieved goes to zero
as D → ∞. In fact, for type-1 outage, this can be seen through
direct inspection of (24), where D being finite is a necessity
for the derived CDF expression to have meaningful values. In
the next section, we will provide some further insights into the
results obtained in this paper through numerical evaluations.

VII. NUMERICAL EVALUATIONS

We will start by giving a graphical illustration of beam outage
probabilities as a function of target communication rates x for
each of the path loss models in Fig. 2. We can see that the un-
bounded model achieves a better beam outage probability with
a larger dynamic range because the path loss gain in this case
can take any value between zero and infinity. Also, the beam
outage probability curves shift right with increasing values of λ,
illustrating the multiuser diversity gains analyzed in Theorems 2
and 3. When comparing type-1 outage with type-2 outage, we
can see that type-1 outage has a larger dynamic range. This
is because, according to Definition 3, the randomness of the
fading process is averaged out when obtaining Ω2. Due to
this averaging, we can also see that beam outage probabilities
are better for type-2 outage compared to its counterpart. This
means, for a given ε, the outage capacity will be higher if type-2
outage is considered. This observation is however different for
high target communication rates, as shown in the figure, due to
the lower dynamic range of Ω2. Having compared the beam
outage probabilities and the beam outage capacities for the
above two different definitions of outage, we will only focus
on type-1 outage, which is the main focus of this paper, in
the remaining part of this section to avoid repetitions. Similar
conclusions continue to hold qualitatively for the type-2 outage
measure as well.

In Section IV, we have focused on the large system limit as
D tends to infinity. Therefore, the beam outage capacity results

Fig. 2. Graphical illustration of beam outage probabilities for different values
of λ and D, where ρ = 1, M = 2, and α = 4. (a) Unbounded path loss model.
(b) Bounded path loss model.

in Theorems 2 and 3 are true for a cell of infinite radius. By
using the results in Lemmas 1 and 2, we can also numerically
evaluate the beam outage capacity for a cell of finite radius. The
probability of a MU at the cell edge having the maximum SINR
on any beam decreases with the cell radius, due to the path loss.
Therefore, intuitively, the beam outage capacity results in the
large system limit should closely approximate the finite case
after some value of D. To this end, Fig. 3(a) illustrates the
behavior of the beam outage capacity as a function of the cell
radius. In this figure, C1,ub(ε,D) and C1,b(ε,D) represent the
beam outage capacities of the unbounded (i.e., G(d) = d−α)
and bounded (i.e., G(d) = (1 + d−α)−1) path loss models for
finite D, respectively. It is shown in the figure that the beam
outage capacity in the large system limit closely approximates
the beam outage capacities even for small finite values of D.
D does not need to be very large for the results to match, and
the large system beam outage capacities are very close to those
achieved in cells having a radius of more than one.

Furthermore, we can observe that the convergence is faster
for the unbounded path loss model in Fig. 3(a). In both models,
there is a high probability of a MU staying close to the BS
being scheduled for communication. However, this probability
is comparatively higher in the unbounded model due to the
unbounded gain. Therefore, its dependence on the cell radius
is less prominent compared to the bounded one, leading to the
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Fig. 3. The behavior of the beam outage capacity with the cell radius for type-1
outage, where ρ = 1, ε = 0.1, and M = 2. (a) For different values of λ, α =
4. (b) For different values of α, λ = 10.

faster convergence behavior. Secondly, a faster convergence can
be observed with increasing values of λ as well. Increasing λ
increases the number of MUs per unit area, which includes the
number of MUs staying close to the BS. This again makes the
cell edge MUs less prominent, causing faster convergence. By
observing (11) and (12), we can expect the rate of convergence
to increase with α as well. This is illustrated in Fig. 3(b).
This result is also expected intuitively because increasing α
increases the path loss at cell edge MUs, making them less
prominent.

Next, we focus on the scaling behavior of the beam outage
capacity, which is illustrated in Fig. 4. We can clearly observe
the difference in scaling behaviors, i.e., O (log(λ)) for the
unbounded model, and O (log log(λ)) for the bounded model,
which are in line with the results in Theorems 2 and 3. It is
interesting to note that when λ is relatively small, the beam
outage capacity first decreases with α, and then increases with
α when λ is large. The decrease with α is rather intuitive
because increasing α increases the path loss, which decreases
the SINR and the rate. However, note that when d < 1, G(d)
increases with α. As mentioned earlier, when we increase λ,
more prominence is given to the MUs staying close to the BS,
i.e., to the MUs having distance less than one. Therefore, at
high values of λ, the beam outage capacity increases with α.

Fig. 4. The behavior of the beam outage capacity with the MU intensity,
where ρ = 1, ε = 0.01, and M = 2.

This somewhat counter intuitive behavior is especially more
pronounced for the unbounded path loss model. To overcome
it in the bounded case, one can use a path loss model taking the
form of G(d) = max(d0, d)

−α, where d0 is a constant that ac-
counts for a guard zone around the BS up to a certain distance.
G(d) = (1 + d)−α is another option. Due to the generality of
the path loss model definition in Section II, and the result
obtained in Theorem 1, our analysis can be easily extended to
both of these path loss models.

Now, we will focus on achieving fairness in the network
through CDF based scheduling. Obviously providing fairness
will necessitate a sacrifice in terms of rate. This difference
in rates will depend on the radius of the cell. Selecting the
optimum cell radius for the fair scheduling scheme is another
interesting research problem, whose solution will lead to an
important design parameter for wireless operators. To this end,
our numerical results are presented in Fig. 5. The system
will gain through multiuser diversity when λ, D or both are
increased. Therefore, the outage capacity first increases with D
for fixed λ. However, the outage capacity starts to decrease after
a certain threshold value D�, which is the optimum cell radius.
The SINR values of cell edge MUs decrease with the cell radius
due to path loss. Since all the MUs are considered equally for
scheduling to preserve fairness, the rate reduction caused by
the reduction of the SINR values of cell edge MUs outperforms
the multiuser diversity gain for D > D�. D� decreases with λ
as increasing λ allows the BS to achieve the same multiuser
diversity gain with a cell having a smaller radius. D� decreases
with α as well since increasing α decreases the SINR at cell
edge MUs. Also, D� achieved for the unbounded path loss
model is less than the D� achieved for the bounded path loss
model since the unbounded model gives more prominence to
the MUs located close to BS.

The CDF of the SINR on a beam in a multi-cell environment
is readily available in the literature [13], [15], [32] and similar
techniques used in this paper can be utilized to study the outage
capacity in a multi-cell environment. However, the expression
obtained for the aforementioned CDF is more complex com-
pared to the single cell scenario, which makes the analysis much
less tractable mathematically. Some insights on these related
multi-cell extensions can be found in [32].
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Fig. 5. The change of the beam outage capacity with the cell radius for the
CDF based scheduling scheme, where ρ = 1, ε = 0.01, and M = 2.

VIII. CONCLUSION

In this paper, we have studied the outage capacity of a net-
work consisting of a multitude of mobile users whose random
locations are modeled using a homogeneous spatial Poisson
point process, and operating according to the classical oppor-
tunistic beamforming framework. Considering a cell modeled
as a disk of radius D, we have first obtained an expression
for the beam outage probability. This expression holds for all
path loss models that satisfy some mild conditions. Then, we
have applied this result to two well known path loss models.
Firstly, we have considered the classical unbounded path loss
model, which is G(d) = d−α, where α > 2 and d represents the
distance from the base station. Secondly, we have considered
a more realistic bounded gain path loss model G(d) = (1 +
dα)−1, where α > 2. Then, in a large system setting where
D tends to infinity, we have obtained results for the beam
outage capacity and its scaling behavior, for each of these path
loss models. To this end, we have obtained expressions that
can be easily used to calculate the beam outage capacity of
the system of interest. We have shown that the beam outage
capacity behaves according to O (log(λ)) for the unbounded
model, and according to O (log log(λ)) for the bounded model,
as the user intensity λ grows large. The difference is due to the
unrealistic singularity in the unbounded model at d = 0.

We have also analyzed the beam outage capacity of a system
adhering to a CDF based scheduling technique to achieve time-
wise fairness among the heterogeneous users. An alternative
outage measure that differs from our original outage measure
depending on the time scales of the channel gain vectors and
the path loss values between the BS and the users has been
also considered in the analysis. We have also provided extensive
numerical evaluations to give further insights into our analytical
results. To this end, we have shown that the large system
limit closely approximates the beam outage capacity even for
cells having a finite radius. We have illustrated numerically
how to obtain the optimum cell radius when the CDF based
scheduling scheme is used to preserve fairness in the system.
This result is of practical importance for wireless operators
to determine optimum cell sizes for opportunistic wireless
communication.

APPENDIX A
BEAM OUTAGE CAPACITY

A. Proof of Theorem 2

We will only focus on the M > 1 case. M = 1 case follows
from the same lines. From (8), (15), and (13), the beam outage
capacity C1,ub(ε) should satisfy(

−b

log ε

)α
2

= eaC1,ub(ε)
(
eC1,ub(ε) − 1

)

as D → ∞. Setting eC1,ub(ε) = y gives us (16). It is not hard
to show that ya+1 − ya − (−b/ log ε)α/2 is a strictly increasing
function of y that tends to infinity as y grows large, and is
negative as y approaches to one. Therefore, y� is unique, and its
logarithm gives the beam outage capacity of the system without
any ambiguity.

Also, from (16),

log ([y�]a[y� − 1]) = log

([
−b

log ε

]α
2

)

⇒ log y� =
α

2a
log λ− 1

a
log(y� − 1) +O(1)

=
α

2a
log λ− 1

a

[
log y� + log

(
1− 1

y�

)]
+O(1)

=
α

2(a+ 1)
log λ+O(1).

This final equation indicates that log y� scales according to
O(log(λ)), which further implies C1,ub(ε) scales according to
O(log(λ)) as λ grows large.

B. Proof of Theorem 3

From (8), (15), and (14), the beam outage capacity C1,b(ε)
should satisfy(

−b

log ε

)α
2

= eaC1,b(ε)+
α
2ρ (e

C1,b(ε)−1)
(
eC1,b(ε) − 1

)

as D → ∞. Taking logarithm of both sides and setting
eC1,b(ε) = y give us (17). It is not hard to show that this is a
strictly increasing function of y that tends to infinity as y grows
large, and is negative as y approaches to one. Therefore, y� is
unique, and its logarithm gives the beam outage capacity of the
system without any ambiguity.

Also, from (17), similar to the proof of Theorem 2,

y� = ρ log λ− 2ρa

α
log y� − 2ρ

α
log(y� − 1) +O(1)

= ρ log λ− 2ρ(a+ 1)

α
log y� − 2ρ

α
log

(
1− 1

y�

)
+O(1)

= ρ log λ− 2ρ(a+ 1)

α
log log λ+O(1).

Therefore, y� scales according to O (log(λ)), which implies
that C1,b(ε) scales according to O (log log(λ)) as λ grows
large.
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C. Difference in Scaling Behavior

Let B(δ) be the disk with radius δ around the BS. The SINR
value corresponding to beam m at MU i given in (3) can be
alternatively written as

SINRm,i =
Xm,i

(ρgi)−1 +
∑M

j=1,j �=m Xj,i

,

where Xj,i, j �= m, represents inter-beam interference from
beam j at MU i. In our set-up, Xj,i’s are exponentially dis-
tributed with unit mean.

Define the event A(δ) as

A(δ)=

⎧⎨
⎩∃i∈Φ

⋂
B(δ) &

M∑
j=1,j �=m

Xj,i≤δα & Xm,i≥1

⎫⎬
⎭ .

Let SINR�
m = maxi∈Φ SINRm,i denote the maximum SINR on

beam m. On event A(δ), we have SINR�
m ≥ (1/δα(ρ−1 + 1)),

which implies rm ≥ −α log(δ)− log(1 + ρ−1) on A(δ).
We will now show that Pr(A(δ)) can be made arbitrar-

ily close to 1 by choosing λ large enough. To this end, let
Pr{

∑M
j=1,j �=m Xj,i ≤ δα} = p1 and Pr{Xm,i ≥ 1} = p2. The

first term represents the opportunistic nulling of interference,
and the second term controls the direct channel gain of the ith
MU. Then,

Pr (A(δ)) =
∞∑

n=0

e−λπδ2(λπδ2)
n

n!
(1− (1− p1p2)

n)

= 1− e−λπδ2p1p2 .

We can lower bound p1 as

p1 ≥Pr

{
Xj,i ≤

δα

M − 1

}M−1

=
(
1− e−

δα

M−1

)M−1

=O(δα) as δ → 0.

p2 is equal to p2 = e−1. Hence, by choosing λ such that
λπδ2 = δ−α−ε, for some small ε > 0, we have Pr(A(δ)) ≥ 1−
e−O(δ−ε) → 1 as δ → 0. Therefore, we have rm ≥ (α/(α+
2 + ε)) log(λ) +O(1) with high probability as λ tends to in-
finity. This implies beam outage capacity scales according to
log(λ).

The conclusion is that as λ tends to infinity, we can,
with high probability, find a MU in a small disk of radius
(πλ)(−1/(α+2+ε)) around the BS such that interference at
this MU is opportunistically nulled out (i.e., smaller than
(πλ)(−α/(α+2+ε))), and therefore we observe a path loss gain
of λ(α/(α+2+ε)) effectively.

APPENDIX B
BEAM OUTAGE PROBABILITIES FOR

TIME-WISE FAIR SYSTEMS

A. Proof of Lemma 3

Since beams are symmetric, it is enough to focus only on
beam m. Recall that pm,i represent the level of SINRm,i relative

to its own statistics. Since pm,i = Fi(SINRm,i|gi), we have

Ffair(x|N, g)=Pr
{

SINRm,i�m ≤ x|N, g
}

=

N∑
i=1

Pr {SINRm,i ≤ x, i�m = i|N, g}

=

N∑
i=1

Pr{pm,i≤Fi(x|gi), pm,j≤pm,i,∀j|N, g},

Ffair(x|N, g)=

N∑
i=1

Fi(x|gi)∫
0

Pr {pm,i = t|N, g}

Pr {pm,j ≤ t,∀j �= i|N, g, pm,i = t} dt.

Since pm,i’s are independent and uniformly distributed over [0,
1], Pr{pm,i = t|N, g} = 1, and

Pr {pm,j≤ t,∀j �= i|N, g, pm,i= t}=
∏
j �=i

Pr {pm,j≤ t|N, g}

= tN−1.

Thus,

Ffair(x|N, g) =

N∑
i=1

Fi(x|gi)∫
0

tN−1dt =
1

N

N∑
i=1

[Fi(x|gi)]N .

which completes the proof.

B. Proof of Theorem 4

Averaging Ffair(x|N, g) given in Lemma 3 over the i.i.d.
path loss values gives us

Ffair(x|N) =
1

N

G(0)∫
G(D)

N∑
i=1

[Fi(x|v)]N dG(v)

=

G(0)∫
G(D)

[F (x|v)]N dG(v).

Similarly, by observing that Pr{N=n}=(e−λπD2
(λπD2)n/

n!), we can uncondition on the number of MUs, and obtain

Ffair(x) =
∞∑

n=0

e−λπD2
(λπD2)

n

n!

⎛
⎜⎝

G(0)∫
G(D)

[F (x|v)]n dG(v)

⎞
⎟⎠

=e−λπD2

⎛
⎜⎝

G(0)∫
G(D)

∞∑
n=0

(
λπD2F (x|v)

)n
n!

dG(v)

⎞
⎟⎠ .

Now, by writing the infinite summation using the exponential
function, and by using (4), we have

Ffair(x) =

G(0)∫
G(D)

exp

(
−λπD2

(x+ 1)M−1
e

−x
vρ

)
dG(v).
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Using the expression given for G(v) in (6) and making a
variable change (G−1(v))2 = t completes the proof.

APPENDIX C
OUTAGE CAPACITY ANALYSIS FOR

EQUIDISTANT MOBILE USERS

The model with equidistant MUs [2] ignores the path loss
between the MU and the BS, or alternatively considers the path
loss value between each MU and BS to be deterministic and
equal to a fixed number. This implies that the received SINR
values on a beam are i.i.d. among the MUs. In this context,
the radius of the cell becomes irrelevant since the effect of
distance is nullified by setting fixed path loss values. In this
simpler model, it is also considered that the number of MUs N
is a fixed integer. Our earlier analysis can be extended readily
to provide outage capacities for this case as well, which is
illustrated below.

If the path loss value between each MU and the BS is fixed
at ḡ, we have,

F �(x) = [F (x)]N =

[
1− e−

x
ḡρ

(x+ 1)M−1

]N
. (25)

By using (25) and (15), we can obtain analytical expressions
for the outage capacity of a system consisting a multitude of
equidistant MUs. These expressions can also be used to derive
results for the scaling behavior of the outage capacity as the
number of MUs grows large. The results are formally stated in
the following theorem.

Theorem 5: The beam outage capacity C1,ed(ε) for N
equidistant MUs is equal to

C1,ed(ε)=log

(
ḡρ(M−1)W

(
e

1
(M−1)ḡρ

(M−1)ḡρ

(
1−ε

1
N

) 1
1−M

))

if M ≥ 2, and C1,ed(ε) = log(1− ḡρ log(1− ε1/N )) if M =
1, where W is the Lambert W function given by the defining
equation W(x) exp(W(x)) = x for x ≥ −(1/e). Moreover,
C1,ed(ε) scales according to O (log log(N)) as the number of
MUs N grows large.

Proof: Using (25), we have F �−1
(x) = F−1(x1/N ).

From [5],

F−1(x) = −1 + (M − 1)ρW

(
e

1
(M−1)ρ

(M − 1)ρ
(1− x)

1
1−M

)

for M ≥ 2, and F−1(x) = −ρ log(1− x) for M = 1. Thus,
we can readily obtain F �−1

(x) by substituting x1/N in these
expressions given for F−1(x). C1,ed(ε) follows from using
F �−1

(x) in (15).
As N grows large,

log
(
1− ε

1
N

)
= log

(
1−e

log ε
N

)
=log

(
log ε

N
+O

(
1

N2

))

= log

(
log ε

N

)
+ log

(
1 +O

(
1

N

))
= −logN +O(1).

Now, considering M = 1, as N grows large

C1,ed(ε) = log (ḡρ logN +O(1)) = log logN +O(1).

Therefore, C1,ed(ε) scales according to O (log log(N)) when
M = 1.

For M ≥ 2, as N grows large

C1,ed(ε) = log

(
W

(
e

1
(M−1)ρ

(M − 1)ρ

(
1− ε

1
N

) 1
1−M

))
+O(1).

By taking the logarithm on both sides in W(x) exp(W(x)) =
x, we have W(x) = log(x)− log(W(x)). Since log(1−
ε1/N ) = − logN +O(1),

C1,ed(ε) = log

(
1

M − 1
log(N) +O (log log(N))

)
+O(1).

Therefore, C1,ed(ε) scales according to O (log log(N)) for
M ≥ 2, which completes the proof. �

The outage capacity of a system consisting of N equidistant
MUs can be easily computed by using Theorem 5. Accord-
ing to the theorem, the outage capacity scales according to
O (log log(N)), which is the same scaling behavior of the
ergodic downlink sum-rate [2], as the number of MUs grows
large.
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